知识讲解对数函数及其性质提高

合集下载

高三对数函数总结知识点

高三对数函数总结知识点

高三对数函数总结知识点1. 引言对数函数是高中数学中的重要概念之一,广泛应用于各个领域。

在高三阶段学习中,对数函数也是重要的内容之一。

本文将对高三对数函数的知识点进行总结,帮助同学们更好地掌握和应用这一知识。

2. 对数函数的定义和性质对数函数的定义是指数与底数之间的关系。

对于正数a、b(a≠1),其中b>0,b≠1,a^x=b,称x为以a为底b的对数,记作logₐb。

对数函数有一些重要的性质,如对数的底数不能为0或1,底数为a的对数函数是单调递增函数等。

3. 对数函数的图像和性质对数函数的图像呈现一种特殊的曲线形状,具有一些独特的性质。

对于底数为a的对数函数logₐx,当x>1时,函数值递增;当0<x<1时,函数值递减;当x=1时,函数值为0。

此外,对数函数的图像在直线y=1和y=-1上分别有一条水平渐近线。

4. 常见对数函数的性质常见的对数函数包括以10为底的常用对数函数和以自然常数e为底的自然对数函数。

以10为底的对数函数log₁₀x常用于计算,有一些特殊性质,如log₁₀10=1,log₁₀1=0。

以e为底的自然对数函数lnx在数学和科学中应用广泛,同样具有一些特殊性质,如ln1=0,lne=1。

5. 对数的运算法则对数的运算法则是进行对数运算时常用的一些规则。

其中包括换底公式、对数的乘法法则和除法法则等。

通过熟练掌握对数运算法则,可以简化对数运算的过程,方便计算和推导。

6. 对数方程和对数不等式对数方程和对数不等式是对数函数的应用之一。

对数方程是指等式中存在对数的方程,解对数方程的方法通常可以利用对数的反函数指数函数的性质。

对数不等式是指不等式中存在对数的不等式,解对数不等式通常需要结合对数的性质进行推导和求解。

7. 实际问题中的对数函数对数函数在实际问题中具有广泛应用,如人口增长模型、物种滤过模型等。

通过将实际问题进行建模,可以利用对数函数的性质解决实际问题,并对问题进行分析和预测。

对数函数及其应用对数函数的性质与应用

对数函数及其应用对数函数的性质与应用

对数函数及其应用对数函数的性质与应用对数函数是数学中常见的一类函数,具有广泛的应用价值。

本文将介绍对数函数的性质和应用,并探讨其在实际问题中的具体运用。

一、对数函数的性质对数函数是以常数e(欧拉数)为底的指数函数的逆运算。

对数函数的一些基本性质如下:1. 定义域和值域:对数函数的定义域为正实数集,值域为实数集。

2. 对数函数与指数函数的互为反函数关系:对数函数与指数函数是互为反函数的关系,即$log_a(a^x)=x$,$a^{log_a(x)}=x$。

3. 对数函数的增减性:对数函数是递增函数,即$log_a(x)<log_a(y)$成立当且仅当$x<y$。

4. 对数函数的图像:对数函数的图像通常为一条上升曲线,随着自变量的增大,函数值也相应增大,但增长速度逐渐减缓。

二、对数函数的应用对数函数在各个领域都有重要的应用,在以下几个方面具有特别的价值:1. 指数增长和衰减模型:对数函数可以描述许多具有指数增长和衰减的现象,例如人口增长、物种繁殖、放射性衰变等。

通过对数函数的分析,可以预测和控制这些现象的发展趋势。

2. 财务和利息计算:对数函数在金融领域中有广泛的应用,例如计算复利、评估投资回报率等。

对数函数可以帮助我们理解时间价值的概念,为财务决策提供重要的依据。

3. 数据压缩和编码:对数函数可以用于数据的压缩和编码,减少存储空间的占用和传输成本。

常见的压缩算法中就包括对数函数的运算,例如对数编码、哈夫曼编码等。

4. 检测与测量:对数函数在物理测量和数据处理中有广泛应用,例如声音强度的测量(分贝)、地震强度的测量(里氏震级)等。

对数函数使得我们能够更好地处理海量的测量数据,提高数据处理的效率和准确性。

结论对数函数是数学中的重要内容,具有广泛的应用领域。

通过对对数函数的性质和应用的了解,我们可以更好地理解和运用数学知识,解决实际问题。

对数函数的应用远不止以上几个方面,不同领域中还有许多其他实际问题可以通过对数函数的运算和分析来解决。

对数函数及其性质知识点总结讲义

对数函数及其性质知识点总结讲义

对数函数及其性质知识点总结讲义一、对数基本概念1.对数的定义:对数是数学中的一种运算,用一个数的指数表示另一个数。

2. 对数的表示方法:如果a^x = b,则记作x = loga(b)。

3.对数函数:对数函数是指以对数的形式来表示函数的函数。

二、对数函数的性质1.定义域和值域:-对数函数的定义域为正实数集,即x>0。

-对数函数的值域为实数集,即y∈R。

2.对称性:- 设a > 1,则loga(x) = y当且仅当a^y = x。

- 设0 < a < 1,则loga(x) = y当且仅当a^y = x。

3.基本性质:- loga(1) = 0,其中a ≠ 0。

- loga(a) = 1,其中a ≠ 1- loga(x · y) = loga(x) + loga(y),其中x > 0,y > 0。

- loga(x / y) = loga(x) - loga(y),其中x > 0,y > 0。

- loga(x^p) = p · loga(x),其中x > 0,p ∈ R。

- loga(b) = logc(b) / logc(a),其中a,b > 0,且a ≠ 1,c ≠14.基本图像:- 对数函数y = loga(x)的图像为一条曲线,也称为对数曲线。

-当0<a<1时,对数曲线在第一象限上严格递减。

-当a>1时,对数曲线在第一象限上严格递增。

5.特殊对数函数:- 以2为底的对数函数y = log2(x)常用于衡量信息的位数及计算机科学中。

- 自然对数函数y = ln(x)常用于微积分和其它分支的数学中。

三、对数函数的应用1.指数增长与对数函数:对数函数的性质使得它在描述指数增长的问题中非常有用。

-对数函数可以用来模拟人口增长、投资收益、疾病传播等指数增长的过程。

2.对数函数在数据处理中的应用:-对数函数可以用来处理大量数据、极大值、极小值等情形。

对数与对数函数知识点及例题讲解

对数与对数函数知识点及例题讲解

对数与对数函数1.对数(1)对数的定义:)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N Ûlog a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNN a a log log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: : loglog a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象)对数函数的图象O xyy = l o g x a > Oxy<a <a y = l o g x a 1111( ())底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0. ④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 基础例题1.函数f (x )=|log 2x |的图象是的图象是1 1 1-1 1111 1 xxxxy y y y O OOOA BC D解析:f (x )=îíì<<-³.10,log ,1,log 22x x x x答案:A 2.若f --1(x )为函数f (x )=lg (x +1)的反函数,则f --1(x )的值域为___________________. 解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f --1(x )的值域为(-1,+∞). 答案:(-1,+∞)∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________. 解析:由0≤log 21(3-x )≤1Þlog 211≤log 21(3-x )≤log 2121Þ21≤3-x ≤1Þ2≤x ≤25. 答案:[2,25]4.若log x7y=z ,则x 、y 、z 之间满足之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由logx 7y=z Þx z=7y Þx 7z=y ,即y =x 7z. 答案:B 5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则,则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D 6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于等于 A.42 B.22 C.41 D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A 7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21 B.-21 C.2 D.-2 解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B 注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21. 8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是能是OxyOxyOxyOxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,)111-1O xy注意:研究函数的性质时,利用图象会更直观. 【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间. 解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增. 注意:讨论复合函数的单调性要注意定义域. 【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和)和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|. (1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值. 解:定义域为x >3,原函数为y =lg 3)2(2--x x . 又∵3)2(2--x x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4. 【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x xx x +)成立的函数是)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A 探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,127m +m -+m )-+m+2m ≥+xm+2m )+x m ≥2m (当且仅当=xm ,即=m 时等号成立)+x m +2m )=4m ,即4m ≥≥169. 可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较. 3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用. 。

对数函数及其性质-对数地公式互化-详尽地讲解

对数函数及其性质-对数地公式互化-详尽地讲解

2.1 对数与对数运算1.对数的概念一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.说明:(1)实质上,上述对数表达式,不过是指数函数y =a x 的另一种表达形式,例如:34=81与4=log 381这两个式子表达是同一关系,因此,有关系式a x =N ⇔x =log a N ,从而得对数恒等式:a log a N =N .(2)“log”同“+”“×”“ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面.(3)根据对数的定义,对数log a N (a >0,且a ≠1)具有下列性质: ①零和负数没有对数,即N >0; ②1的对数为零,即log a 1=0; ③底的对数等于1,即log a a =1. 2.对数的运算法则利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度.(1)基本公式①log a (MN )=log a M +log a N (a >0,a ≠1,M >0,N >0),即正数的积的对数,等于同一底数的各个因数的对数的和.②log a MN =log a M -log a N (a >0,a ≠1,M >0,N >0),即两个正数的商的对数,等于被除数的对数减去除数的对数.③log a M n =n ·log a M (a >0,a ≠1,M >0,n ∈R ),即正数的幂的对数等于幂的底数的对数乘以幂指数.(2)对数的运算性质注意点①必须注意M >0,N >0,例如log a [(-3)×(-4)]是存在的,但是log a (-3)与log a (-4)均不存在,故不能写成log a [(-3)×(-4)]=log a (-3)+log a (-4).②防止出现以下错误:log a (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N ,log a M N =log a Mlog a N,log a M n =(log a M )n . 3.对数换底公式在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底公式:log b N =log c Nlog c b(b >0,且b ≠1;c >0,且c ≠1;N >0).证明 设log b N =x ,则b x =N .两边取以c 为底的对数, 得x log c b =log c N .所以x =log c N log c b ,即log b N =log c Nlog c b.换底公式体现了对数运算中一种常用的转化,即将复杂的或未知的底数转化为已知的或需要的底数,这是数学转化思想的具体应用.由换底公式可推出下面两个常用公式:(1)log b N =1log N b 或log b N ·log N b =1 (N >0,且N ≠1;b >0,且b ≠1);(2)log bn N m =mnlog b N (N >0;b >0,且b ≠1;n ≠0,m ∈R ).题型一 正确理解对数运算性质对于a >0且a ≠1,下列说法中,正确的是( )①若M =N ,则log a M =log a N ; ②若log a M =log a N ,则M =N ; ③若log a M 2=log a N 2,则M =N ; ④若M =N ,则log a M 2=log a N 2.A .①与③B .②与④C .②D .①、②、③、④解析 在①中,当M =N ≤0时,log a M 与log a N 均无意义,因此log a M =log a N 不成立. 在②中,当log a M =log a N 时,必有M >0,N >0,且M =N ,因此M =N 成立. 在③中,当log a M 2=log a N 2时,有M ≠0,N ≠0,且M 2=N 2,即|M |=|N |,但未必有M =N .例如,M =2,N =-2时,也有log a M 2=log a N 2,但M ≠N .在④中,若M =N =0,则log a M 2与log a N 2均无意义,因此log a M 2=log a N 2不成立. 所以,只有②成立. 答案 C点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件,使用运算性质时,应牢记公式的形式及公式成立的条件.题型二 对数运算性质的应用求下列各式的值:(1)2log 32-log 3329+log 38-5log 53;(2)lg25+23lg8+lg5·lg20+(lg2)2;(3)log 52·log 79log 513·log 734.分析 利用对数的性质求值,首先要明确解题目标是化异为同,先使各项底数相同,才能使用性质,再找真数间的联系,对于复杂的真数,可以先化简再计算.解 (1)原式=2log 32-(log 332-log 39)+3log 32-3 =2log 32-5log 32+2+3log 32-3=-1. (2)原式=2lg5+2lg2+lg 102·lg(2×10)+(lg2)2=2lg(5×2)+(1-lg2)·(lg2+1)+(lg2)2 =2+1-(lg2)2+(lg2)2=3. (3)∵log 52·log 79log 513·log 734=12log 52·2log 73-log 53·13log 74=-lg2lg5·lg3lg7lg3lg5·13·lg4lg7=-32.点评 对数的求值方法一般有两种:一种是将式中真数的积、商、幂、方根利用对数的运算性质将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值.题型三 对数换底公式的应用计算:(log 2125+log 425+log 85)(log 52+log 254+log 1258).分析 由题目可获取以下主要信息:本题是一道对数化简求值题,在题目中各个对数的底数都各不相同.解答本题可先通过对数换底公式统一底数再进行化简求值.解 方法一 原式=⎝⎛⎭⎫log 253+log 225log 24+log 25log 28⎝⎛⎭⎫log 52+log 54log 525+log 58log 5125=⎝⎛⎭⎫3log 25+2log 252log 22+log 253log 22⎝⎛⎭⎫log 52+2log 522log 55+3log 523log 55 =⎝⎛⎭⎫3+1+13log 25·(3log 52) =13log 25·log 22log 25=13.方法二 原式=⎝⎛⎭⎫lg125lg2+lg25lg4+lg5lg8⎝⎛⎭⎫lg2lg5+lg4lg25+lg8lg125 =⎝⎛⎭⎫3lg5lg2+2lg52lg2+lg53lg2⎝⎛⎭⎫lg2lg5+2lg22lg5+3lg23lg5 =⎝⎛⎭⎫13lg53lg2⎝⎛⎭⎫3lg2lg5=13.点评 方法一是先将括号内换底,然后再将底统一;方法二是在解题方向还不清楚的情况下,一次性地统一为常用对数(当然也可以换成其他非1的正数为底),然后再化简.上述方法是不同底数对数的计算、化简和恒等证明的常用方法.已知log (x +3)(x 2+3x )=1,求实数x 的值.错解 由对数的性质可得x 2+3x =x +3. 解得x =1或x =-3.错因分析 对数的底数和真数必须大于0且底数不等于1,这点在解题中忽略了. 正解 由对数的性质知⎩⎪⎨⎪⎧x 2+3x =x +3,x 2+3x >0,x +3>0且x +3≠1.解得x =1,故实数x 的值为1.对数的定义及其性质是高考中的重要考点之一,主要性质有:log a 1=0,log a a =1,a log a N =N (a >0,且a ≠1,N >0).1.(上海高考)方程9x -6·3x -7=0的解是________. 解析 ∵9x -6·3x -7=0,即32x -6·3x -7=0 ∴(3x -7)(3x +1)=0 ∴3x =7或3x =-1(舍去) ∴x =log 37.答案 log 372.(辽宁高考)设g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=____. 解析 g ⎝⎛⎭⎫12=ln 12<0,g ⎝⎛⎭⎫ln 12=eln 12=12, ∴g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=12. 答案 121.对数式log (a -3)(7-a )=b ,实数a 的取值范围是( )A .(-∞,7)B .(3,7)C .(3,4)∪(4,7)D .(3,+∞) 答案 C解析 由题意得⎩⎪⎨⎪⎧a -3>0,a -3≠1,7-a >0,解得3<a <7且a ≠4.2.设a =log 32,则log 38-2log 36用a 表示的形式是( ) A .a -2 B .3a -(1+a )2 C .5a -2 D .-a 2+3a -1 答案 A解析 ∵a =log 32,∴log 38-2log 36=3log 32-2(log 32+1) =3a -2(a +1)=a -2.3.log 56·log 67·log 78·log 89·log 910的值为( ) A .1 B .lg5 C.1lg5 D .1+lg2答案 C解析 原式=lg6lg5·lg7lg6·lg8lg7·lg9lg8·lg10lg9=lg10lg5=1lg5.4.已知log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1) B.⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫12,1 D .(1,+∞)答案 C解析 由题意,得⎩⎪⎨⎪⎧0<a <1,2a >1,∵a >0,a ≠1,log a (a 2+1)<log a 2a ,∴0<a <1.∴12<a <1.5.已知函数f (x )=a x -1+log a x (a >0,a ≠1)在[1,3]上最大值与最小值之和为a 2,则a 的值为( )A .4 B.14 C .3 D.13答案 D6.若方程(lg x )2+(lg7+lg5)lg x +lg7·lg5=0的两根为α,β,则αβ等于( ) A .lg7·lg5 B .lg35 C .35 D.135答案 D解析 ∵lg α+lg β=-(lg7+lg5)=-lg35=lg 135∴α·β=135.7.已知f (log 2x )=x ,则f ⎝⎛⎭⎫12=________. 答案2解析 令log 2x =12,则212=x ,∴f ⎝⎛⎭⎫12=212= 2. 8.log (2-1)(2+1)=________.答案 -1 解析 log 2-1(2+1)=log2-1(2+1)(2-1)2-1=log (2-1)12-1=-1. 9.已知lg2=0.301 0,lg3=0.477 1,lg x =-2+0.778 1,则x =________. 答案 0.06解析 ∵lg2=0.301 0,lg3=0.477 1,而0.301 0+0.477 1=0.778 1,∴lg x =-2+lg2+lg3, 即lg x =lg10-2+lg6.∴lg x =lg(6×10-2),即x =6×10-2=0.06.10.(1)已知lg x +lg y =2lg(x -2y ),求log 2xy 的值;(2)已知log 189=a,18b =5,试用a ,b 表示log 365.解 (1)lg x +lg y =2lg(x -2y ), ∴xy =(x -2y )2,即x 2-5xy +4y 2=0. 即(x -y )(x -4y )=0,解得x =y 或x =4y , 又∵⎩⎪⎨⎪⎧x >0,y >0,x -2y >0,∴x >2y >0,∴x =y ,应舍去,取x =4y .则log 2x y =log 24y y =log 24=lg4lg 2=4.(2)∵18b =5,∴log 185=b, 又∵log 189=a , ∴log 365=log 185lg 1836=blog 18(18×2)=b 1+log 182=b 1+log 18189=b 1+(1-log 189)=b2-a.11.设a ,b ,c 均为不等于1的正数,且a x =b y =c z ,1x +1y +1z =0,求abc 的值.解 令a x =b y =c z =t (t >0且t ≠1), 则有1x =log t a ,1y =log t b ,1z =log t c ,又1x +1y +1z=0,∴log t abc =0,∴abc =1. 12.已知a ,b ,c 是△ABC 的三边,且关于x 的方程x 2-2x +lg(c 2-b 2)-2lg a +1=0有等根,试判定△ABC 的形状.解 ∵关于x 的方程x 2-2x +lg(c 2-b 2)-2lg a +1=0有等根, ∴Δ=0,即4-4[lg(c 2-b 2)-2lg a +1]=0. 即lg(c 2-b 2)-2lg a =0,故c 2-b 2=a 2, ∴a 2+b 2=c 2,∴△ABC 为直角三角形.2.2.1 对数与对数运算(一)学习目标1.理解对数的概念,能进行指数式与对数式的互化. 2.了解常用对数与自然对数的意义. 3.理解对数恒等式并能用于有关对数的计算.自学导引1.如果a (a >0且a ≠1)的b 次幂等于N ,就是a b =N ,那么数b 叫做以a 为底N 的对数,记作b =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质有:(1)1的对数为零; (2)底的对数为1; (3)零和负数没有对数.3.通常将以10为底的对数叫做常用对数,以e 为底的对数叫做自然对数,log 10N 可简记为lg N ,log e N 简记为ln N .4.若a >0,且a ≠1,则a b =N 等价于log a N =b . 5.对数恒等式:a log a N =N (a >0且a ≠1).一、对数式有意义的条件例1 求下列各式中x 的取值范围:(1)log 2(x -10);(2)log (x -1)(x +2);(3)log (x +1)(x -1)2.分析 由真数大于零,底数大于零且不等于1可得到关于x 的不等式(组),解之即可. 解 (1)由题意有x -10>0,∴x >10,即为所求.(2)由题意有⎩⎪⎨⎪⎧ x +2>0,x -1>0且x -1≠1,即⎩⎪⎨⎪⎧x >-2,x >1且x ≠2,∴x >1且x ≠2. (3)由题意有⎩⎪⎨⎪⎧(x -1)2>0,x +1>0且x +1≠1,解得x >-1且x ≠0,x ≠1.点评 在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大于零且不等于1.变式迁移1 在b =log (a -2)(5-a )中,实数a 的取值范围是( )A .a >5或a <2B .2<a <5C .2<a <3或3<a <5D .3<a <4 答案 C解析 由题意得⎩⎪⎨⎪⎧5-a >0a -2>0a -2≠1,∴2<a <5且a ≠3.二、对数式与指数式的互化例2 将下列对数形式化成指数形式或将指数形式转化为对数形式: (1)54=625; (2)log 128=-3;(3)⎝⎛⎭⎫14-2=16; (4)log 101 000=3. 分析 利用a x =N ⇔x =log a N 进行互化. 解 (1)∵54=625,∴log 5625=4. (2)∵log 128=-3,∴⎝⎛⎭⎫12-3=8. (3)∵⎝⎛⎭⎫14-2=16,∴log 1416=-2. (4)∵log 101 000=3,∴103=1 000.点评 指数和对数运算是一对互逆运算,在解题过程中,互相转化是解决相关问题的重要途径.在利用a x =N ⇔x =log a N 进行互化时,要分清各字母分别在指数式和对数式中的位置.变式迁移2 将下列对数式化为指数式求x 值: (1)log x 27=32; (2)log 2x =-23;(3)log 5(log 2x )=0; (4)x =log 2719;(5)x =log 1216.解 (1)由log x 27=32,得x 32=27,∴x =2723=32=9.(2)由log 2x =-23,得2-23=x ,∴x =1322=322.(3)由log 5(log 2x )=0,得log 2x =1,∴x =21=2. (4)由x =log 2719,得27x =19,即33x =3-2,∴x =-23.(5)由x =log 1216,得⎝⎛⎭⎫12x =16,即2-x =24, ∴x =-4.三、对数恒等式的应用例3 (1)a log a b ·log b c ·log c N 的值(a ,b ,c ∈R +,且不等于1,N >0); (2)412(log 29-log 25).解 (1)原式=(a log a b )log b c ·log c N =b log b c ·log c N =(b log b c )log c N =c log c N =N .(2)原式=2(log 29-log 25)=2log 292log 25=95.点评 对数恒等式a log a N =N 中要注意格式:(1)它们是同底的;(2)指数中含有对数形式;(3)其值为真数.变式迁移3 计算:3log 35+(3)log 315.解 原式=5+312log 315=5+(3log 315)12=5+15=655.1.一般地,如果a (a >0,a ≠1)的b 次幂等于N ,就是a b =N ,那么b 叫做以a 为底N 的对数,记作log a N =b ,其中a 叫做对数的底数,N 叫做真数.2.利用a b =N ⇔b =log a N (其中a >0,a ≠1,N >0)可以进行指数与对数式的互化. 3.对数恒等式:a log a N =N (a >0且a ≠1).一、选择题1.下列指数式与对数式互化不正确的一组是( ) A .100=1与lg1=0 B .27-13=13与log 2713=-13C .log 312=9与912=3D .log 55=1与51=5 答案 C2.指数式b 6=a (b >0,b ≠1)所对应的对数式是( )A .log 6a =aB .log 6b =aC .log a b =6D .log b a =6 答案 D3.若log x (5-2)=-1,则x 的值为( ) A.5-2 B.5+2C.5-2或5+2 D .2- 5 答案 B4.如果f (10x )=x ,则f (3)等于( ) A .log 310 B .lg3 C .103 D .310 答案 B解析 方法一 令10x =t ,则x =lg t , ∴f (t )=lg t ,f (3)=lg3.方法二 令10x =3,则x =lg3,∴f (3)=lg3. 5.21+12·log 25的值等于( )A .2+ 5B .2 5C .2+52 D .1+52答案 B解析 21+12log 25=2×212log 25=2×2log 2512=2×512=2 5.二、填空题6.若5lg x =25,则x 的值为________. 答案 100解析 ∵5lg x =52,∴lg x =2,∴x =102=100. 7.设log a 2=m ,log a 3=n ,则a 2m +n的值为________.答案 12解析 ∵log a 2=m ,log a 3=n ,∴a m =2,a n =3, ∴a 2m +n =a 2m ·a n =(a m )2·a n =22×3=12.8.已知lg6≈0.778 2,则102.778 2≈________. 答案 600解析 102.778 2≈102×10lg6=600. 三、解答题9.求下列各式中x 的值 (1)若log 3⎝⎛⎭⎫1-2x 9=1,则求x 值;(2)若log 2 003(x 2-1)=0,则求x 值. 解 (1)∵log 3⎝⎛⎭⎫1-2x 9=1,∴1-2x 9=3∴1-2x =27,即x =-13 (2)∵log 2 003(x 2-1)=0 ∴x 2-1=1,即x 2=2 ∴x =±210.求x 的值:(1)x =log224;(2)x =log 93;(3)x =71-log 75; (4)log x 8=-3;(5)log 12x =4.解 (1)由已知得:⎝⎛⎭⎫22x=4, ∴2-12x =22,-x2=2,x =-4.(2)由已知得:9x =3,即32x =312.∴2x =12,x =14.(3)x =7÷7log 75=7÷5=75.(4)由已知得:x -3=8,即⎝⎛⎭⎫1x 3=23,1x =2,x =12. (5)由已知得:x =⎝⎛⎭⎫124=116.2.2.1 对数与对数运算(二)学习目标1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.自学导引1.对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么, (1)log a (MN )=log a M +log a N ; (2)log a MN =log a M -log a N ;(3)log a M n =n log a M (n ∈R ). 2.对数换底公式:log a b =log c blog c a.一、正确理解对数运算性质例1 若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数有( ) ①log a x · log a y =log a (x +y ); ②log a x -log a y =log a (x -y ); ③log a xy =log a x ÷log a y ;④log a (xy )=log a x ·log a y .A .0个B .1个C .2个D .3个 答案 A解析 对数的运算实质是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算.在运算中要注意不能把对数的符号当作表示数的字母参与运算,如log a x ≠log a ·x ,log a x 是不可分开的一个整体.四个选项都把对数符号当作字母参与运算,因而都是错误的.点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件. 变式迁移1 若a >0且a ≠1,x >0,n ∈N *,则下列各式正确的是( ) A .log a x =-log a 1x B .(log a x )n =n log a xC .(log a x )n =log a x nD .log a x =log a 1x答案 A二、对数运算性质的应用例2 计算:(1)log 535-2log 573+log 57-log 51.8;(2)2(lg 2)2+lg 2·lg5+(lg 2)2-lg2+1; (3)lg 27+lg8-lg 1 000lg1.2;(4)(lg5)2+lg2·lg50.分析 利用对数运算性质计算.解 (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55 =2log 55=2.(2)原式=lg 2(2lg 2+lg5)+(lg 2-1)2 =lg 2(lg2+lg5)+1-lg 2=lg 2+1-lg 2=1. (3)原式=32lg3+3lg2-32lg3+2lg2-1=3lg3+6lg2-32(lg3+2lg2-1)=32.(4)原式=(lg5)2+lg2·(lg2+2lg5)=(lg5)2+2lg5·lg2+(lg2)2=(lg5+lg2)2=1.点评 要灵活运用有关公式.注意公式的正用、逆用及变形使用. 变式迁移2 求下列各式的值: (1)log 535+2log 122-log 5150-log 514;(2)[(1-log 63)2+log 62·log 618]÷log 64.解 (1)原式=log 5(5×7)-2log 2212+log 5(52×2)-log 5(2×7)=1+log 57-1+2+log 52-log 52-log 57=2.(2)原式=[log 262+log 62·log 6(3×6)]÷log 622=log 62(log 62+log 63+1)÷(2log 62)=1.三、换底公式的应用例3 (1)设3x =4y =36,求2x +1y 的值;(2)已知log 189=a,18b =5,求log 3645. 解 (1)由已知分别求出x 和y . ∵3x =36,4y =36, ∴x =log 336,y =log 436, 由换底公式得:x =log 3636log 363=1log 363,y =log 3636log 364=1log 364,∴1x =log 363,1y =log 364, ∴2x +1y =2log 363+log 364 =log 36(32×4)=log 3636=1.(2)∵log 189=a,18b =5,∴log 185=b . ∴log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b2-a .点评 指数式化为对数式后,两对数式的底不同,但式子两端取倒数后,利用对数的换底公式可将差异消除.变式迁移3 (1)设log 34·log 48·log 8m =log 416,求m ; (2)已知log 1227=a ,求log 616的值. 解 (1)利用换底公式,得lg4lg3·lg8lg4·lg mlg8=2,∴lg m =2lg3,于是m =9.(2)由log 1227=a ,得3lg32lg2+lg3=a ,∴lg3=2a lg23-a ,∴lg3lg2=2a3-a .∴log 616=4lg2lg3+lg2=42a3-a +1=4(3-a )3+a.1.对于同底的对数的化简常用方法是:(1)“收”,将同底的两对数的和(差)化成积(商)的对数; (2)“拆”,将积(商)的对数拆成对数的和(差).2.对于常用对数的化简要充分利用“lg5+lg2=1”来解题. 3.对于多重对数符号对数的化简,应从内向外逐层化简求值.一、选择题1.lg8+3lg5的值为( )A .-3B .-1C .1D .3 答案 D解析 lg8+3lg5=lg8+lg53=lg1 000=3. 2.已知lg2=a ,lg3=b ,则log 36等于( ) A.a +b a B.a +b bC.a a +bD.b a +b 答案 B解析 log 36=lg6lg3=lg2+lg3lg3=a +b b.3.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则⎝⎛⎭⎫lg ab 2的值等于( ) A .2 B.12 C .4 D.14答案 A解析 由根与系数的关系,得lg a +lg b =2,lg a ·lg b =12,∴⎝⎛⎭⎫lg ab 2=(lg a -lg b )2 =(lg a +lg b )2-4lg a ·lg b =22-4×12=2.4.若2.5x =1 000,0.25y =1 000,则1x -1y 等于( )A.13 B .3 C .-13 D .-3 答案 A解析 由指数式转化为对数式: x =log 2.51 000,y =log 0.251 000,则1x -1y =log 1 0002.5-log 1 0000.25=log 1 00010=13. 5.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 005)=8,则f (x 21)+f (x 22)+…+f (x 22 005)的值等于( )A .4B .8C .16D .2log a 8 答案 C解析 因为f (x )=log a x ,f (x 1x 2…x 2 005)=8,所以f (x 21)+f (x 22)+…+f (x 22 005) =log a x 21+log a x 22+…+log a x 22 005=2log a |x 1|+2log a |x 2|+…+2log a |x 2 005| =2log a |x 1x 2…x 2 005| =2f (x 1x 2…x 2 005)=2×8=16. 二、填空题6.设lg2=a ,lg3=b ,那么lg 1.8=__________. 答案a +2b -12解析 lg 1.8=12lg1.8=12lg 1810=12lg 2×910=12(lg2+lg9-1)=12(a +2b -1). 7.若log a x =2,log b x =3,log c x =6,则log abc x 的值为____. 答案 1解析 log abc x =1log x abc =1log x a +log x b +log x c∵log a x =2,log b x =3,log c x =6 ∴log x a =12,log x b =13,log x c =16,∴log abc x =112+13+16=11=1.8.已知log 63=0.613 1,log 6x =0.386 9,则x =________. 答案 2解析 由log 63+log 6x =0.613 1+0.386 9=1. 得log 6(3x )=1.故3x =6,x =2. 三、解答题9.求下列各式的值: (1)12lg 3249-43lg 8+lg 245; (2)(lg5)2+2lg2-(lg2)2.解 (1)方法一 原式=12(5lg2-2lg7)-43·32lg2+12(2lg7+lg5) =52lg2-lg7-2lg2+lg7+12lg5 =12lg2+12lg5=12(lg2+lg5) =12lg10=12. 方法二 原式=lg 427-lg4+lg7 5=lg42×757×4=lg(2·5)=lg 10=12.(2)方法一 原式=(lg5+lg2)(lg5-lg2)+2lg2 =lg10·lg 52+lg4=lg ⎝⎛⎭⎫52×4=lg10=1. 方法二 原式=(lg10-lg2)2+2lg2-lg 22 =1-2lg2+lg 22+2lg2-lg 22=1. 10.若26a =33b =62c ,求证:1a +2b =3c.证明 设26a =33b =62c =k (k >0),那么⎩⎪⎨⎪⎧6a =log 2k ,3b =log 3k ,2c =log 6k ,∴⎩⎪⎨⎪⎧1a =6log 2k=6log k 2,1b =3log 3k =3log k3,1c =2log 6k=2log k6.∴1a +2b=6·log k 2+2×3log k 3 =log k (26×36)=6log k 6=3×2log k 6=3c ,即1a +2b =3c. 2.2.2 对数函数及其性质1.对数函数的概念形如y =log a x (a >0且a ≠1)的函数叫做对数函数. 对于对数函数定义的理解,要注意:(1)对数函数是由指数函数变化而来的,由指数式与对数式关系知,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞);(2)对数函数的解析式y =log a x 中,log a x 前面的系数为1,自变量在真数的位置,底数a 必须满足a >0,且a ≠1;(3)以10为底的对数函数为y =lg x ,以e 为底的对数函数为y =ln x . 2.对数函数的图象及性质:3.指数函数与对数函数的关系比较m (1)当(m -1)(n -1)>0,即m 、n 范围相同(相对于“1”而言),则log m n >0;(2)当(m -1)(n -1)<0,即m 、n 范围相反(相对于“1”而言),则log m n <0.有了这个规律,我们再判断对数值的正负就很简单了,如log 213<0,log 52>0等,一眼就看出来了!题型一 求函数定义域求下列函数的定义域:(1)y =log 3x -12x +3x -1;(2)y =11-log a (x +a )(a >0,a ≠1).分析 定义域即使函数解析式有意义的x 的范围. 解 (1)要使函数有意义,必须{ 2x +3>0,x -1>0,x -1>0,x -1≠1同时成立,解得⎩⎨⎧x >-32,x >1,x >13,x ≠23. ∴x >1. ∴定义域为(1,+∞).(2)要使原函数有意义,需1-log a (x +a )>0, 即log a (x +a )<1=log a a .当a >1时,0<x +a <a ,∴-a <x <0. 当0<a <1时,x +a >a ,∴x >0.∴当a >1时,原函数定义域为{x |-a <x <0}; 当0<a <1时,原函数定义域为{x |x >0}.点评 求与对数函数有关的定义域问题,首先要考虑:真数大于零,底数大于零且不等于1,若分母中含有x ,还要考虑不能使分母为零.题型二 对数单调性的应用(1)log 43,log 34,log 4334的大小顺序为( )A .log 34<log 43<log 4334B .log 34>log 43>log 4334C .log 34>log 4334>log 43D .log 4334>log 34>log 43(2)若a 2>b >a >1,试比较log a a b ,log b ba ,logb a ,log a b 的大小.(1)解析 ∵log 34>1,0<log 43<1, log 4334=log 43⎝⎛⎭⎫43-1=-1, ∴log 34>log 43>log 4334.答案 B(2)解 ∵b >a >1,∴0<ab<1.∴log a a b <0,log b ba ∈(0,1),logb a ∈(0,1).又a >b a >1,且b >1,∴log b ba <logb a ,故有log a a b <log b ba<log b a <log a b .点评 比较对数的大小,一般遵循以下几条原则:①如果两对数的底数相同,则由对数函数的单调性(底数a >1为增;0<a <1为减)比较. ②如果两对数的底数和真数均不相同,通常引入中间变量进行比较.③如果两对数的底数不同而真数相同,如y =log a 1x 与y =log a 2x 的比较(a 1>0,a 1≠1,a 2>0,a 2≠1).当a 1>a 2>1时,曲线y 1比y 2的图象(在第一象限内)上升得慢.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2.而在第一象限内,图象越靠近x 轴对数函数的底数越大.当0<a 2<a 1<1时,曲线y 1比y 2的图象(在第四象限内)下降得快.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2即在第四象限内,图象越靠近x 轴的对数函数的底数越小.已知log a 12<1,那么a 的取值范围是________.分析 利用函数单调性或利用数形结合求解.解析 由log a 12<1=log a a ,得当a >1时,显然符合上述不等式,∴a >1;当0<a <1时,a <12,∴0<a <12. 故a >1或0<a <12.答案 a >1或0<a <12点评 解含有对数符号的不等式时,必须注意对数的底数是大于1还是小于1,然后再利用相应的对数函数的单调性进行解答.理解会用以下几个结论很有必要:(1)当a >1时,log a x >0⇔x >1,log a x <0⇔0<x <1; (2)当0<a <1时,log a x >0⇔0<x <1,log a x <0⇔x >1.题型三 函数图象的应用若不等式2x -log a x <0,当x ∈⎝⎛⎭⎫0,12时恒成立,求实数a 的取值范围. 解要使不等式2x<logax 在x ∈⎪⎭⎫ ⎝⎛21,0时恒成立,即函数y=logax 的图象在⎪⎭⎫ ⎝⎛21,0内恒在函数y=2x 图象的上方,而y=2x 图象过点⎪⎭⎫⎝⎛2,21.由图可知,loga 21>2,显然这里0<a<1,∴函数y=logax 递减.又loga21>2=log 2a a ,∴a2>21,即a>2221⎪⎭⎫ ⎝⎛.∴所求的a 的取值范围为2221⎪⎭⎫ ⎝⎛<a<1.点评 原问题等价于当x ∈⎪⎭⎫ ⎝⎛21,0时,y1=2x 的图象在y2=logax 的图象的下方,由于a的大小不确定,当a>1时,显然y2<y1,因此a 必为小于1的正数,当y2的图象通过点⎪⎭⎫⎝⎛2,21时,y2满足条件,此时a 0=2221⎪⎭⎫⎝⎛.那么a 是大于a 0还是小于a 0才满足呢?可以画图象观察,请试着画一画.这样可以对数形结合的方法有更好地掌握.设函数f (x )=lg(ax 2+2x +1),若f (x )的值域是R ,求实数a 的取值范围.错解 ∵f (x )的值域是R , ∴ax 2+2x +1>0对x ∈R 恒成立, 即{ a⇔{ a -4a <0⇔a >1.错因分析 出错的原因是分不清定义域为R 与值域为R 的区别. 正解 函数f (x )=lg(ax 2+2x +1)的值域是R ⇔真数t =ax 2+2x +1能取到所有的正数.当a =0时,只要x >-12,即可使真数t 取到所有的正数,符合要求;当a ≠0时,必须有{ a ⇔{ a -4a ≥0⇔0<a ≤1.∴f (x )的值域为R 时,实数a 的取值范围为[0,1].本节内容在高考中考查的形式、地位与指数函数相似,着重考查对数的概念与对数函数的单调性,考查指数、对数函数的图象、性质及其应用.1.(广东高考)已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅解析 由题意知M ={x |x <1},N ={x |x >-1}. 故M ∩N ={x |-1<x <1}. 答案 C2.(湖南高考)下列不等式成立的是( ) A .log 32<log 23<log 25 B .log 32<log 25<log 23 C .log 23<log 32<log 25 D .log 23<log 25<log 32解析 ∵y =log 2x 在(0,+∞)上是增函数, ∴log 25>log 23>log 22=1.又y =log 3x 在(0,+∞)上为增函数, ∴log 32<log 33=1.∴log 32<log 23<log 25. 答案 A3.(全国高考)若x ∈(e-1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a 解析 ∵1e <x <1,∴-1<ln x <0.令t =ln x ,则-1<t <0. ∴a -b =t -2t =-t >0.∴a >b . c -a =t 3-t =t (t 2-1)=t (t +1)(t -1), 又∵-1<t <0,∴0<t +1<1,-2<t -1<-1,∴c -a >0,∴c >a . ∴c >a >b .答案 C1.已知函数f (x )=1+2x 的定义域为集合M ,g (x )=ln(1-x )的定义域为集合N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1} C.⎩⎨⎧⎭⎬⎫x |-12<x <1 D .∅答案 C2.已知函数f (x )=lg 1-x 1+x ,若f (a )=12,则f (-a )等于( )A.12 B .-12 C .-2 D .2 答案 B解析 f (-a )=lg 1+a 1-a =-lg ⎝ ⎛⎭⎪⎫1+a 1-a -1 =-lg 1-a 1+a=-f (a )=-12.3.已知a =log 23,b =log 32,c =log 42,则a ,b ,c 的大小关系是( ) A .c <b <a B .a <b <c C .b <c <a D .c <a <b 答案 A解析 因为a =log 23>1,b =log 3 2<1,所以a >b ; 又因为2>3,则log 32>log 33=12,而log 42=log 22=12,所以b >12,c =12,即b >c .从而a >b >c .4.函数f (x )=lg|x |为( )A .奇函数,在区间(0,+∞)上是减函数B .奇函数,在区间(0,+∞)上是增函数C .偶函数,在区间(-∞,0)上是增函数D .偶函数,在区间(-∞,0)上是减函数 答案 D解析 已知函数定义域为(-∞,0)∪(0,+∞),关于坐标原点对称,且f (-x )=lg|-x |=lg|x |=f (x ),所以它是偶函数.又当x >0时,|x |=x ,即函数y =lg|x |在区间(0,+∞)上是增函数. 又f (x )为偶函数,所以f (x )=lg|x |在区间(-∞,0)上是减函数.5.函数y =a x 与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象只可能为( )答案 A解析 方法一 若0<a <1,则曲线y =a x 下降且过(0,1),而曲线y =-log a x 上升且过(1,0);若a >1,则曲线y =a x 上升且过(0,1),而曲线y =-log a x 下降且过(1,0).只有选项A 满足条件.方法二 注意到y =-log a x 的图象关于x 轴对称的图象的表达式为y =log a x ,又y =log a x 与y =a x 互为反函数(图象关于直线y =x 对称),则可直接选定选项A.6.设函数f (x )=log 2a (x +1),若对于区间(-1,0)内的每一个x 值都有f (x )>0,则实数a 的取值范围为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫12,1 D.⎝⎛⎭⎫0,12 答案 D解析 已知-1<x <0,则0<x +1<1,又当-1<x <0时,都有f (x )>0,即0<x +1<1时都有f (x )>0,所以0<2a <1,即0<a <12.7.若指数函数f (x )=a x (x ∈R )的部分对应值如下表:则不等式log a (x -1)<0答案 {x |1<x <2}解析 由题可知a =1.2,∴log 1.2(x -1)<0,∴log 1.2(x -1)<log 1.21,解得x <2, 又∵x -1>0,即x >1,∴1<x <2. 故原不等式的解集为{x |1<x <2}.8.函数y =log a x (1≤x ≤2)的值域为[-1,0],那么a 的值为________. 答案 12解析 若a >1,则函数y =log a x 在区间[1,2]上为增函数,其值域不可能为[-1,0]; 故0<a <1,此时当x =2时,y 取最小值-1, 即log a 2=-1,得a -1=2,所以a =12.9.已知函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1log a x ,x ≥1是实数集R 上的减函数,那么实数a 的取值范围为__________.答案 ⎣⎡⎭⎫17,13解析 函数f (x )为实数集R 上的减函数, 一方面,0<a <1且3a -1<0,所以0<a <13,另一方面,由于f (x )在R 上为减函数, 因此应有(3a -1)×1+4a ≥log a 1,即a ≥17.因此满足题意的实数a 的取值范围为17≤a <13.10.已知f (x )=1+log 2x (1≤x ≤4),求函数g (x )=f 2(x )+f (x 2)的最大值和最小值. 解 ∵f (x )的定义域为[1,4], ∴g (x )的定义域为[1,2].∵g (x )=f 2(x )+f (x 2)=(1+log 2x )2+(1+log 2x 2) =(log 2x +2)2-2, 又1≤x ≤2,∴0≤log 2x ≤1. ∴当x =1时,g (x )min =2;当x =2时,g (x )max =7.学习目标1.掌握对数函数的概念、图象和性质.2.能够根据指数函数的图象和性质得出对数函数的图象和性质,把握指数函数与对数函数关系的实质.自学导引1.对数函数的定义:一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2.对数函数的图象与性质对数函数y=log a x(a>0且a≠1)和指数函数y=a x_(a>0且a≠1)互为反函数.一、对数函数的图象例1 下图是对数函数y =log a x 的图象,已知a 值取3,43,35,110,则图象C 1,C 2,C 3,C 4相应的a 值依次是( )A.101,53,34,3B .53,101,34,3 C .101,53,3,34 D .53,101,3,34 答案 A解析 方法一 因为对数的底数越大,函数的图象越远离y 轴的正方向,所以C1,C2,C3,C4的a 值依次由大到小,即C1,C2,C3,C4的a 值依次为101,53,34,3. 方法二过(0,1)作平行于x 轴的直线,与C1,C2,C3,C4的交点的横坐标为(a1,1),(a2,1),(a3,1),(a4,1),其中a1,a2,a3,a4分别为各对数的底,显然a1>a2>a3>a4,所以C1,C2,C3,C4的底值依次由大到小.点评 函数y=logax (a>0,且a ≠1)的底数a 的变化对图象位置的影响如下:①上下比较:在直线x=1的右侧,底数大于1时,底数越大,图象越靠近x 轴;底数大于0且小于1时,底数越小,图象越靠近x 轴.②左右比较:(比较图象与y=1的交点)交点的横坐标越大,对应的对数函数的底数越大. 变式迁移1 借助图象比较m ,n 的大小关系: (1)若logm5>logn5,则m n ;(2)若logm0.5>logn0.5,则m n. 答案 (1)< (2)>二、求函数的定义域例2 求下列函数的定义域: (1)y =3log 2x ; (2)y =log 0.5(4x -3); (3)y =log (x +1)(2-x ).分析 定义域即使函数解析式有意义的x 的范围.解 (1)∵该函数是奇次根式,要使函数有意义,只要对数的真数是正数即可, ∴定义域是{x |x >0}.(2)要使函数y =log 0.5(4x -3)有意义, 必须log 0.5(4x -3)≥0=log 0.51, ∴0<4x -3≤1.解得34<x ≤1.∴定义域是⎩⎨⎧⎭⎬⎫x |34<x ≤1.(3)由⎩⎪⎨⎪⎧ x +1>0x +1≠12-x >0,得⎩⎪⎨⎪⎧x >-1x ≠0,x <2即0<x <2或-1<x <0, 所求定义域为(-1,0)∪(0,2).点评 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性的解不等式.变式迁移2 求y =log a (4x -3)(a >0,a ≠1)的定义域. 解 log a (4x -3)≥0.(*)当a >1时,(*)可化为log a (4x -3)≥log a 1, ∴4x -3≥1,x ≥1. 当0<a <1时,(*)可化为 log a (4x -3)≥log a 1,∴0<4x -3≤1,34<x ≤1. 综上所述,当a >1时,函数定义域为[1,+∞),当0<a <1时,函数定义域为⎝⎛⎦⎤34,1.三、对数函数单调性的应用例3 比较大小:(1)log 0.81.5与log 0.82;(2)log 35与log 64.分析 从比较底数、真数是否相同入手.解 (1)考查对数函数y =log 0.8x 在(0,+∞)内是减函数,∵1.5<2,∴log 0.81.5>log 0.82.(2)log 35和log 64的底数和真数都不相同,找出中间量“搭桥”,再利用对数函数的单调性,即可求解.∵log 35>log 33=1=log 66>log 64,∴log 35>log 64.点评 比较两个对数值的大小,常用方法有:①底数相同真数不同时,用函数的单调性来比较;②底数不同而真数相同时,常借助图象比较,也可用换底公式转化为同底数的对数后比较;③底数与真数都不同,需寻求中间值比较.变式迁移3 比较下列各组中两个值的大小:(1)log 0.52.7,log 0.52.8; (2)log 34,log 65;(3)log a π,log a e (a >0且a ≠1).解 (1)∵0<0.5<1,∴对数函数y =log 0.5x 在(0,+∞)上是减函数.又∵2.7<2.8,∴log 0.52.7>log 0.52.8.(2)∵y =log 3x 在(0,+∞)上是增函数,∴log 34>log 33=1.∵y =log 6x 在(0,+∞)上是增函数,∴log 65<log 66=1.∴log 34>log 65.(3)当a >1时,y =log a x 在(0,+∞)上是增函数.∵π>e ,∴log a π>log a e.当0<a <1时,y =log a x 在(0,+∞)上是减函数.∵π>e ,∴log a π<log a e.综上可知,当a >1时,log a π>log a e ;当0<a <1时,log a π<log a e.例4 若-1<log a 34<1,求a 的取值范围. 分析 此不等式为对数不等式且底数为参数.解答本题可根据对数函数的单调性转化为一般不等式求解,同时应注意分类讨论.解 -1<log a 34<1⇔log a 1a <log a 34<log a a . 当a >1时,1a <34<a ,∴a >43. 当0<a <1时,1a >34>a ,∴0<a <34. ∴a 的取值范围是⎝⎛⎭⎫0,34∪⎝⎛⎭⎫43,+∞. 点评 (1)解对数不等式问题通常转化为不等式组求解,其依据是对数函数的单调性.(2)解决与对数函数相关的问题时要遵循“定义域优先”原则.(3)若含有字母,应考虑分类讨论.变式迁移4 已知log a (2a +1)<log a 3a <0,求a 的取值范围.解 log a (2a +1)<log a 3a <0(*)当a >1时,(*)可化为⎩⎪⎨⎪⎧ 0<2a +1<10<3a <12a +1<3a,解得⎩⎪⎨⎪⎧ -12<a <00<a <13a >1,∴此时a 无解.当0<a <1时,(*)可化为⎩⎪⎨⎪⎧ 2a +1>13a >12a +1>3a ,解得⎩⎨⎧ a >0a >13a <1,∴13<a <1. 综上所述,a 的取值范围为⎝⎛⎭⎫13,1.1.求对数函数定义域要注意底数中是否含有自变量,此时底数大于0且不等于1.2.应用对数函数的图象和性质时要注意a >1还是0<a <1。

对数函数及其性质

对数函数及其性质

对数函数及其性质对数函数是数学中的一种特殊函数,广泛应用于科学和工程领域。

它的性质包括增减性、定义域、值域等。

本文将详细介绍对数函数及其性质,帮助读者深入理解并运用该函数。

一、对数函数的定义对数函数是指以某个固定的正数(底数)为底,将任意的正数(真数)映射到另一个数上的函数。

对数函数的常见表示形式为y=logₐx,其中底数a>0且a≠1,真数x>0。

二、对数函数的性质1. 增减性对数函数的增减性与底数a的大小有关。

当底数a>1时,对数函数随着真数的增加而增加;当底数0<a<1时,对数函数随着真数的增加而减小。

2. 定义域和值域对数函数的定义域为正实数集,即x>0。

值域为实数集,即y∈R。

3. 特殊值当真数x=1时,对数函数的值为0,即logₐ1=0。

当底数a=1时,对数函数无定义。

4. 对数函数的基本关系(1)对数函数和指数函数的互逆关系:对于任意的正实数x和底数a>0且a≠1,有aⁿ=x⇔logₐx=n。

(2)对数函数的乘积法则:logₐ(xy)=logₐx+logₐy,其中x、y>0。

(3)对数函数的商法则:logₐ(x/y)=logₐx-logₐy,其中x、y>0。

(4)对数函数的幂法则:logₐ(xⁿ)=nlogₐx,其中x>0,n为任意实数。

5. 对数函数的图像当底数a>1时,对数函数的图像呈现典型的递增曲线;当底数0<a<1时,对数函数的图像呈现典型的递减曲线。

对数函数在x轴的正半轴上的图像称为对数曲线。

三、对数函数的应用1. 数据压缩与展示对数函数可以用于对数据进行压缩和展示。

当数据的幅度较大时,可以通过对数函数对其进行压缩,从而使得数据更易读取和呈现。

2. 指数增长模型对数函数常用于描述指数增长模型,如人口增长、物种繁殖等。

对数函数能够将指数增长转化为线性关系,便于模型的建立和求解。

3. 信号处理对数函数在信号处理中有广泛的应用,如音频信号处理、图像处理等领域。

对数函数知识点总结

对数函数知识点总结

对数函数知识点总结对数函数是数学中的一种重要的函数类型,广泛应用于各个科学领域。

本文将对对数函数的基本定义、性质以及应用进行总结。

1. 定义与性质对数函数是指数函数的逆运算。

设a是一个正实数且a≠1,b是任意正实数,则“以a为底b的对数”可以表示为logₐb。

其中底数a称为对数的底,b称为真数,logₐb称为对数。

对数函数通常用f(x) = logₐx表示。

对数函数具有以下基本性质:1)logₐ1 = 0:任何数以其本身为底的对数等于1。

2)logₐa = 1:任何数以其本身为底的对数等于1。

3)logₐaˣ = x:对数函数的一个基本性质是,以a为底的对数函数中,a的x次幂等于x。

即logₐaˣ = x。

4)logₐxy = logₐx + logₐy:对数函数中,底为a的对数函数中,两个数相乘的对数等于这两个数的对数之和。

即logₐxy = logₐx + logₐy。

5)logₐxⁿ = nlogₐx:对数函数中,底为a的对数函数中,以x为真数n次幂的对数等于n乘以以底为a,真数为x的对数。

即logₐxⁿ = nlogₐx。

2. 常用对数和自然对数常用对数函数是以10为底的对数函数,通常用log(x)表示,即log(x) = log₁₀x。

常用对数函数的性质和定义与之前的对数函数一致。

自然对数函数是以自然常数e(约等于2.71828)为底的对数函数,通常用ln(x)表示,即ln(x) = logₑx。

自然对数函数的性质与定义也与之前的对数函数相同。

3. 对数函数的应用对数函数在实践中有广泛的应用,下面举几个例子说明:1)指数增长与对数函数:对数函数在描述指数增长和衰减方面非常有用。

当某个变量随着时间的增加以指数形式增长或减少时,可以使用对数函数来描述其增长或减少的速度和幅度。

2)复利计算:对数函数在金融和投资领域中的应用非常重要。

例如,复利计算中,对数函数可以帮助计算利息的增长速度和总额。

对数函数及其性质知识点

对数函数及其性质知识点

对数函数及其性质1.对数函数:一般地,把函数y=log a x(a>0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2.为了更全面、更深刻的理解对数函数的概念,还应从以下三个方面理解: (1)定义域:因为对数函数是由指数函数变化而来的,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞);(2)底数:对数函数的底数a >0且a ≠1;(3)形式上的严格性:和指数函数一样,在对数函数的定义表达式y=log a x (a >0且a ≠1)中,log a x前面的系数必须是1,底数为大于0且不等于1的常数.对数的真数仅有自变量x ,否则不是对数函数.例如y=log a(x-1),y=2log a x ,y=log a x+21等函数是由对数函数变化而得到的,但不是对数函数. 指数函数和对数函数对照表名称 指数函数 对数函数一般形式 y=a x(a >0且a ≠1)y=log a x(a >0且a ≠1)定义域 R (0,+∞)值域(0,+∞)R函数值 变化 情况当1a >时,1010010x xx a x a x a x ⎧>>⎪==⎨⎪<<<⎩,,,,, 当01a <<时,0101010x xx a x a x a x ⎧<<>⎪==⎨⎪><⎩,,,, 当1a >时,log 01log 01log 001a a a x x x x x x >>⎧⎪==⎨⎪<<<⎩,,,,,;当01a <<时,log 01log 01log 00 1.a a ax x x x x x <>⎧⎪==⎨⎪><<⎩,,,,,单调性当a >1时,y=a x是增函数;当0<a <1时,y=a x是减函数.当a >1时,y=log a x是增函数;当0<a <1时,y=log a x是减函数.图象y=a x(a >0且a ≠1)的图象与y=log a x(a >0且a ≠1)的图象关于直线y=x 对称.当a >1时, 当0<a <1时,补充 性质 当a >1时,图象向上越靠近y 轴,底数越大;0<a <1时,图象向上越靠近y 轴,底数越小.当a >1时,图象向右越靠近x 轴,底数越大; 当0<a <1时,图象向右越靠近x 轴,底数越小.3.反函数:一般地,式子y=f(x)表示y是自变量x的函数,设它的定义域为A,值域为C. 我们从式子y=f(x)中解出x,得到式子x=φ(y).如果对于y在C中的任何一个值,通过式子x=φ(y),x在A中都有唯一确定的值和它对应,那么式子x=φ(y) 就表示x是自变量y的函数。

对数函数及其性质,对数的公式互化,详尽的讲解

对数函数及其性质,对数的公式互化,详尽的讲解

§2.2对数函数2.2.1对数与对数运算1.对数的概念一般地,如果a x=N (a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.说明:(1)实质上,上述对数表达式,不过是指数函数y=a x的另一种表达形式,例如:34=81与4=log381这两个式子表达是同一关系,因此,有关系式a x=N⇔x=log a N,从而得对数恒等式:a log a N=N.(2)“log”同“+”“×”“”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面.(3)根据对数的定义,对数log a N(a>0,且a≠1)具有下列性质:①零和负数没有对数,即N>0;②1的对数为零,即log a1=0;③底的对数等于1,即log a a=1.2.对数的运算法则利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度.(1)基本公式①log a(MN)=log a M+log a N (a>0,a≠1,M>0,N>0),即正数的积的对数,等于同一底数的各个因数的对数的和.②log a MN=log a M-log a N(a>0,a≠1,M>0,N>0),即两个正数的商的对数,等于被除数的对数减去除数的对数.③log a M n=n·log a M (a>0,a≠1,M>0,n∈R),即正数的幂的对数等于幂的底数的对数乘以幂指数.(2)对数的运算性质注意点①必须注意M>0,N>0,例如log a[(-3)×(-4)]是存在的,但是log a(-3)与log a(-4)均不存在,故不能写成log a[(-3)×(-4)]=log a(-3)+log a(-4).②防止出现以下错误:log a(M±N)=log a M±log a N,log a(M·N)=log a M·log a N,log a M N=log a Mlog a N,log a M n =(log a M )n . 3.对数换底公式在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底公式:log b N =log c Nlog c b(b >0,且b ≠1;c >0,且c ≠1;N >0).证明 设log b N =x ,则b x =N .两边取以c 为底的对数,得x log c b =log c N .所以x =log c N log c b ,即log b N =log c Nlog c b.换底公式体现了对数运算中一种常用的转化,即将复杂的或未知的底数转化为已知的或需要的底数,这是数学转化思想的具体应用.由换底公式可推出下面两个常用公式:(1)log b N =1log N b 或log b N ·log N b =1 (N >0,且N ≠1;b >0,且b ≠1);(2)log bn N m =mnlog b N (N >0;b >0,且b ≠1;n ≠0,m ∈R ).题型一 正确理解对数运算性质对于a >0且a ≠1,下列说法中,正确的是( ) ①若M =N ,则log a M =log a N ; ②若log a M =log a N ,则M =N ; ③若log a M 2=log a N 2,则M =N ; ④若M =N ,则log a M 2=log a N 2.A .①与③B .②与④C .②D .①、②、③、④解析 在①中,当M =N ≤0时,log a M 与log a N 均无意义,因此log a M =log a N 不成立. 在②中,当log a M =log a N 时,必有M >0,N >0,且M =N ,因此M =N 成立. 在③中,当log a M 2=log a N 2时,有M ≠0,N ≠0,且M 2=N 2,即|M |=|N |,但未必有M =N .例如,M =2,N =-2时,也有log a M 2=log a N 2,但M ≠N .在④中,若M =N =0,则log a M 2与log a N 2均无意义,因此log a M 2=log a N 2不成立. 所以,只有②成立. 答案 C点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件,使用运算性质时,应牢记公式的形式及公式成立的条件.题型二 对数运算性质的应用求下列各式的值:(1)2log 32-log 3329+log 38-5log 53;(2)lg25+23lg8+lg5·lg20+(lg2)2;(3)log 52·log 79log 513·log 734.分析 利用对数的性质求值,首先要明确解题目标是化异为同,先使各项底数相同,才能使用性质,再找真数间的联系,对于复杂的真数,可以先化简再计算.解 (1)原式=2log 32-(log 332-log 39)+3log 32-3 =2log 32-5log 32+2+3log 32-3=-1.(2)原式=2lg5+2lg2+lg 102·lg(2×10)+(lg2)2=2lg(5×2)+(1-lg2)·(lg2+1)+(lg2)2 =2+1-(lg2)2+(lg2)2=3.(3)∵log 52·log 79log 513·log 734=12log 52·2log 73-log 53·13log 74=-lg2lg5·lg3lg7lg3lg5·13·lg4lg7=-32.点评 对数的求值方法一般有两种:一种是将式中真数的积、商、幂、方根利用对数的运算性质将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值.题型三 对数换底公式的应用计算:(log 2125+log 425+log 85)(log 52+log 254+log 1258).分析 由题目可获取以下主要信息:本题是一道对数化简求值题,在题目中各个对数的底数都各不相同.解答本题可先通过对数换底公式统一底数再进行化简求值. 解 方法一 原式=⎝⎛⎭⎫log 253+log 225log 24+log 25log 28⎝⎛⎭⎫log 52+log 54log 525+log 58log 5125=⎝⎛⎭⎫3log 25+2log 252log 22+log 253log 22⎝⎛⎭⎫log 52+2log 522log 55+3log 523log 55=⎝⎛⎭⎫3+1+13log 25·(3log 52) =13log 25·log 22log 25=13.方法二 原式=⎝⎛⎭⎫lg125lg2+lg25lg4+lg5lg8⎝⎛⎭⎫lg2lg5+lg4lg25+lg8lg125 =⎝⎛⎭⎫3lg5lg2+2lg52lg2+lg53lg2⎝⎛⎭⎫lg2lg5+2lg22lg5+3lg23lg5 =⎝⎛⎭⎫13lg53lg2⎝⎛⎭⎫3lg2lg5=13.点评 方法一是先将括号换底,然后再将底统一;方法二是在解题方向还不清楚的情况下,一次性地统一为常用对数(当然也可以换成其他非1的正数为底),然后再化简.上述方法是不同底数对数的计算、化简和恒等证明的常用方法.已知log (x +3)(x 2+3x )=1,数x 的值.错解 由对数的性质可得x 2+3x =x +3. 解得x =1或x =-3.错因分析 对数的底数和真数必须大于0且底数不等于1,这点在解题中忽略了.正解 由对数的性质知⎩⎪⎨⎪⎧x 2+3x =x +3,x 2+3x >0,x +3>0且x +3≠1.解得x =1,故实数x 的值为1.对数的定义及其性质是高考中的重要考点之一,主要性质有:log a 1=0,log a a =1,a log a N =N (a >0,且a ≠1,N >0).1.(高考)方程9x -6·3x -7=0的解是________. 解析 ∵9x -6·3x -7=0,即32x -6·3x -7=0 ∴(3x -7)(3x +1)=0 ∴3x =7或3x =-1(舍去) ∴x =log 37. 答案 log 372.(高考)设g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=____. 解析 g ⎝⎛⎭⎫12=ln 12<0,g ⎝⎛⎭⎫ln 12=eln 12=12, ∴g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=12. 答案 121.对数式log (a -3)(7-a )=b ,实数a 的取值围是( )A .(-∞,7)B .(3,7)C .(3,4)∪(4,7)D .(3,+∞) 答案 C解析 由题意得⎩⎪⎨⎪⎧a -3>0,a -3≠1,7-a >0,解得3<a <7且a ≠4.2.设a =log 32,则log 38-2log 36用a 表示的形式是( )A .a -2B .3a -(1+a )2C .5a -2D .-a 2+3a -1 答案 A解析 ∵a =log 32,∴log 38-2log 36=3log 32-2(log 32+1) =3a -2(a +1)=a -2. 3.log 56·log 67·log 78·log 89·log 910的值为( )A .1B .lg5 C.1lg5D .1+lg2答案 C解析 原式=lg6lg5·lg7lg6·lg8lg7·lg9lg8·lg10lg9=lg10lg5=1lg5.4.已知log a (a 2+1)<log a 2a <0,则a 的取值围是( )A .(0,1) B.⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫12,1 D .(1,+∞) 答案 C解析 由题意,得⎩⎪⎨⎪⎧0<a <1,2a >1,∵a >0,a ≠1,log a (a 2+1)<log a 2a ,∴0<a <1.∴12<a <1.5.已知函数f (x )=a x -1+log a x (a >0,a ≠1)在[1,3]上最大值与最小值之和为a 2,则a 的值为( )A .4 B.14 C .3 D.13答案 D6.若方程(lg x )2+(lg7+lg5)lg x +lg7·lg5=0的两根为α,β,则αβ等于( )A .lg7·lg5B .lg35C .35 D.135答案 D解析 ∵lg α+lg β=-(lg7+lg5)=-lg35=lg 135∴α·β=135.7.已知f (log 2x )=x ,则f ⎝⎛⎭⎫12=________. 答案 2解析 令log 2x =12,则212=x ,∴f ⎝⎛⎭⎫12=212= 2.8.log (2-1)(2+1)=________. 答案 -1解析 log 2-1(2+1)=log 2-1(2+1)(2-1)2-1=log (2-1)12-1=-1.9.已知lg2=0.301 0,lg3=0.477 1,lg x =-2+0.778 1,则x =________. 答案 0.06解析 ∵lg2=0.301 0,lg3=0.477 1,而0.301 0+0.477 1=0.778 1,∴lg x =-2+lg2+lg3, 即lg x =lg10-2+lg6.∴lg x =lg(6×10-2),即x =6×10-2=0.06.10.(1)已知lg x +lg y =2lg(x -2y ),求log 2xy的值;(2)已知log 189=a,18b =5,试用a ,b 表示log 365. 解 (1)lg x +lg y =2lg(x -2y ), ∴xy =(x -2y )2,即x 2-5xy +4y 2=0. 即(x -y )(x -4y )=0,解得x =y 或x =4y , 又∵⎩⎪⎨⎪⎧x >0,y >0,x -2y >0,∴x >2y >0,∴x =y ,应舍去,取x =4y .则log 2x y =log 24y y =log 24=lg4lg 2=4.(2)∵18b =5,∴log 185=b, 又∵log 189=a , ∴log 365=log 185lg 1836=blog 18(18×2)=b 1+log 182=b 1+log 18189=b 1+(1-log 189)=b2-a. 11.设a ,b ,c 均为不等于1的正数,且a x =b y =c z ,1x +1y +1z =0,求abc 的值.解 令a x =b y =c z =t (t >0且t ≠1),则有1x =log t a ,1y =log t b ,1z =log t c ,又1x +1y +1z=0,∴log t abc =0,∴abc =1. 12.已知a ,b ,c 是△ABC 的三边,且关于x 的方程x 2-2x +lg(c 2-b 2)-2lg a +1=0有等根,试判定△ABC 的形状.解 ∵关于x 的方程x 2-2x +lg(c 2-b 2)-2lg a +1=0有等根, ∴Δ=0,即4-4[lg(c 2-b 2)-2lg a +1]=0.即lg(c2-b2)-2lg a=0,故c2-b2=a2,∴a2+b2=c2,∴△ABC为直角三角形.2.2.1对数与对数运算(一)学习目标1.理解对数的概念,能进行指数式与对数式的互化.2.了解常用对数与自然对数的意义.3.理解对数恒等式并能用于有关对数的计算.自学导引1.如果a(a>0且a≠1)的b次幂等于N,就是a b=N,那么数b叫做以a为底N的对数,记作b=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质有:(1)1的对数为零;(2)底的对数为1;(3)零和负数没有对数.3.通常将以10为底的对数叫做常用对数,以e 为底的对数叫做自然对数,log 10N 可简记为lg N ,log e N 简记为ln N .4.若a >0,且a ≠1,则a b =N 等价于log a N =b . 5.对数恒等式:a log a N =N (a >0且a ≠1).一、对数式有意义的条件例1 求下列各式中x 的取值围:(1)log 2(x -10);(2)log (x -1)(x +2);(3)log (x +1)(x -1)2.分析 由真数大于零,底数大于零且不等于1可得到关于x 的不等式(组),解之即可. 解 (1)由题意有x -10>0,∴x >10,即为所求.(2)由题意有⎩⎪⎨⎪⎧ x +2>0,x -1>0且x -1≠1,即⎩⎪⎨⎪⎧x >-2,x >1且x ≠2,∴x >1且x ≠2. (3)由题意有⎩⎪⎨⎪⎧(x -1)2>0,x +1>0且x +1≠1,解得x >-1且x ≠0,x ≠1.点评 在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大于零且不等于1.变式迁移1 在b =log (a -2)(5-a )中,实数a 的取值围是( ) A .a >5或a <2 B .2<a <5 C .2<a <3或3<a <5 D .3<a <4 答案 C解析 由题意得⎩⎪⎨⎪⎧5-a >0a -2>0a -2≠1,∴2<a <5且a ≠3.二、对数式与指数式的互化例2 将下列对数形式化成指数形式或将指数形式转化为对数形式:(1)54=625; (2)log 128=-3;(3)⎝⎛⎭⎫14-2=16; (4)log 101 000=3. 分析 利用a x =N ⇔x =log a N 进行互化. 解 (1)∵54=625,∴log 5625=4.(2)∵log 128=-3,∴⎝⎛⎭⎫12-3=8. (3)∵⎝⎛⎭⎫14-2=16,∴log 1416=-2. (4)∵log 101 000=3,∴103=1 000.点评 指数和对数运算是一对互逆运算,在解题过程中,互相转化是解决相关问题的重要途径.在利用a x =N ⇔x =log a N 进行互化时,要分清各字母分别在指数式和对数式中的位置.变式迁移2 将下列对数式化为指数式求x 值:(1)log x 27=32; (2)log 2x =-23;(3)log 5(log 2x )=0; (4)x =log 2719;(5)x =log 1216.解 (1)由log x 27=32,得x 32=27,∴x =2723=32=9.(2)由log 2x =-23,得2-23=x ,∴x =1322=322.(3)由log 5(log 2x )=0,得log 2x =1,∴x =21=2.(4)由x =log 2719,得27x =19,即33x =3-2,∴x =-23.(5)由x =log 1216,得⎝⎛⎭⎫12x =16,即2-x =24, ∴x =-4.三、对数恒等式的应用例3 (1)a log a b ·log b c ·log c N 的值(a ,b ,c ∈R +,且不等于1,N >0);(2)412(log 29-log 25).解 (1)原式=(a log a b )log b c ·log c N =b log b c ·log c N =(b log b c )log c N=c log c N =N .(2)原式=2(log 29-log 25)=2log 292log 25=95.点评 对数恒等式a log a N =N 中要注意格式:(1)它们是同底的;(2)指数中含有对数形式;(3)其值为真数.变式迁移3 计算:3log 35+(3)log 315.解 原式=5+312log 315=5+(3log 315)12=5+15=655.1.一般地,如果a (a >0,a ≠1)的b 次幂等于N ,就是a b =N ,那么b 叫做以a 为底N 的对数,记作log a N =b ,其中a 叫做对数的底数,N 叫做真数.2.利用a b =N ⇔b =log a N (其中a >0,a ≠1,N >0)可以进行指数与对数式的互化. 3.对数恒等式:a log a N =N (a >0且a ≠1).一、选择题1.下列指数式与对数式互化不正确的一组是( ) A .100=1与lg1=0B .27-13=13与log 2713=-13C .log 312=9与912=3D .log 55=1与51=5 答案 C2.指数式b 6=a (b >0,b ≠1)所对应的对数式是( )A .log 6a =aB .log 6b =aC .log a b =6D .log b a =6 答案 D3.若log x (5-2)=-1,则x 的值为( ) A.5-2 B.5+2C.5-2或5+2 D .2- 5 答案 B4.如果f (10x )=x ,则f (3)等于( ) A .log 310 B .lg3 C .103 D .310 答案 B解析 方法一 令10x =t ,则x =lg t , ∴f (t )=lg t ,f (3)=lg3.方法二 令10x =3,则x =lg3,∴f (3)=lg3.5.21+12·log 25的值等于( )A .2+ 5B .2 5C .2+52D .1+52答案 B解析 21+12log 25=2×212log 25=2×2log 2512=2×512=2 5.二、填空题6.若5lg x =25,则x 的值为________. 答案 100解析 ∵5lg x =52,∴lg x =2,∴x =102=100.7.设log a 2=m ,log a 3=n ,则a 2m +n 的值为________. 答案 12解析 ∵log a 2=m ,log a 3=n ,∴a m =2,a n =3, ∴a 2m +n =a 2m ·a n =(a m )2·a n =22×3=12.8.已知lg6≈0.778 2,则102.778 2≈________. 答案 600解析 102.778 2≈102×10lg6=600. 三、解答题9.求下列各式中x 的值(1)若log 3⎝⎛⎭⎫1-2x 9=1,则求x 值;(2)若log 2 003(x 2-1)=0,则求x 值. 解 (1)∵log 3⎝⎛⎭⎪⎫1-2x 9=1,∴1-2x 9=3 ∴1-2x =27,即x =-13 (2)∵log 2 003(x 2-1)=0 ∴x 2-1=1,即x 2=2 ∴x =±210.求x 的值:(1)x =log224;(2)x =log 93;(3)x =71-log 75; (4)log x 8=-3;(5)log 12x =4.解 (1)由已知得:⎝⎛⎭⎫22x =4,∴2-12x =22,-x2=2,x =-4.(2)由已知得:9x =3,即32x =312.∴2x =12,x =14.(3)x =7÷7log 75=7÷5=75.(4)由已知得:x -3=8, 即⎝⎛⎭⎫1x 3=23,1x =2,x =12. (5)由已知得:x =⎝ ⎛⎭⎪⎫124=116.2.2.1 对数与对数运算(二)学习目标1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.自学导引1.对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么, (1)log a (MN )=log a M +log a N ;(2)log a MN=log a M -log a N ;(3)log a M n =n log a M (n ∈R ).2.对数换底公式:log a b =log c blog c a.一、正确理解对数运算性质例1 若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数有( ) ①log a x · log a y =log a (x +y ); ②log a x -log a y =log a (x -y );③log a xy=log a x ÷log a y ;④log a (xy )=log a x ·log a y .A .0个B .1个C .2个D .3个 答案 A解析 对数的运算实质是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算.在运算中要注意不能把对数的符号当作表示数的字母参与运算,如log a x ≠log a ·x ,log a x 是不可分开的一个整体.四个选项都把对数符号当作字母参与运算,因而都是错误的. 点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件. 变式迁移1 若a >0且a ≠1,x >0,n ∈N *,则下列各式正确的是( )A .log a x =-log a 1xB .(log a x )n =n log a xC .(log a x )n =log a x nD .log a x =log a 1x答案 A二、对数运算性质的应用例2 计算:(1)log 535-2log 573+log 57-log 51.8;(2)2(lg 2)2+lg 2·lg5+(lg 2)2-lg2+1; (3)lg 27+lg8-lg 1 000lg1.2;(4)(lg5)2+lg2·lg50. 分析 利用对数运算性质计算.解 (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55 =2log 55=2.(2)原式=lg 2(2lg 2+lg5)+(lg 2-1)2=lg 2(lg2+lg5)+1-lg 2=lg 2+1-lg 2=1.(3)原式=32lg3+3lg2-32lg3+2lg2-1=3lg3+6lg2-32(lg3+2lg2-1)=32.(4)原式=(lg5)2+lg2·(lg2+2lg5)=(lg5)2+2lg5·lg2+(lg2)2=(lg5+lg2)2=1.点评 要灵活运用有关公式.注意公式的正用、逆用及变形使用. 变式迁移2 求下列各式的值:(1)log 535+2log 122-log 5150-log 514;(2)[(1-log 63)2+log 62·log 618]÷log 64. 解 (1)原式=log 5(5×7)-2log 2212+log 5(52×2)-log 5(2×7)=1+log 57-1+2+log 52-log 52-log 57=2.(2)原式=[log 262+log 62·log 6(3×6)]÷log 622 =log 62(log 62+log 63+1)÷(2log 62)=1.三、换底公式的应用例3 (1)设3x =4y =36,求2x +1y的值;(2)已知log 189=a,18b =5,求log 3645. 解 (1)由已知分别求出x 和y . ∵3x =36,4y =36, ∴x =log 336,y =log 436,由换底公式得: x =log 3636log 363=1log 363,y =log 3636log 364=1log 364,∴1x =log 363,1y =log 364, ∴2x +1y =2log 363+log 364 =log 36(32×4)=log 3636=1.(2)∵log 189=a,18b =5,∴log 185=b .∴log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b2-a .点评 指数式化为对数式后,两对数式的底不同,但式子两端取倒数后,利用对数的换底公式可将差异消除.变式迁移3 (1)设log 34·log 48·log 8m =log 416,求m ; (2)已知log 1227=a ,求log 616的值.解 (1)利用换底公式,得lg4lg3·lg8lg4·lg mlg8=2,∴lg m =2lg3,于是m =9.(2)由log 1227=a ,得3lg32lg2+lg3=a ,∴lg3=2a lg23-a ,∴lg3lg2=2a3-a .∴log 616=4lg2lg3+lg2=42a 3-a +1=4(3-a )3+a.1.对于同底的对数的化简常用方法是:(1)“收”,将同底的两对数的和(差)化成积(商)的对数; (2)“拆”,将积(商)的对数拆成对数的和(差).2.对于常用对数的化简要充分利用“lg5+lg2=1”来解题. 3.对于多重对数符号对数的化简,应从向外逐层化简求值.一、选择题1.lg8+3lg5的值为( )A .-3B .-1C .1D .3 答案 D解析 lg8+3lg5=lg8+lg53=lg1 000=3. 2.已知lg2=a ,lg3=b ,则log 36等于( ) A.a +b a B.a +b bC.a a +bD.b a +b 答案 B解析 log 36=lg6lg3=lg2+lg3lg3=a +bb.3.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则⎝⎛⎭⎫lg ab 2的值等于( ) A .2 B.12 C .4 D.14答案 A解析 由根与系数的关系,得lg a +lg b =2,lg a ·lg b =12,∴⎝⎛⎭⎫lg ab 2=(lg a -lg b )2 =(lg a +lg b )2-4lg a ·lg b=22-4×12=2.4.若2.5x =1 000,0.25y =1 000,则1x -1y等于( )A.13 B .3 C .-13 D .-3 答案 A解析 由指数式转化为对数式:x =log 2.51 000,y =log 0.251 000, 则1x -1y =log 1 0002.5-log 1 0000.25=log 1 00010=13.5.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 005)=8,则f (x 21)+f (x 22)+…+f (x 22 005)的值等于( )A .4B .8C .16D .2log a 8 答案 C解析 因为f (x )=log a x ,f (x 1x 2…x 2 005)=8,所以f (x 21)+f (x 22)+…+f (x 22 005) =log a x 21+log a x 22+…+log a x 22 005=2log a |x 1|+2log a |x 2|+…+2log a |x 2 005| =2log a |x 1x 2…x 2 005|=2f (x 1x 2…x 2 005)=2×8=16. 二、填空题6.设lg2=a ,lg3=b ,那么lg 1.8=__________.答案 a +2b -12解析 lg 1.8=12lg1.8=12lg 1810=12lg 2×910=12(lg2+lg9-1)=12(a +2b -1). 7.若log a x =2,log b x =3,log c x =6,则log abc x 的值为____. 答案 1解析 log abc x =1log x abc =1log x a +log x b +log x c∵log a x =2,log b x =3,log c x =6∴log x a =12,log x b =13,log x c =16,∴log abc x =112+13+16=11=1.8.已知log 63=0.613 1,log 6x =0.386 9,则x =________. 答案 2解析 由log 63+log 6x =0.613 1+0.386 9=1. 得log 6(3x )=1.故3x =6,x =2. 三、解答题9.求下列各式的值: (1)12lg 3249-43lg 8+lg 245; (2)(lg5)2+2lg2-(lg2)2.解 (1)方法一 原式=12(5lg2-2lg7)-43·32lg2+12(2lg7+lg5) =52lg2-lg7-2lg2+lg7+12lg5 =12lg2+12lg5=12(lg2+lg5) =12lg10=12. 方法二 原式=lg 427-lg4+lg7 5=lg42×757×4=lg(2·5)=lg 10=12.(2)方法一 原式=(lg5+lg2)(lg5-lg2)+2lg2=lg10·lg 52+lg4=lg ⎝⎛⎭⎫52×4=lg10=1. 方法二 原式=(lg10-lg2)2+2lg2-lg 22 =1-2lg2+lg 22+2lg2-lg 22=1.10.若26a =33b =62c ,求证:1a +2b =3c .证明 设26a =33b =62c =k (k >0),那么 ⎩⎪⎨⎪⎧6a =log 2k ,3b =log 3k ,2c =log 6k ,∴⎩⎪⎨⎪⎧1a =6log 2k=6log k 2,1b =3log 3k =3log k3,1c =2log 6k =2log k6.∴1a +2b=6·log k 2+2×3log k 3 =log k (26×36)=6log k 6=3×2log k 6=3c,即1a +2b =3c. 2.2.2 对数函数及其性质1.对数函数的概念形如y =log a x (a >0且a ≠1)的函数叫做对数函数. 对于对数函数定义的理解,要注意:(1)对数函数是由指数函数变化而来的,由指数式与对数式关系知,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞);(2)对数函数的解析式y=log a x中,log a x前面的系数为1,自变量在真数的位置,底数a 必须满足a>0,且a≠1;(3)以10为底的对数函数为y=lg x,以e为底的对数函数为y=ln x.实际上,观察对数函数的图象不难发现,对数函数中的值y =log m n 有以下规律:(1)当(m -1)(n -1)>0,即m 、n 围相同(相对于“1”而言),则log m n >0;(2)当(m -1)(n -1)<0,即m 、n 围相反(相对于“1”而言),则log m n <0.有了这个规律,我们再判断对数值的正负就很简单了,如log 213<0,log 52>0等,一眼就看出来了!题型一 求函数定义域求下列函数的定义域:(1)y =log 3x -12x +3x -1;(2)y =11-log a (x +a ) (a >0,a ≠1).分析 定义域即使函数解析式有意义的x 的围. 解 (1)要使函数有意义,必须{2x +3>0,x -1>0,3x -1>0,3x -1≠1同时成立,解得⎩⎨⎧x >-32,x >1,x >13,x ≠23. ∴x >1. ∴定义域为(1,+∞).(2)要使原函数有意义,需1-log a (x +a )>0, 即log a (x +a )<1=log a a .当a >1时,0<x +a <a ,∴-a <x <0. 当0<a <1时,x +a >a ,∴x >0.∴当a >1时,原函数定义域为{x |-a <x <0}; 当0<a <1时,原函数定义域为{x |x >0}.点评 求与对数函数有关的定义域问题,首先要考虑:真数大于零,底数大于零且不等于1,若分母中含有x ,还要考虑不能使分母为零.题型二 对数单调性的应用(1)log 43,log 34,log 4334的大小顺序为( )A .log 34<log 43<log 4334B .log 34>log 43>log 4334C .log 34>log 4334>log 43D .log 4334>log 34>log 43(2)若a 2>b >a >1,试比较log a a b ,log b ba ,logb a ,log a b 的大小.(1)解析 ∵log 34>1,0<log 43<1,log 4334=log 43⎝⎛⎭⎫43-1=-1, ∴log 34>log 43>log 4334.答案 B(2)解 ∵b >a >1,∴0<ab<1.∴log a a b <0,log b ba ∈(0,1),logb a ∈(0,1).又a >b a >1,且b >1,∴log b ba<log b a ,故有log a a b <log b ba<log b a <log a b .点评 比较对数的大小,一般遵循以下几条原则:①如果两对数的底数相同,则由对数函数的单调性(底数a >1为增;0<a <1为减)比较. ②如果两对数的底数和真数均不相同,通常引入中间变量进行比较.③如果两对数的底数不同而真数相同,如y =log a 1x 与y =log a 2x 的比较(a 1>0,a 1≠1,a 2>0,a 2≠1).当a 1>a 2>1时,曲线y 1比y 2的图象(在第一象限)上升得慢.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2.而在第一象限,图象越靠近x 轴对数函数的底数越大.当0<a 2<a 1<1时,曲线y 1比y 2的图象(在第四象限)下降得快.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2即在第四象限,图象越靠近x 轴的对数函数的底数越小. 已知log a 12<1,那么a 的取值围是________.分析 利用函数单调性或利用数形结合求解.解析 由log a 12<1=log a a ,得当a >1时,显然符合上述不等式,∴a >1;当0<a <1时,a <12,∴0<a <12. 故a >1或0<a <12.答案 a >1或0<a <12点评 解含有对数符号的不等式时,必须注意对数的底数是大于1还是小于1,然后再利用相应的对数函数的单调性进行解答.理解会用以下几个结论很有必要:(1)当a >1时,log a x >0⇔x >1,log a x <0⇔0<x <1;(2)当0<a <1时,log a x >0⇔0<x <1,log a x <0⇔x >1.题型三 函数图象的应用若不等式2x -log a x <0,当x ∈⎝⎛⎭⎫0,12时恒成立,数a 的取值围. 解要使不等式2x<logax 在x ∈⎪⎭⎫ ⎝⎛21,0时恒成立,即函数y=logax 的图象在⎪⎭⎫ ⎝⎛21,0恒在函数y=2x 图象的上方,而y=2x 图象过点⎪⎭⎫⎝⎛2,21.由图可知,loga 21>2,显然这里0<a<1,∴函数y=logax 递减. 又loga21>2=log 2a a ,∴a2>21,即a>2221⎪⎭⎫ ⎝⎛.∴所求的a 的取值围为2221⎪⎭⎫⎝⎛<a<1.点评 原问题等价于当x ∈⎪⎭⎫ ⎝⎛21,0时,y1=2x 的图象在y2=logax 的图象的下方,由于a 的大小不确定,当a>1时,显然y2<y1,因此a 必为小于1的正数,当y2的图象通过点⎪⎭⎫⎝⎛2,21时,y2满足条件,此时a 0=2221⎪⎭⎫⎝⎛.那么a 是大于a 0还是小于a 0才满足呢?可以画图象观察,请试着画一画.这样可以对数形结合的方法有更好地掌握.设函数f(x)=lg(ax2+2x+1),若f(x)的值域是R,数a的取值围.错解∵f(x)的值域是R,∴ax2+2x+1>0对x∈R恒成立,即{a>0Δ<0⇔{a>04-4a<0⇔a>1.错因分析出错的原因是分不清定义域为R与值域为R的区别.正解函数f(x)=lg(ax2+2x+1)的值域是R⇔真数t=ax2+2x+1能取到所有的正数.当a=0时,只要x>-12,即可使真数t取到所有的正数,符合要求;当a≠0时,必须有{a>0Δ≥0⇔{a>04-4a≥0⇔0<a≤1.∴f(x)的值域为R时,实数a的取值围为[0,1].本节容在高考中考查的形式、地位与指数函数相似,着重考查对数的概念与对数函数的单调性,考查指数、对数函数的图象、性质及其应用.1.(高考)已知函数f(x)=11-x的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N等于()A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅解析 由题意知M ={x |x <1},N ={x |x >-1}. 故M ∩N ={x |-1<x <1}. 答案 C2.(高考)下列不等式成立的是( ) A .log 32<log 23<log 25 B .log 32<log 25<log 23 C .log 23<log 32<log 25 D .log 23<log 25<log 32解析 ∵y =log 2x 在(0,+∞)上是增函数, ∴log 25>log 23>log 22=1.又y =log 3x 在(0,+∞)上为增函数,∴log 32<log 33=1.∴log 32<log 23<log 25. 答案 A3.(全国高考)若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( ) A .a <b <c B .c <a <b C .b <a <c D .b <c <a解析 ∵1e <x <1,∴-1<ln x <0.令t =ln x ,则-1<t <0. ∴a -b =t -2t =-t >0.∴a >b . c -a =t 3-t =t (t 2-1)=t (t +1)(t -1), 又∵-1<t <0,∴0<t +1<1,-2<t -1<-1,∴c -a >0,∴c >a . ∴c >a >b . 答案 C1.已知函数f (x )=1+2x 的定义域为集合M ,g (x )=ln(1-x )的定义域为集合N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C.⎩⎨⎧⎭⎬⎫x |-12<x <1 D .∅答案 C2.已知函数f (x )=lg 1-x 1+x,若f (a )=12,则f (-a )等于( )A.12 B .-12 C .-2 D .2 答案 B解析 f (-a )=lg 1+a1-a =-lg ⎝ ⎛⎭⎪⎫1+a 1-a -1=-lg 1-a 1+a=-f (a )=-12.3.已知a =log 23,b =log 32,c =log 42,则a ,b ,c 的大小关系是( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b 答案 A解析 因为a =log 23>1,b =log 3 2<1,所以a >b ;又因为2>3,则log 32>log 33=12,而log 42=log 22=12,所以b >12,c =12,即b >c .从而a >b >c .4.函数f (x )=lg|x |为( )A .奇函数,在区间(0,+∞)上是减函数B .奇函数,在区间(0,+∞)上是增函数C .偶函数,在区间(-∞,0)上是增函数D .偶函数,在区间(-∞,0)上是减函数 答案 D解析 已知函数定义域为(-∞,0)∪(0,+∞),关于坐标原点对称,且f (-x )=lg|-x |=lg|x |=f (x ),所以它是偶函数.又当x >0时,|x |=x ,即函数y =lg|x |在区间(0,+∞)上是增函数.又f (x )为偶函数,所以f (x )=lg|x |在区间(-∞,0)上是减函数.5.函数y =a x 与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象只可能为( )答案 A解析 方法一 若0<a <1,则曲线y =a x 下降且过(0,1),而曲线y =-log a x 上升且过(1,0);若a >1,则曲线y =a x 上升且过(0,1),而曲线y =-log a x 下降且过(1,0).只有选项A 满足条件.方法二 注意到y =-log a x 的图象关于x 轴对称的图象的表达式为y =log a x ,又y =log a x 与y =a x 互为反函数(图象关于直线y =x 对称),则可直接选定选项A.6.设函数f (x )=log 2a (x +1),若对于区间(-1,0)的每一个x 值都有f (x )>0,则实数a 的取值围为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫12,1 D.⎝⎛⎭⎫0,12 答案 D 解析 已知-1<x <0,则0<x +1<1,又当-1<x <0时,都有f (x )>0,即0<x +1<1时都有f (x )>0,所以0<2a <1,即0<a <12.7.若指数函数f (x )=a x (x ∈R )的部分对应值如下表:则不等式log a (x -1)<0答案 {x |1<x <2}解析 由题可知a =1.2,∴log 1.2(x -1)<0, ∴log 1.2(x -1)<log 1.21,解得x <2, 又∵x -1>0,即x >1,∴1<x <2. 故原不等式的解集为{x |1<x <2}.8.函数y =log a x (1≤x ≤2)的值域为[-1,0],那么a 的值为________.答案 12解析 若a >1,则函数y =log a x 在区间[1,2]上为增函数,其值域不可能为[-1,0]; 故0<a <1,此时当x =2时,y 取最小值-1,即log a 2=-1,得a -1=2,所以a =12.9.已知函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1log a x ,x ≥1是实数集R 上的减函数,那么实数a 的取值围为__________.答案 ⎣⎡⎭⎫17,13解析 函数f (x )为实数集R 上的减函数,一方面,0<a <1且3a -1<0,所以0<a <13,另一方面,由于f (x )在R 上为减函数, 因此应有(3a -1)×1+4a ≥log a 1,即a ≥17.因此满足题意的实数a 的取值围为17≤a <13.10.已知f (x )=1+log 2x (1≤x ≤4),求函数g (x )=f 2(x )+f (x 2)的最大值和最小值. 解 ∵f (x )的定义域为[1,4], ∴g (x )的定义域为[1,2].∵g (x )=f 2(x )+f (x 2)=(1+log 2x )2+(1+log 2x 2) =(log 2x +2)2-2, 又1≤x ≤2,∴0≤log 2x ≤1. ∴当x =1时,g (x )min =2;当x =2时,g (x )max =7.学习目标1.掌握对数函数的概念、图象和性质.2.能够根据指数函数的图象和性质得出对数函数的图象和性质,把握指数函数与对数函数关系的实质.自学导引1.对数函数的定义:一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).对数函数y =log a x (a >0且a ≠1)和指数函数y =a x _(a >0且a ≠1)互为反函数.一、对数函数的图象例1 下图是对数函数y =log a x 的图象,已知a 值取3,43,35,110,则图象C 1,C 2,C 3,C 4相应的a 值依次是( )A.101,53,34,3B .53,101,34,3C .101,53,3,34 D .53,101,3,34 答案 A解析 方法一 因为对数的底数越大,函数的图象越远离y 轴的正方向,所以C1,C2,C3,C4的a 值依次由大到小,即C1,C2,C3,C4的a 值依次为101,53,34,3. 方法二 过(0,1)作平行于x 轴的直线,与C1,C2,C3,C4的交点的横坐标为(a1,1),(a2,1),(a3,1),(a4,1),其中a1,a2,a3,a4分别为各对数的底,显然a1>a2>a3>a4,所以C1,C2,C3,C4的底值依次由大到小.点评 函数y=logax (a>0,且a ≠1)的底数a 的变化对图象位置的影响如下:①上下比较:在直线x=1的右侧,底数大于1时,底数越大,图象越靠近x 轴;底数大于0且小于1时,底数越小,图象越靠近x 轴.②左右比较:(比较图象与y=1的交点)交点的横坐标越大,对应的对数函数的底数越大. 变式迁移1 借助图象比较m ,n 的大小关系:(1)若logm5>logn5,则m n ;(2)若logm0.5>logn0.5,则m n.答案 (1)< (2)>二、求函数的定义域例2 求下列函数的定义域:(1)y =3log 2x ;(2)y =log 0.5(4x -3);(3)y =log (x +1)(2-x ).分析 定义域即使函数解析式有意义的x 的围.解 (1)∵该函数是奇次根式,要使函数有意义,只要对数的真数是正数即可, ∴定义域是{x |x >0}.(2)要使函数y =log 0.5(4x -3)有意义,必须log 0.5(4x -3)≥0=log 0.51,∴0<4x -3≤1.解得34<x ≤1. ∴定义域是⎩⎨⎧⎭⎬⎫x |34<x ≤1. (3)由⎩⎪⎨⎪⎧ x +1>0x +1≠12-x >0,得⎩⎨⎧ x >-1x ≠0,x <2即0<x <2或-1<x <0,所求定义域为(-1,0)∪(0,2).点评 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性的解不等式.变式迁移2 求y =log a (4x -3)(a >0,a ≠1)的定义域.解 log a (4x -3)≥0.(*)当a >1时,(*)可化为log a (4x -3)≥log a 1,∴4x -3≥1,x ≥1.当0<a <1时,(*)可化为log a (4x -3)≥log a 1,∴0<4x -3≤1,34<x ≤1. 综上所述,当a >1时,函数定义域为[1,+∞),当0<a <1时,函数定义域为⎝⎛⎦⎤34,1.三、对数函数单调性的应用例3 比较大小:(1)log 0.81.5与log 0.82;(2)log 35与log 64.分析 从比较底数、真数是否相同入手.解 (1)考查对数函数y =log 0.8x 在(0,+∞)是减函数,∵1.5<2,∴log 0.81.5>log 0.82.(2)log 35和log 64的底数和真数都不相同,找出中间量“搭桥”,再利用对数函数的单调性,即可求解.∵log 35>log 33=1=log 66>log 64,∴log 35>log 64.点评 比较两个对数值的大小,常用方法有:①底数相同真数不同时,用函数的单调性来比较;②底数不同而真数相同时,常借助图象比较,也可用换底公式转化为同底数的对数后比较;③底数与真数都不同,需寻求中间值比较.变式迁移3 比较下列各组中两个值的大小:(1)log 0.52.7,log 0.52.8; (2)log 34,log 65;(3)log a π,log a e (a >0且a ≠1).解 (1)∵0<0.5<1,∴对数函数y =log 0.5x 在(0,+∞)上是减函数.又∵2.7<2.8,∴log 0.52.7>log 0.52.8.(2)∵y =log 3x 在(0,+∞)上是增函数,∴log 34>log 33=1.∵y =log 6x 在(0,+∞)上是增函数,∴log 65<log 66=1.∴log 34>log 65.(3)当a >1时,y =log a x 在(0,+∞)上是增函数.∵π>e ,∴log a π>log a e.当0<a <1时,y =log a x 在(0,+∞)上是减函数.∵π>e ,∴log a π<log a e.综上可知,当a >1时,log a π>log a e ;当0<a <1时,log a π<log a e.例4 若-1<log a 34<1,求a 的取值围. 分析 此不等式为对数不等式且底数为参数.解答本题可根据对数函数的单调性转化为一般不等式求解,同时应注意分类讨论.解 -1<log a 34<1⇔log a 1a <log a 34<log a a . 当a >1时,1a <34<a ,∴a >43. 当0<a <1时,1a >34>a ,∴0<a <34. ∴a 的取值围是⎝⎛⎭⎫0,34∪⎝⎛⎭⎫43,+∞. 点评 (1)解对数不等式问题通常转化为不等式组求解,其依据是对数函数的单调性.(2)解决与对数函数相关的问题时要遵循“定义域优先”原则.(3)若含有字母,应考虑分类讨论.变式迁移4 已知log a (2a +1)<log a 3a <0,求a 的取值围.解 log a (2a +1)<log a 3a <0(*)当a >1时,(*)可化为⎩⎨⎧ 0<2a +1<10<3a <12a +1<3a, 解得⎩⎪⎨⎪⎧ -12<a <00<a <13a >1,∴此时a 无解.当0<a <1时,(*)可化为⎩⎨⎧ 2a +1>13a >12a +1>3a ,解得⎩⎨⎧ a >0a >13a <1,∴13<a <1. 综上所述,a 的取值围为⎝⎛⎭⎫13,1.1.求对数函数定义域要注意底数中是否含有自变量,此时底数大于0且不等于1.2.应用对数函数的图象和性质时要注意a >1还是0<a <1。

对数函数知识点总结

对数函数知识点总结

对数函数知识点总结对数函数是高中数学中的重要知识点之一,它广泛应用于数学、物理、经济学等领域。

本文将对对数函数的定义、性质和应用进行详细总结,帮助读者全面了解对数函数。

一、对数函数的定义1. 对数函数的定义:对于任意正实数a(a≠1)和正实数x,称y=logₐx为以a为底x的对数,其中x被称为真数,a被称为底数,y被称为对数。

记作y=logaₐx。

2. 以10为底的对数函数:y=log₁₀x,通常将其简写为y=logx。

3. 自然对数函数:以e≈2.71828为底的对数函数,记作y=loge x或y=lnx。

二、对数函数的基本性质1. 对数函数与指数函数的互为反函数性质:对数函数y=logₐx与指数函数y=aˣ满足关系方程aˣ=x,x>0,a>0且a≠1。

2. 对数函数的定义域和值域:对数函数y=logₐx的定义域是(0,+∞),值域是(-∞,+∞)。

3. 对数函数的对称关系:对于任意正实数x和定义域内的正实数a,有对称关系logₐx=y↔aʸ=x。

4. 对数函数的性质:(1)等式性质:logₐx=logₐy→x=y;logₐx=logb x/lobb a;logₐ1=0;l ogₐa=1。

(2)倒数性质:loga(1/x)=-logₐx。

(3)指数性质:logₐxⁿ=nlogₐx。

(4)乘法性质:logₐ(xy)=logₐx+logₐy。

(5)除法性质:logₐ(x/y)=logₐx-logₐy。

三、对数函数的图像与性质1. 对数函数y=logₐx的图像特点:(1)定义域为(0,+∞),值域为(-∞,+∞)。

(2)过点(1,0)。

(3)随着x的增大,y增大,但增长速度逐渐减小。

(4)曲线在x轴的右侧均为上升曲线。

(5)曲线在x=1处有一垂直渐近线。

2. 自然对数函数y=lnx的图像特点:(1)定义域为(0,+∞),值域为(-∞,+∞)。

(2)过点(1,0)。

(3)随着x的增大,y增大,但增长速度逐渐减小。

对数函数的基本性质与公式

对数函数的基本性质与公式

对数函数的基本性质与公式对数函数是数学中一种重要的函数形式,其基本性质和公式在解决各种问题中具有广泛应用。

本文将介绍对数函数的基本性质和常见的公式,帮助读者更好地理解和应用对数函数。

一、对数函数的定义和性质对数函数的定义如下:对于任意给定的正实数a(a>0且a≠1)和正实数x(x>0),以a为底的对数函数y=loga(x)表示满足a^y=x的实数y。

其中,a称为底数,x称为真数,y为对数。

对数函数具有以下基本性质:1. 对于任意正实数a和b,以a为底的对数函数和以b为底的对数函数是等价的,即loga(x)=ln(x)/ln(a)(其中ln(x)表示以自然数e为底的对数函数)。

2. 对于任意正实数a,a^loga(x)=x。

3. 对于任意正实数a和b,loga(b)×logb(a)=1。

4. 对于任意正实数a、b和c,loga(b×c)=loga(b)+loga(c)。

二、常见对数函数公式1. 换底公式:loga(b)=logc(b)/logc(a),其中a、b、c为任意正实数。

2. 对数乘方公式:a^loga(x)=x,其中a为正实数,x为正实数且x≠0。

3. 对数运算公式:loga(b×c)=loga(b)+loga(c),其中a为正实数,b、c为正实数且b≠0,c≠0。

4. 对数倒数公式:loga(1/b)=-loga(b),其中a为正实数,b为正实数且b≠0。

5. 对数除法公式:loga(b/c)=loga(b)-loga(c),其中a为正实数,b、c 为正实数且b≠0,c≠0。

6. 对数幂公式:loga(b^n)=n×loga(b),其中a为正实数,b为正实数且b≠0,n为任意实数。

三、对数函数在实际问题中的应用对数函数的公式和性质在各个领域中有着广泛的应用。

以下是一些实际应用的例子:1. 在金融领域,对数函数的性质被用于计算复利问题,如投资收益率和贷款利率的计算。

高中数学对数函数及其性质3

高中数学对数函数及其性质3

对数函数及其性质3三维目标一、知识与技能1.掌握对数函数的单调性及其判定.2.能根据对数函数的图象,画出含有对数式的函数的图象,并研究它们的有关性质.二、过程与方法1.熟练利用对数函数的性质进行演算,通过交流,使学生学会共同学习.2.综合提高指数、对数的演算能力.3.渗透运用定义、数形结合、分类讨论等数学思想.三、情感态度与价值观1.用联系的观点分析、解决问题.2.认识事物之间的相互转化.3.加深对对数函数和指数函数的性质的理解,深化学生对函数图象变化规律的理解,培养学生数学交流能力.教学重点对数函数的特性以及函数的通性在解决有关问题中的灵活应用.教学难点单调性和奇偶性的判断和证明.教具准备投影仪及作业讲义.教学过程一、创设情景,引入新课1.复习函数及反函数的定义域、值域、图象之间的关系.2.指数式与对数式比较.3.画出函数y=2x与函数y=log2x的图象.二、讲解新课在指数函数y=2x中,x为自变量(x∈R),y是x的函数(y∈(0,+∞)),而且它是R上的单调递增函数.可以发现,过y轴正半轴上任意一点作x轴的平行线,与y=2x的图象有且只有一个交点.另一方面,根据指数与对数的关系,由指数式y=2x可得到对数式x=log2y.这样,对于任意一个y∈(0,+∞),通过式子x=log2y,x 在R中都有唯一确定的值和它对应.也就是说,可以把y作为自变量,x作为y的函数,这时我们就说x=log2y(y∈(0,+∞))是函数y=2x(x∈R)的反函数.在函数x=log2y中,y是自变量,x是函数.但习惯上,我们通常用x表示自变量,y表示函数.为此,我们常对调函数x=log2y中的字母x、y,把它写成y=log2x.这样,对数函数y=log2x(x∈(0,+∞))是指数函数y=2x(x∈R)的反函数.由上述讨论可知,对数函数y=log2x(x∈(0,+∞))是指数函数y =2x (x ∈R )的反函数;同时,指数函数y =2x(x ∈R )也是对数函数y =log 2x (x ∈(0,+∞))的反函数.因此,指数函数y =2x(x ∈R )与对数函数y =log 2x (x ∈(0,+∞))互为反函数.请你仿照上述过程,说明对数函数y =log a x (a >0,且a ≠1)和指数函数y =a x(a >0,且a ≠1)互为反函数.练习:求下列函数的反函数: (1)y =0.2-x+1;(2)y =log a (4-x );(3)y =21010xx --.例题讲解【例1】 已知函数y =log a (1-a x)(a >0,a ≠1). (1)求函数的定义域与值域; (2)求函数的单调区间;(3)证明函数图象关于y =x 对称.分析:有关于对数函数的定义域要注意真数大于0;函数的值域取决于1-a x的范围,可应用换元法,令t =1-a x以减小思维难度;运用复合函数单调性的判定法求单调区间;函数图象关于y =x 对称等价于原函数的反函数就是自身,本题要注意对字母参数a 的范围讨论.解:(1)1-a x>0,即a x<1,∴a >1时,定义域为(-∞,0);0<a <1时,定义域为(0,+∞).令t =1-a x,则0<t <1,而y =log a (1-a x)=log a t .∴a >1时,值域为(-∞,0);0<a <1时,值域为(0,+∞).(2)∵a >1时,t =1-a x在(-∞,0)上单调递减,y =log a t 关于t 单调递增,∴y =log a (1-a x)在(-∞,0)上单调递减.∵0<a <1时,t =1-a x在(0,+∞)上单调递增,而y =log a t 关于t 单调递减,∴y =log a (1-a x)在(0,+∞)上单调递减. (3)∵y =log a (1-a x), ∴a y =1-a x.∴a x =1-a y ,x =log a (1-a y).∴反函数为y =log a (1-a x),即原函数的反函数就是自身. ∴函数图象关于y =x 对称.【例2】 设a >0,a ≠1,f (x )=log a (x +12-x )(x ≥1),求f (x )的反函数f -1(x ).分析:要利用对数式与指数式的互化关系,按求反函数的有关方法、步骤进行求解.解:∵y =log a (x +12-x ),∴x +12-x =ay,x -a y =-12-x ,(x -ay)2=x 2-1,x 2-2xa y +a 2y =x 2-1,2xa y =a 2y +1.∴x =yy a a 212+.∴反函数为y =xx a a 212+=21(a x+a -x).在原函数中,∵x ≥1,而x 和12-x 在[1,+∞)上都单调递增,∴x +12-x ≥1.∴a >1时,y ≥0,0<a <1时,y ≤0. 故所求函数的反函数为当a >1时,f -1(x )=21(a x +a -x)(x ≥0),当0<a <1时,f -1(x )=21(a x +a -x)(x ≤0).【例3】 已知函数f (x )=(21)x(x >0)和定义在R 上的奇函数g (x ).当x >0时,g (x )=f (x ),试求g (x )的反函数.分析:分段函数的反函数应注意分类讨论.由于f (x )为奇函数,故应考虑x >0,x <0,x =0三种情况.解:∵g (x )是R 上的奇函数, ∴g (-0)=-g (0),g (0)=0.设x <0,则-x >0,∴g (-x )=(21)-x.∴g (x )=-g (-x )=-(21)-x=-2x.∴g (x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧<-=>.0,2,0,0,0,)21(x x x x x当x >0时,由y =(21)x得0<y <1且x =log 21y ,∴g -1(x )=log 21x (0<x <1);当x =0时,由y =0,得g -1(x )=0(x =0);当x <0时,由y =-2x,得-1<y <0,且x =log 2(-y ), ∴g -1(x )=log 2(-x )(-1<x <0).综上,g (x )的反函数为g -1(x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--=<<.01),(log ,0,0,10,log 221x x x x x 【例4】 解下列方程:(1)log 3(3-x )+log 0.25(3+x )=log 4(1-x )+log 0.25(2x +1); (2)log 2[log 3(log 9x )]=2log 4[log 9(log 3x )].分析:通过简单变形,化成同底的对数,再按照解法类型应用同底法解题,要注意在变形过程中方程的同解性以及方程式中变量的取值范围.解:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=+-->+>->+>-).12(log )1(log )3(log )3(log ,012,01,03,034443x x x x x x x x ∴⎪⎪⎩⎪⎪⎨⎧+-=+-<<-121log 33log 12144x x x x x ⇒⎪⎩⎪⎨⎧=-<<-071212x x x ⇒⎪⎩⎪⎨⎧==<<-.70,121x x x经检验x =0是原方程的解.(2)∵原方程log 2[log 3(log 9x )]=log 2[log 9(log 3x )], ∴log 3(log 9x )=log 9(log 3x ). ∴log 3(log 9x )=21log 3(log 3x )=log 3x3log .∴log 9x =x3log . ∴2log 3x =x3log .或∴log3x=0或log3x=4.∴x=1或x=81.∴经检验x=1不合题意,舍去.∴原方程的解为x=81.【例5】探究函数y=log3(x+2)的图象与函数y=log3x的图象间的关系.分析:函数的图象实际上是一系列点的集合,因此研究函数y=log3(x+2)的图象与函数y=log3x的图象间的关系可以转化为研究两个函数图象上对应点的坐标之间的关系.请同学们回顾一下,在前面学习中是如何探究函数y=2x与y=2x+2的图象之间的关系的?要研究两函数图象上对应点坐标之间的关系,必须先确定对应点的一个坐标,讨论另外一个坐标之间的关系,进而讨论两函数图象之间的关系.在函数y=log3x与y=log3(x+2)的图象上,当函数自变量的值均为x=m时,分别对应的函数值是什么?y=log3m和y=log3(m+2).你能一下子看出它们之间的关系吗?如能,能否根据这一关系由函数y=log3x的图象得到函数y=log3(x+2)的图象呢?既然当函数的自变量的值相等时,我们无法通过讨论它们图象上点的横坐标来研究它们图象间的关系,那么我们来看看下面问题:在函数y=log3x与y=log3(x+2)的图象上,当函数值均为n时,对应的自变量的值分别是什么?由n=log3x1和n=log3(x2+2)可得x1=3n,x2=3n-2,据此你能得到两函数图象上的点之间有什么关系吗?由此可知,函数y=log3(x+2)中x=a-2对应的y值与函数y=log3x中x=a对应的值相等,所以将对数函数y=log3x的图象向左平移2个单位长度,就得到函数y=log3(x+2)的图象.(1)由函数y=f(x)的图象得到函数y=f(x+a)的图象的变化规律为:当a>0时,只需将函数y=f(x)的图象向左平移a个单位就可得到函数y=f(x+a)的图象;当a<0时,只需将函数y=f(x)的图象向右平移|a|个单位就可得到函数y=f(x+a)的图象.(2)由函数y=f(x)的图象得到函数y=f(x)+b的图象的变化规律为:当b>0时,只需将函数y=f(x)的图象向上平移b个单位就可得到函数y=f(x)+b的图象;当b<0时,只需将函数y=f(x)的图象向下平移|b|个单位就可得到函数y=f(x)+b的图象.如何由函数y=f(x)的图象得到函数y=f(x+a)+b的图象呢?由函数y=f(x)的图象得到函数y=f(x+a)+b的图象的变化规律为:画出函数y=f(x)的图象,先将函数y=f(x)的图象向左(当a>0时)或向右(当a<0时)平移|a|个单位,可得到函数y=f(x+a)的图象,再将函数y=f(x+a)的图象向上(当b>0时)或向下(当b<0时)平移|b|个单位就可得到函数y=f(x+a)+b的图象.这样我们就可以很方便地将函数y=f(x)的图象进行平移得到与函数y=f(x)有关的函数图象.那么你能很方便地由函数y=f (x)的图象得到函数y=f(|x|)的图象吗?三、课堂小结对数函数是进入高中后涉及的第一个具体函数,有关性质须牢固掌握.指数函数与对数函数互为反函数,其图象关于直线y=x 对称.求对数函数的定义域、值域、单调区间、反函数及奇偶性的判定都依赖于定义法、数形结合及函数本身的性质.应熟练掌握对数函数的相关性质.四、布置作业板书设计2.2.2 对数函数及其性质(3)1.函数与反函数的图象关系2.指数式、对数式3.复合函数的单调性和奇偶性的判断一、例题解析与学生训练二、课堂小结与布置作业。

对数函数及其性质知识点总结与例题讲解

对数函数及其性质知识点总结与例题讲解

底数
a 1
0 a 1
y
y
图象
1
O
1
x
O
x
定义域
0,
值域
R
定点 性
过定点 1,0 ,即当 x 1时, y 0
质 函数值 当 0 x 1 时, y 0 ;
当 0 x 1 时, y 0 ;
的正负
当 x 1时, y 0 .
当 x 1时, y 0 .
∴定点的坐标为 3,3
∴函数 y b xc 2 的图象恒过点 3,3
令 x c 3 c 0 ,则 c 3, y b0 2 3 ,符合题意.
∴实数 c 的值是 3.
例 9. 已知函数 f x log2 1 2x ,则函数的值域是【 】
注意 若比较图象与直线 y 1的交点,交点的横坐标越大,对应的函数的底数越小.
说明 在平面直角坐标系中,对数函数 y loga x 的图象与直线 y 1的交点为 a,1,即交
点的横坐标等于对数函数的底数,故在第一象限内,交点的横坐标越大,对数函数的底数就
越大;对数函数
y

log a
(A) 1,1
(B) 1,2
(C) 2,1
(D) 2,2
解:令 x 1 1,则 x 2 , y loga 1 1 1
∴函数 f x 的图象恒过点 2,1 .
选择【 C 】.
例 6. ( 1 ) 函 数 f x loga 2x 3 4 ( a 0 且 a 1) 的 图 象 恒 过 定 点
∴ log2 1≤ log2 x log2 64 ,∴ 0 ≤ log2 x 6 ,即 0 ≤ y 6 .

数学高一上对数函数知识点

数学高一上对数函数知识点

数学高一上对数函数知识点对数函数是高中数学中的重要知识点之一,在高一上学期,学生首次接触到了对数函数的概念和基本性质。

下面我们就来系统地了解一下高一上对数函数的知识点。

1. 对数函数的定义和性质:对数函数是指满足一定条件的函数,其中最常见和常用的是以10为底的对数函数,即常用对数函数。

常用对数函数的定义是:y = log10x,其中x和y分别表示自变量和因变量,log10x表示以10为底的x的对数。

对数函数的性质有:- 定义域:对数函数的定义域是正实数集。

- 值域:对数函数的值域是实数集。

- 单调性:对于正数x1和x2,如果x1 > x2,则log10x1 >log10x2。

也就是说,对数函数是递增函数。

- 零点:对数函数的零点是x = 1,因为log101 = 0。

- 对称性:对数函数关于直线y = x对称。

- 拉伸和压缩:对数函数y = log10(x/a)表示将函数的图像沿x轴拉伸a倍,而y = log10(ax)表示将函数的图像沿x轴压缩a倍。

- 幂函数与对数函数的互逆关系:指数函数与对数函数是互为反函数的关系。

2. 对数函数的图像和性质:对数函数的图像特点与函数的性质密切相关。

对数函数y =log10x的图像在x轴的右侧是递增的,而在x轴的左侧是递减的。

当x取正数时,函数图像在y轴的右侧上方,当x取0时,函数图像经过(0, -∞)的点,当x取负数时,函数图像在y轴的左侧下方。

对数函数的图像是一个渐近线为y = 0的曲线,该曲线在点(1, 0)处与x轴相交。

当x趋近于无穷大时,函数的值也趋近于无穷大,反之亦然。

3. 对数函数的运算和性质:对数函数的运算是基于指数函数的运算规律的。

对数函数的运算包括:- 指数和对数之间的互化:指数函数和对数函数是互为反函数的关系,两者之间可以通过指数函数的计算特性进行换算。

- 对数的乘除法:log10(a * b) = log10a + log10b,log10(a / b) = log10a - log10b。

高中数学对数函数知识点

高中数学对数函数知识点

高中数学对数函数知识点对数函数是高中数学中的重要内容,以下是关于对数函数的主要知识点:一、对数的定义与性质:1. 对数的定义:设a为正实数,且a≠1,b为正实数,若满足a^x=b,则称x为以a为底b的对数,记作x=loga⁡b。

其中,a称为底数,b称为真数。

2.对数的性质:- loga⁡1=0,其中a为任意正实数,且a≠1;- loga⁡a=1,其中a为任意正实数,且a≠1;- loga⁡(m*n)=loga⁡m+loga⁡n,其中a为任意正实数,且a≠1;- loga⁡(m/n)=loga⁡m-loga⁡n,其中a为任意正实数,且a≠1;- loga⁡m^n=n*loga⁡m,其中a为任意正实数,且a≠1;- loga⁡b=logc⁡b/logc⁡a,其中a、b、c为任意正实数,且a≠1、b>0、c>0;二、对数函数的图像与性质:1. 对数函数:设a为正实数,且a≠1,函数y=loga⁡x (x>0) 称为以a为底的对数函数。

其中,a称为底数。

2. 对数函数y=loga⁡x的图像特点:-定义域为(0,+∞),值域为(-∞,+∞);-x轴为渐进线,即y趋近于负无穷大;-当x=1时,y=0,是对数函数的特殊点;-当x>1时,y>0,y随着x的增大而增大,呈现增函数的特点;-当0<x<1时,y<0,y随着x的减小而减小,呈现减函数的特点;-当x=a时,y=1,是对数函数的特殊点。

三、对数方程与对数不等式:1.对数方程:对数方程是指含有对数的方程。

解对数方程的一般步骤为:-用对数的定义化简方程;-化简后的方程,得到一个以指数形式表示的方程;-解指数方程;-检验解是否符合原方程的定义域。

2.对数不等式:对数不等式是指含有对数的不等式。

解对数不等式的一般步骤为:-用对数的定义化简不等式;-不等式中含有对数,要确定其定义域;-将不等式拆分成多个小不等式;-解每个小不等式的解集;-根据定义域的限制,得到最终的解集。

知识讲解_对数函数及其性质_提高

知识讲解_对数函数及其性质_提高

对数函数及其性质【学习目标】1.理解对数函数的概念,体会对数函数是一类很重要的函数模型;2.探索对数函数的单调性与特殊点,掌握对数函数的性质,会进行同底对数和不同底对数大小的比较;3.了解反函数的概念,知道指数函数xy a =与对数函数log a y x =互为反函数()0,1a a >≠.【要点梳理】要点一、对数函数的概念1.函数y=log a x(a>0,a≠1)叫做对数函数.其中x 是自变量,函数的定义域是()0,+∞,值域为R . 2.判断一个函数是对数函数是形如log (0,1)a y x a a =>≠且的形式,即必须满足以下条件: (1)系数为1;(2)底数为大于0且不等于1的常数; (3)对数的真数仅有自变量x . 要点诠释: (1)只有形如y=log a x(a>0,a≠1)的函数才叫做对数函数,像log (1),2log ,log 3a a a y x y x y x =+==+等函数,它们是由对数函数变化得到的,都不是对数函数.(2)求对数函数的定义域时应注意:①对数函数的真数要求大于零,底数大于零且不等于1;②对含有字母的式子要注意分类讨论.要点诠释:关于对数式log a N 的符问题,既受a 的制约又受N 的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.以1为分界点,当a ,N 同侧时,log a N>0;当a ,N 异侧时,log a N<0. 要点三、底数对对数函数图象的影响 1.底数制约着图象的升降. 如图要点诠释:由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于1,不要忽略.2.底数变化与图象变化的规律在同一坐标系内,当a>1时,随a 的增大,对数函数的图像愈靠近x 轴;当0<a<1时,对数函数的图象随a 的增大而远离x 轴.(见下图)要点四、反函数 1.反函数的定义设,A B 分别为函数()y f x =的定义域和值域,如果由函数()y f x =所解得的()x y ϕ=也是一个函数(即对任意的一个y B ∈,都有唯一的x A ∈与之对应),那么就称函数()x y ϕ=是函数()y f x =的反函数,记作1()x fy -=,在1()x f y -=中,y 是自变量,x 是y 的函数,习惯上改写成1()y f x -=(,x B y A ∈∈)的形式.函数1()x fy -=(,y B x A ∈∈)与函数1()y f x -=(,x B y A ∈∈)为同一函数,因为自变量的取值范围即定义域都是B ,对应法则都为1f-.由定义可以看出,函数()y f x =的定义域A 正好是它的反函数1()y f x -=的值域;函数()y f x =的值域B 正好是它的反函数1()y fx -=的定义域.要点诠释:并不是每个函数都有反函数,有些函数没有反函数,如2y x =.一般说来,单调函数有反函数. 2.反函数的性质(1)互为反函数的两个函数的图象关于直线y x =对称.(2)若函数()y f x =图象上有一点(),a b ,则(),b a 必在其反函数图象上,反之,若(),b a 在反函数图象上,则(),a b 必在原函数图象上.【典型例题】类型一、函数的定义域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.例1. 求下列函数的定义域:(1)2log a y x =; (2)log (4-)(01)a y x a a =>≠且.【答案】(1){|0}x x ≠;(2){|4}x x <.【解析】由对数函数的定义知:20x >,40x ->,解出不等式就可求出定义域.(1)因为20x >,即0x ≠,所以函数2log {|0}a y x x x =≠的定义域为;(2)因为40x ->,即4x <,所以函数log (4-){|4}a y x x x =<的定义域为.【总结升华】与对数函数有关的复合函数的定义域:求定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于log ()a y f x =的定义域时,应首先保证()0f x >.举一反三:【变式1】求下列函数的定义域.(1) y=1)1(log 12133---x x (2) ln(2)x xy a k =-(0a >且1,a k R ≠∈).【答案】(1)(1,23) (23,2];(2)略 【解析】(1)因为121210log (1)0log (1)1x x x ⎧⎪->⎪⎪-≥⎨⎪⎪-≠⎪⎩, 所以101132x x x ⎧⎪>⎪<-≤⎨⎪⎪≠⎩,所以函数的定义域为(1,23) (23,2]. (2)因为 20xxa k ->, 所以2xa k ⎛⎫> ⎪⎝⎭.①当0k ≤时,定义域为R ; ②当0k >时,(i)若2a >,则函数定义域为(2log a k ,+∞);(ii)若02a <<,且1a ≠,则函数定义域为(-∞,2log a k );(iii)若2a =,则当01k <<时,函数定义域为R ;当1k ≥时,此时不能构成函数,否则定义域为∅. 【变式2】函数(2)xy f =的定义域为[-1,2],求2(log )y f x =的定义域. 【答案】[2,16].【解析】由12x -≤≤,可得()y f x =的定义域为[21,4],再由21log 42x ≤≤得2(log )y f x =的定义域为[2,16].类型二、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.例2. 比较下列各组数中的两个值大小: (1)33log 3.6,log 8.9;(2)0.20.2log 1.9,log 3.5; (3)2log 5与7log 5; (4) 3log 5与6log 4.(5)log 4.2,log 4.8a a (01a a >≠且).【思路点拨】利用函数的单调性比较函数值大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数函数及其性质【学习目标】1.理解对数函数的概念,体会对数函数是一类很重要的函数模型;2.探索对数函数的单调性与特殊点,掌握对数函数的性质,会进行同底对数和不同底对数大小的比较;3.了解反函数的概念,知道指数函数xy a =与对数函数log a y x =互为反函数()0,1a a >≠.【要点梳理】要点一、对数函数的概念1.函数y=log a x(a>0,a≠1)叫做对数函数.其中x 是自变量,函数的定义域是()0,+∞,值域为R . 2.判断一个函数是对数函数是形如log (0,1)a y x a a =>≠且的形式,即必须满足以下条件: (1)系数为1;(2)底数为大于0且不等于1的常数; (3)对数的真数仅有自变量x . 要点诠释:(1)只有形如y=log a x(a>0,a≠1)的函数才叫做对数函数,像log (1),2log ,log 3a a a y x y x y x =+==+等函数,它们是由对数函数变化得到的,都不是对数函数.(2)求对数函数的定义域时应注意:①对数函数的真数要求大于零,底数大于零且不等于1;②对含有字母的式子要注意分类讨论.要点二、对数函数的图象与性质a >10<a <1图象性质定义域:(0,+∞)值域:R过定点(1,0),即x=1时,y=0在(0,+∞)上增函数在(0,+∞)上是减函数当0<x<1时,y<0,当x≥1时,y≥0当0<x<1时,y>0,当x≥1时,y≤0要点诠释:关于对数式log a N的符号问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.以1为分界点,当a,N同侧时,log a N>0;当a,N异侧时,log a N<0.要点三、底数对对数函数图象的影响1.底数制约着图象的升降.如图要点诠释:由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于1,不要忽略.2.底数变化与图象变化的规律在同一坐标系内,当a>1时,随a 的增大,对数函数的图像愈靠近x 轴;当0<a<1时,对数函数的图象随a 的增大而远离x 轴.(见下图)要点四、反函数 1.反函数的定义设,A B 分别为函数()y f x =的定义域和值域,如果由函数()y f x =所解得的()x y ϕ=也是一个函数(即对任意的一个y B ∈,都有唯一的x A ∈与之对应),那么就称函数()x y ϕ=是函数()y f x =的反函数,记作1()x fy -=,在1()x f y -=中,y 是自变量,x 是y 的函数,习惯上改写成1()y f x -=(,x B y A ∈∈)的形式.函数1()x fy -=(,y B x A ∈∈)与函数1()y f x -=(,x B y A ∈∈)为同一函数,因为自变量的取值范围即定义域都是B ,对应法则都为1f-.由定义可以看出,函数()y f x =的定义域A 正好是它的反函数1()y f x -=的值域;函数()y f x =的值域B 正好是它的反函数1()y fx -=的定义域.要点诠释:并不是每个函数都有反函数,有些函数没有反函数,如2y x =.一般说来,单调函数有反函数. 2.反函数的性质(1)互为反函数的两个函数的图象关于直线y x =对称.(2)若函数()y f x =图象上有一点(),a b ,则(),b a 必在其反函数图象上,反之,若(),b a 在反函数图象上,则(),a b 必在原函数图象上.【典型例题】类型一、函数的定义域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.例1. 求下列函数的定义域:(1)2log a y x =; (2)log (4-)(01)a y x a a =>≠且.【答案】(1){|0}x x ≠;(2){|4}x x <.【解析】由对数函数的定义知:20x >,40x ->,解出不等式就可求出定义域.(1)因为20x >,即0x ≠,所以函数2log {|0}a y x x x =≠的定义域为;(2)因为40x ->,即4x <,所以函数log (4-){|4}a y x x x =<的定义域为.【总结升华】与对数函数有关的复合函数的定义域:求定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于log ()a y f x =的定义域时,应首先保证()0f x >.举一反三:【变式1】求下列函数的定义域.(1) y=1)1(log 12133---x x (2) ln(2)x xy a k =-(0a >且1,a k R ≠∈).【答案】(1)(1,23) (23,2];(2)略 【解析】(1)因为121210log (1)0log (1)1x x x ⎧⎪->⎪⎪-≥⎨⎪⎪-≠⎪⎩, 所以101132x x x ⎧⎪>⎪<-≤⎨⎪⎪≠⎩,所以函数的定义域为(1,23) (23,2].(2)因为 20xxa k ->, 所以2xa k ⎛⎫> ⎪⎝⎭.①当0k ≤时,定义域为R ; ②当0k >时,(i)若2a >,则函数定义域为(2log a k ,+∞);(ii)若02a <<,且1a ≠,则函数定义域为(-∞,2log a k );(iii)若2a =,则当01k <<时,函数定义域为R ;当1k ≥时,此时不能构成函数,否则定义域为∅. 【变式2】函数(2)xy f =的定义域为[-1,2],求2(log )y f x =的定义域. 【答案】[2,16].【解析】由12x -≤≤,可得()y f x =的定义域为[21,4],再由21log 42x ≤≤得2(log )y f x =的定义域为[2,16].类型二、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.例2. 比较下列各组数中的两个值大小: (1)33log 3.6,log 8.9; (2)0.20.2log 1.9,log 3.5; (3)2log 5与7log 5; (4) 3log 5与6log 4.(5)log 4.2,log 4.8a a (01a a >≠且).【思路点拨】利用函数的单调性比较函数值大小。

【答案】(1)< ;(2) <;(3) >;(4) >;(5) 略.【解析】由数形结合的方法或利用函数的单调性来完成.(1)解法1:画出对数函数3log y x =的图象,横坐标为3.6的点在横坐标为8.9的点的下方,所以,33log 3.6log 8.9<;解法2:由函数3log y x =在R +上是单调增函数,且3.6<8.9,所以33log 3.6log 8.9<;(2)与第(1)小题类似,0.2log y x =在R +上是单调减函数,且1.9<3.5,所以0.20.2log 1.9log 3.5>; (3)函数2log y x =和7log y x =的图象如图所示.当1x >时,2log y x =的图象在7log y x =的图象上方,这里5x =,27log 5log 5∴>.(4)3366log 5log 31log 6log 4,>==>36log 5log 4∴>(5) 注:底数是常数,但要分类讨论a 的范围,再由函数单调性判断大小.解法1:当1a >时,log a y x =在(0,+∞)上是增函数,且5.1<5.9,所以,log 4.2log 4.8a a < 当01a <<时,y=log a x 在(0,+∞)上是减函数,且4.2<4.8,所以,log 4.2log 4.8a a > 解法2:转化为指数函数,再由指数函数的单调性判断大小, 令1log 4.2a b =,则1ba =4.2,令2log 4.8ab =,则24.8b a =,当1a >时,xy a =在R 上是增函数,且4.2<4.8, 所以,b 1<b 2,即log 4.2log 4.8a a <当时01a <<,x y a =在R 上是减函数,且4.2<4.8 所以,b 1>b 2,即a a log 4.2>log 4.8.【总结升华】比较两个对数值的大小的基本方法是:(1)比较同底的两个对数值的大小,常利用对数函数的单调性.(2)比较同真数的两个对数值的大小,常有两种方法:①先利用对数换底公式化为同底的对数,再利用对数函数的单调性和倒数关系比较大小;②利用对数函数图象的互相位置关系比较大小.(3)若底数与真数都不同,则通过一个恰当的中间量来比较大小. 【高清课堂:对数函数 369070 例3】 例3.比较11log ,log ,log ,log a b a b b a b a其中0<a <1<b 且a ·b >1的大小. 【答案】11log log log log a b ba b a a b<<< 【解析】由0<a <1<b 且a ·b >1,得1a b >,1b a>∴1log log 1a a a b >=,1log log 1b b b a <=11log log b a a b∴<∴11log log b a ab --<,即log log b a a b -<-log log b a a b ∴> 11log log log log a b ba b a a b∴<<< 【总结升华】若底数与真数都不同,则通过一个恰当的中间量来比较大小,中间变量常常用“0”和“1”.用“0”和“1”把所给的数先分两组,然后组内再比较大小.举一反三:【变式1】已知324log 0.3log 3.4log 3.615,5,,5a b c ⎛⎫=== ⎪⎝⎭则( )A .a b c >>B .b a c >>C .a c b >>D .c a b >>【答案】C【解析】另2log 3.4m =,4log 3.6n =,310log 3l =,在同一坐标系下作出三个函数图像,由图像可得m l n >>又∵5xy =为单调递增函数, ∴ a c b >> 故选C.【高清课堂:对数函数369070 例2】【变式2】比较323log ,log log a b c π=== 【答案】c b a <<【解析】33233log 2log log 1log 3log π<<<=<c b a ∴<<例(2014年安徽亳州月考)已知定义在R 上的函数()y f x =是偶函数,且x ≥0时,2()ln(22)f x x x =-+),(1)当x <0时,求f (x )解析式; (2)写出f (x )的单调递增区间.【思路点拨】(1)x <0时,-x >0,代入已知x ≥0时,2()ln(22)f x x x =-+,可得2()ln(22)f x x x -=++,根据偶函数的性质可求得2()ln(22)f x x x =++(2)根据复合函数的单调性及二次函数的单调性分别求解两段函数的单调增区间即可 【答案】(1);(2)单调增区间为:(-1,0),(1,+∞) 【解析】(1)x <0时,-x >0 ∵x ≥0时2()ln(22)f x x x =-+ ∴2()ln(22)f x x x -=++∵y =f (x )是偶函数,∴f (-x )=f (x ) x <0时,2()ln(22)f x x x =++(2)由(1)知x <0时,2()ln(22)f x x x =++,根据复合函数的单调性可得函数的单调增区间(-1,0)x ≥0时2()ln(22)f x x x =-+,根据复合函数的单调性可得函数的单调增区间(1,+∞) 所以函数的单调增区间为:(-1,0),(1,+∞)【总结升华】本题主要考查了利用偶函数的对称性求解函数的解析式,复合函数的单调区间的求解,(2)中对每段函数求解单调区间时要注意函数的定义域.研究(log )a y f x =型复合函数的单调性,一般用复合法来判定即可.复合函数的单调性就是内函数与外函数的单调性“同增异减”.研究对数型复合函数的单调性,一定要注意先研究函数的定义域,也就是要坚持“定义域优先”的原则.举一反三:【变式1】求函数()22log 4y x =+的值域和单调区间. 【答案】[)2,+∞;减区间为(),0-∞,增区间为()0,+∞.【解析】设24t x =+,则244t x =+≥,∵ y=2log t 为增函数,2222log log (4)log 42t x ∴=+≥=()22log 4y x ∴=+的值域为[)2,+∞.再由:22log (4)y x =+的定义域为R24t x ∴=+在()0,+∞上是递增而在(),0-∞上递减,而y=2log t 为增函数∴ 函数y=22log (4)x +的减区间为(),0-∞,增区间为()0,+∞.【变式2】求函数log ()xa y a a =-的单调区间【答案】减区间是:(),1-∞和()1,+∞【解析】①若1,a >则log a y t =递增,且x t a a =-递减,而0xa a ->,即,1xa a x <∴<, log ()xa y a a ∴=-在(),1-∞上递减.② 若01a <<,则log a y t =递减,且x t a a =-递增,而0xa a ->,即,1xa a x <∴>,log ()x a y a a ∴=-在()1,+∞上递减.综上所述,函数log ()xa y a a =-的单调递减区间是:(),1-∞和()1,+∞.类型三、函数的奇偶性 例5. 判断下列函数的奇偶性.(1)2-()ln;2xf x x=+ (2)())f x x =. 【思路点拨】判断函数奇偶性的步骤是:(1)先求函数的定义域,如果定义域关于原点对称,则进行(2),如果定义域不关于原点对称,则函数为非奇非偶函数。

相关文档
最新文档