如何绘制伯德图.

合集下载

新版本matlab中绘制bode图技巧

新版本matlab中绘制bode图技巧

百度文库里有一篇《matlab绘制bode图技巧》,非常不错。

但是在较新的matlab版本中运行时,显示最后依据有错误。

先对其进行更正。

依旧用下面这个传递函数的伯德图:1.576e010 s^2H(s)= ------------------------------------------------------------------------------------------s^4 + 1.775e005 s^3 + 1.579e010 s^2 + 2.804e012 s + 2.494e014(这是一个用butter函数产生的2阶的,频率范围为[20 20K]HZ的带通滤波器。

)我们可以用下面的语句:num=[1.576e010 0 0];den=[1 1.775e005 1.579e010 2.804e012 2.494e014];H=tf(num,den);bode(H)这样,我们就可以得到以下的伯德图:下面对其进行更改,使得:一、横坐标是HZ;二、调整横坐标的范围;三、打开网格(这点当然我们可以通过在后面加上grid on解决)。

下面,我们来看看如何定制我们自己的伯德图风格:在较新版本的matlab的命令窗口中输入:num=[1.576e010 0 0];den=[1 1.775e005 1.579e010 2.804e012 2.494e014];H=tf(num,den);h=bodeplot(H);p=getoptions(h);p.Grid=’on’;p.XLim={[10 40000]};p.XLimMode={'manual'};p.FreqUnits='Hz';setoptions(h,p);这时,我们可以得到以下的伯德图:。

绘制伯德图

绘制伯德图

幅频和相频特性为:
A( ) (1 T 2 2 )2 (2 T )2, ( ) tg 1
1 T 1 ,o ,称为转折频率或交换频率。 T
Monday, March 09, 2015
可以用这两段渐近线近似的表示惯性环节的对数幅频特性。
3
惯性环节的Bode图
10 渐近线 0 -10 -20 0° -45° -90° 1 20T
20dB / Dec
图中,红、绿线分别是低频、高频渐近线,蓝线是实际曲线。
T
( )
2.0
-63.4
3.0
-71.5
4.0
-76
5.0
-78.7
7.0
-81.9
10
-84.3
20
-87.1
50
-88.9
100
-89.4
1 1 当 0时, (0) 0;当 时, ( ) ;当 时, () 。 T T 4 2 由图不难看出相频特性曲线在半对数坐标系中对于(0, -45°) 点是斜对称的,这是对数相频特性的一个特点。
当时间常数T 变化时,对数幅频特性和对数相频特性的形状 都不变,仅仅是根据转折频率1/T 的大小整条曲线向左或向 右平移即可。而当增益改变时,相频特性不变,幅频特性上 下平移。
Monday, March 09, 2015 6
振荡环节的频率特性
K Kn 2 ⒋ 振荡环节的频率特性: G( s) 2 2 T s 2Ts 1 s 2 n s n 2
0 L( ) 20 lg K 0 0
K 1 K 1 0 K 1
( )
180
K 0
log

15 第十五讲 伯德图

15 第十五讲 伯德图

1
(1−ω
2

2 2 n
)
+ 4ς ω / ω
2 2 2 2 2
2 n
Mdb = −20log10
−1
(1−T ω
)
+ 4ς 2T 2ω2
2ςTω ϕ (ω) = − tan 1−ω2Tω2
1) 低频渐近线:
当ωT << 1时,即 ω << 1/T, 1/T→转折频率 MdB = 0dB
Mdb -40db/dec ω
• 步骤 1: 计算转折频率。
1+ s → ωb =1rad / s
1 → ωb =1rad / s s 1 → ωb = 2 rad / s 1 1+ s 2
Kdb = 20lg 10 = 20 dB
步骤 2: 确定要画的频率范围。 所有转折频率都在1~10rad/s的这个十倍频程内, 所以此伯德图将在以下范围内绘制:
0.1 1.0 10
ω
φ
+90
1+s
+45
0 10
-45
1 s
-90
1 1 1+ s 2
图.SP.15.1.6
步骤8: 将所有环节的相角相叠加。
φ
+90
0.1 1.0 10
ω
+45
0
合成相位i
-45
-90
图.SP.15.1.6
MATLAB 仿真
10(1+ s) G(s) = 1 s1+ s 2
sys=tf([10 10],[0.5 1 0]); bode(sys) pause
H(s) =1

5-3 频域:伯德图12

5-3   频域:伯德图12

说明
为二阶系统 (振荡环节) 的转角角频率。
24
5.2.4 基本因子的伯德图
渐进线与实际曲线的误差与阻尼比ζ有关,当ζ< 0.707时必须考虑ζ对L(ω)的影响,对转角角频 率ω=ωn附近的L(ω)曲线进行修正。
当频率接近 ω=ωn时,将产生谐振峰。阻尼比的大 小决定了谐振峰值的幅值。
25
2ζ/n ω arctan 1 (/n ) 2
得到系统的对数幅频特性、相频特性。
9
5.2.3 对数频率特性图(伯德图)
典型环节归纳为四类基本因子:
常数增益K
在原点的极点(或零点) (jω)±1
实极点(或零点) ( jωτ +1)±1
复极点(或零点) [(jω/ω n )2+2ζ( jω/ω n ) +1]
±1
10
5.2.4 基本因子的伯德图
当 ω 1 / T 时,是一条斜率为-20dB/dec的直线
18
两条渐近线相交处的角频率 ω 1/ T 称为转角角频率。 用两条渐近线近似惯性环节的对数幅频特性,最大误差出现 在转角角频率处,
L( ) 20lg 1 ω 2 T 2
L ( )
1 / T
3 dB
L ( )
ω 90
20 0 0.1
20
1
10

20
( )
90
0
0.1
1
10

15
若在原点有多重零点 (jω)v
G jω ( jω) v
Lω 20lg G jω v 20lgω
ω v 90
16
3.实极点(或零点) (jωτ+1) ±1的伯德图

绘制伯德图

绘制伯德图
L2 () 40lg 2.85 ,从而, L2 (0.27) 40lg0.27 2.85 19.9dB
1 1 1 x ct an arg tan x 1 10 5 x 5 2 x 50, x 7.07
计算(6)
G2 ( j 0.01) arctan 3.7 0.01 900 arctan 0.1 0.01 arctan 0.2 0.01 arctan 41 0.01 2.12 90 0.06 0.12 22.29 110.350 G2 ( j 0.05) arctan 3.7 0.05 900 arctan 0.1 0.05 arctan 0.2 0.05 arctan 41 0.05 10.48 90 0.29 0.57 64 144.380 G2 ( j 0.1) arctan 3.7 0.1 900 arctan 0.1 0.1 arctan 0.2 0.1 arctan 41 0.1 20.3 90 0.57 1.15 76.29 147.710 G2 ( j 0.27) arctan 3.7 0.27 900 arctan 0.1 0.27 arctan 0.2 0.27 arctan 41 0.27 44.97 90 1.55 3.09 84.84 134.510 G2 ( j1) arctan 3.7 1 900 arctan 0.1 1 arctan 0.2 1 arctan 41 1 74.87 90 5.71 11.31 88.6 120.750 G2 ( j 2.67) arctan 3.7 2.67 900 arctan 0.1 2.67 arctan 0.2 2.67 arctan 41 2.67 82.22 90 14.95 28.1 89.47 140.30 G2 ( j 6.85) arctan 3.7 6.85 900 arctan 0.1 6.85 arctan 0.2 6.85 arctan 41 6.85 87.74 90 34.41 53.87 89.80 180.34 0

《典型环节伯德图》课件

《典型环节伯德图》课件
Maya:一汇报人:
稳定性分析
稳定性定义:系统 在受到扰动后能够 恢复到其原始状态 的能力
稳定性分类:稳定、 不稳定、临界稳定
稳定性分析方法: 伯德图分析、奈奎 斯特图分析、根轨 迹分析等
伯德图分析:通过绘制 伯德图,观察系统在不 同频率下的增益和相位 变化,判断系统的稳定 性。
动态性能分析
伯德图:描述系统动态性能的图形工具 频率响应:系统对不同频率信号的响应 相位裕度:系统稳定性的指标 增益裕度:系统放大能力的指标 动态性能分析方法:如根轨迹法、频率响应法等
MATLAB还提供了丰富的函数库,可以方便地进行各种数学计算和仿真。
Simulink软件介绍
软件名称: Simulink
开发商: MathWorks
公司
软件功能:用 于建模、仿真 和分析动态系

应用领域:广 泛应用于控制 工程、信号处 理、通信等领

软件特点:图 形化界面,易 于操作,支持 多种编程语言
软件版本:最 新版本为 Simulink 2022a
其他绘制软件介绍
AutoCAD:一款专业的CAD软件,可以绘制 各种类型的伯德图
SolidWorks:一款三维设计软件,可以绘制 伯德图
Inventor:一款三维设计软件,可以绘制伯 德图
SketchUp:一款三维设计软件,可以绘制伯 德图
Blender:一款三维设计软件,可以绘制伯德 图
幅频特性的分析
幅频特性的定义:描述信号在频率域上的分布特性 幅频特性的表示方法:通常采用伯德图或奈奎斯特图 幅频特性的应用:用于分析信号的频率响应、滤波器设计等 幅频特性的测量方法:通过频谱分析仪或示波器等仪器进行测量
相频特性的分析
相频特性的定义:描述信号频率与相位之间的关系 相频特性的表示方法:通常用相频特性曲线表示 相频特性的应用:在信号处理、通信等领域有广泛应用 相频特性的测量方法:通过实验或仿真进行测量

Matlab中Bode图的绘制技巧(精)

Matlab中Bode图的绘制技巧(精)

Matlab中Bode图的绘制技巧我们经常会遇到使用Matlab画伯德图的情况,可能我们我们都知道bode这个函数是用来画bode 图的,这个函数是Matlab内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。

譬如我们要画出下面这个传递函数的伯德图:1.576e010 s^2H(s= ------------------------------------------------------------------------------------------s^4 + 1.775e005 s^3 + 1.579e010 s^2 + 2.804e012 s + 2.494e014(这是一个用butter函数产生的2阶的,频率范围为[20 20K]HZ的带通滤波器。

我们可以用下面的语句:num=[1.576e010 0 0];den=[1 1.775e005 1.579e010 2.804e012 2.494e014];H=tf(num,den;bode(H这样,我们就可以得到以下的伯德图:可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on解决)。

下面,我们来看看如何定制我们自己的伯德图风格:在命令窗口中输入:bodeoptions我们可以看到以下内容:ans =Title: [1x1 struct] XLabel: [1x1 struct] YLabel: [1x1 struct] TickLabel: [1x1 struct] Grid: 'off'XLim: {[1 10]} XLimMode: {'auto'} YLim: {[1 10]} YLimMode: {'auto'} IOGrouping: 'none' InputLabels: [1x1 struct] OutputLabels: [1x1 struct] InputVisible: {'on'} OutputVisible: {'on'} FreqUnits: 'rad/sec' FreqScale: 'log' MagUnits: 'dB' MagScale: 'linear' MagVisible: 'on' MagLowerLimMode: 'auto' MagLowerLim: 0 PhaseUnits: 'deg' PhaseVisible: 'on' PhaseWrapping: 'off'PhaseMatching: 'off'PhaseMatchingFreq: 0PhaseMatchingValue: 0我们可以通过修改上面的每一项修改伯德图的风格,比如我们使用下面的语句画我们的伯德图:P=bodeoptions;P.Grid='on';P.XLim={[10 40000]};P.XLimMode={'manual'};P.FreqUnits='HZ';num=[1.576e010 0 0];den=[1 1.775e005 1.579e010 2.804e012 2.494e014];H=tf(num,den;bode(H,P这时,我们将会看到以下的伯德图:上面这张图相对就比较好了,它的横坐标单位是HZ,范围是[1040K]HZ,而且打开了网格,便于我们观察-3DB处的频率值。

(完整版)Matlab中Bode图的绘制技巧(精)

(完整版)Matlab中Bode图的绘制技巧(精)

Matlab中Bode图的绘制技巧我们经常会遇到使用Matlab画伯德图的情况,可能我们我们都知道bode这个函数是用来画bode图的,这个函数是Matlab内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。

譬如我们要画出下面这个传递函数的伯德图:1.576e010 s^2H(s= ------------------------------------------------------------------------------------------s^4 + 1.775e005 s^3 + 1.579e010 s^2 + 2.804e012 s + 2.494e014(这是一个用butter函数产生的2阶的,频率范围为[20 20K]HZ的带通滤波器。

我们可以用下面的语句:num=[1.576e010 0 0];den=[1 1.775e005 1.579e010 2.804e012 2.494e014];H=tf(num,den;bode(H这样,我们就可以得到以下的伯德图:可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on解决)。

下面,我们来看看如何定制我们自己的伯德图风格:在命令窗口中输入:bodeoptions我们可以看到以下内容:ans =Title: [1x1 struct] XLabel: [1x1 struct] YLabel: [1x1 struct] TickLabel: [1x1 struct] Grid: 'off'XLim: {[1 10]} XLimMode: {'auto'} YLim: {[1 10]} YLimMode: {'auto'} IOGrouping: 'none' InputLabels: [1x1 struct] OutputLabels: [1x1 struct] InputVisible: {'on'} OutputVisible: {'on'} FreqUnits: 'rad/sec' FreqScale: 'log' MagUnits: 'dB' MagScale: 'linear' MagVisible: 'on' MagLowerLimMode: 'auto' MagLowerLim: 0 PhaseUnits: 'deg' PhaseVisible: 'on' PhaseWrapping: 'off'PhaseMatching: 'off'PhaseMatchingFreq: 0PhaseMatchingValue: 0我们可以通过修改上面的每一项修改伯德图的风格,比如我们使用下面的语句画我们的伯德图:P=bodeoptions;P.Grid='on';P.XLim={[10 40000]};P.XLimMode={'manual'};P.FreqUnits='HZ';num=[1.576e010 0 0];den=[1 1.775e005 1.579e010 2.804e012 2.494e014];H=tf(num,den;bode(H,P这时,我们将会看到以下的伯德图:上面这张图相对就比较好了,它的横坐标单位是HZ,范围是[10 40K]HZ,而且打开了网格,便于我们观察-3DB处的频率值。

Matlab画伯德图

Matlab画伯德图

我们经常会遇到使用Matlab画伯德图的情况,可能我们我们都知道bode这个函数是用来画bode图的,这个函数是Matlab内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。

譬如我们要画出下面这个传递函数的伯德图:
(这是一个用butter函数产生的2阶的,频率范围为[2020K]HZ的带通滤波器。

)
我们可以用下面的语句:这样,我们就可以得到以下的伯德图
可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on解决)。

下面,我们来看看如何定制我们自己的伯德图风格:在命令窗口中输入:bodeoptions我们可以看到以下内容:。

开环伯德图绘制

开环伯德图绘制
于是有: ω = K ⇒ ω0 = K ν
ν
75
《自动控制原理》电子教案
(5)绘制中频段 首先在横坐标轴上将转折频率按从低到高的顺序标出各转折频率。然后,依次在各转折频率处改变 直线的斜率 ,改变的多少取决于转折处环节的性质,如惯性环节的斜率为 − 20dB dec ,振荡环节为
− 40dB dec ,一阶微分环节为 + 20dB dec ,二阶微分环节为 + 40dB dec 等等。 例:已知单位反馈控制系统的开环传递函数为 GK ( s) = 100( s + 2) s( s + 1)(s + 20) ,试绘制其开环
ω
2
由图可知: 解得wc=4,
小结丗对最小相位系统、幅频特性与相频特性的关系
如果幅频特性的斜率为-1对应的相角为-pi/2; 如果幅频特性的斜率为-k对应的相角为-pi*k/2.
77
L(ω ) = 20 lg K − 20 ×ν × lg ω ω =1 = 20 lg K
③低频段直线(或其延长线)与零分贝线(横轴)的交点频率为 ω0 = K ,对于 I 型系统交点频
ν
1
率为 ω0 = K ,II 型系统交点频率为 ω0 =
1
K ;这是因为由低频段的幅频方程,可得到
L(ω ) = 20 lg K − 20 ×ν × lg ω = 0 ⇒ 20 lg K = 20 ×ν × lg ω = 20 lg ων
⎧ L (ω ) = −20 lg 1 + ω 2 − 20 lg lg 1 + 4ω 2 ⎧ϕ (ω ) = arctgω − arctg 2ω ⎪ 1 1 ,⎨ ⎨ 2 2 ⎩ϕ 2 (ω ) = −arctgω − arctg 2ω ⎪ L2 (ω ) = −20 lg 1 + ω − 20 lg lg 1 + 4ω ⎩

开环系统的频率特性绘制伯德图

开环系统的频率特性绘制伯德图

1
s(1 s)(1 5s)
G(s)
10
s(1 s)(1 5s)
[具有积分环节的系统的频率特性的特点]:
m
频率特性可表示为:G(
j )
(
1
j )
i 1 n
(1 i s)
(1 Tj s)
j 1
m
其相角为: ( ) tg 1i
i 1
2
n j 1
tg 1Tj

0 时,(0)
,G(0)
比较开环系统极坐标方法,用伯德图表示的频率特性有如下优点: (1)把幅频特性的乘除运算转变为加减运算。
(2)在对系统作近似分析时,一般只需要画出对数幅频特性曲线的渐近线,从 而大大简化了图形的绘制。
(3)在采用实验方法时,可将测得系统(或环节)频率响应的数据画在半对 数坐标纸上。
开环系统频率特性为:
j )
K
1 1
jT2 jT1
两个系统的幅频特性完全相同。而它们的相频特性则有很大的区
别。由系统a、b的相频表达式:
a ( ) tan 1 T2 tan 1 T1 b ( ) tan 1 T2 tan 1 T1
40 35 30 25 20
0
a
-90
b
180
10-1
100
101
(K=100,T1=1,T2=0.1)
且有: (0)
2
, ()
(n
m)
2
。n
n1
2n2 ,
m
m1
2m2
由以上的分析可得到开环系统对数频率特性曲线的绘制方 法:先画出每一个典型环节的波德图,然后相加。
[例]:开环系统传递函数为:G(s) 画出该系统的波德图。

3.1.2波特图的绘制(精)

3.1.2波特图的绘制(精)

图 1 波特图的横坐标和纵坐标
�����/��,即横轴对lg�将是等分的,如图 1 横轴对照图所示。 ����与����的对应关系如图 1 纵轴对照图所示。
由于习惯上都以频率�作为自变量,因此横轴为对数坐标,标以自变量 而波特图纵轴以等分坐标来标定����, 其单位是分贝����, 而且是20lgM���, 由图可见, 波特图是画在纵轴位等分坐标、 横轴为对数坐标的特殊Байду номын сангаас标纸上,
波特图的绘制
波特图(Bode 图)又叫伯德图。 引入对数幅频特性����,可以使串联环节的幅值相乘转化为对数幅频特性
的相加;而����或它的渐近线大多与���成线性关系,因此,若以����为纵轴, 单位长度, �将变化 10 倍[以后称这个为一个 “10 倍频程” (decade) , 记为 dec]。 波特图的横坐标和纵坐标示意图如图 1 所示。 ���为横轴,则其图线将为直线。另一方面,若以���为横轴,则���每变化一个
特性����也画在与����完全相同的半对数坐标纸上,其横轴的取值与对数幅频 特性坐标相同,画在半对数坐标纸上的����称为对数相频特性。
这种坐标纸叫“半对数坐标纸” 。 注意: 1、对数坐标是不均匀坐标,是由疏到密周期性变化排列的,因此,不能像 等分坐标那样任意取值、任意移动,在对数坐标上的取值和移动是以“级”为单 位的。 2、对数坐标的每一级代表 10 倍频程,即每个等分的级的频率差 10 倍,若 第一个“1”处为 0.1,则以后的“1”处便分别为 1、10、100、1000 等。究 竟第一个“1”处的频率值取为多少,要视研究的系统所需要的频率段而定。在 一般的调速系统和随动系统中,第一个“1”处的频率值通常在 0.01、0.1、1 三个数值中取值。 由于对数幅频特性����是画在半对数坐标纸上的,为便于比较对照,相频

matlab绘制bode图技巧(可编辑修改word版)

matlab绘制bode图技巧(可编辑修改word版)

我们经常会遇到使用Matlab 画伯德图的情况,可能我们我们都知道bode 这个函数是用来画bode 图的,这个函数是Matlab 内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。

譬如我们要画出下面这个传递函数的伯德图:1.576e010 s^2H(s)=s^4 + 1.775e005 s^3 + 1.579e010 s^2 + 2.804e012 s + 2.494e014(这是一个用butter 函数产生的2 阶的,频率范围为[20 20K]HZ 的带通滤波器。

)我们可以用下面的语句:num=[1.576e010 0 0];den=[1 1.775e005 1.579e010 2.804e012 2.494e014];H=tf(num,den);bode(H)这样,我们就可以得到以下的伯德图:可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on 解决)。

下面,我们来看看如何定制我们自己的伯德图风格:在命令窗口中输入:bodeoptions我们可以看到以下内容:ans =Title: [1x1 struct]XLabel: [1x1 struct]YLabel: [1x1 struct]TickLabel: [1x1 struct]Grid: 'off'XLim: {[1 10]}XLimMode: {'auto'}YLim: {[1 10]}YLimMode: {'auto'}IOGrouping: 'none'InputLabels: [1x1 struct]OutputLabels: [1x1 struct]InputVisible: {'on'}OutputVisible: {'on'}FreqUnits: 'rad/sec'FreqScale: 'log'MagUnits: 'dB'MagScale: 'linear'MagVisible: 'on'MagLowerLimMode: 'auto'MagLowerLim: 0PhaseUnits: 'deg'PhaseVisible: 'on'PhaseWrapping: 'off'PhaseMatching: 'off'PhaseMatchingFreq: 0PhaseMatchingValue: 0我们可以通过修改上面的每一项修改伯德图的风格,比如我们使用下面的语句画我们的伯德图:P=bodeoptions;P.Grid='on';P.XLim={[10 40000]};P.XLimMode={'manual'};P.FreqUnits='HZ';num=[1.576e010 0 0];den=[1 1.775e005 1.579e010 2.804e012 2.494e014];H=tf(num,den);bode(H,P)这时,我们将会看到以下的伯德图:上面这张图相对就比较好了,它的横坐标单位是HZ,范围是[10 40K]HZ,而且打开了网格,便于我们观察-3DB 处的频率值。

Matlab中Bode图的绘制技巧

Matlab中Bode图的绘制技巧

。 。 1

Matlab中Bode图的绘制技巧 我们经常会遇到使用Matlab画伯德图的情况,可能我们我们都知道bode这个函数是用来画bode图的,这个函数是Matlab内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。 譬如我们要画出下面这个传递函数的伯德图: 1.576e010 s^2 H(s)= ------------------------------------------------------------------------------------------ s^4 + 1.775e005 s^3 + 1.579e010 s^2 + 2.804e012 s + 2.494e014 (这是一个用butter函数产生的2阶的,频率范围为[20 20K]HZ的带通滤波器。) 我们可以用下面的语句: num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den); bode(H) 这样,我们就可以得到以下的伯德图:

可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on解决)。 下面,我们来看看如何定制我们自己的伯德图风格: 在命令窗口中输入:bodeoptions 我们可以看到以下内容: 。 。 2

ans = Title: [1x1 struct] XLabel: [1x1 struct] YLabel: [1x1 struct] TickLabel: [1x1 struct] Grid: 'off' XLim: {[1 10]} XLimMode: {'auto'} YLim: {[1 10]} YLimMode: {'auto'} IOGrouping: 'none' InputLabels: [1x1 struct] OutputLabels: [1x1 struct] InputVisible: {'on'} OutputVisible: {'on'} FreqUnits: 'rad/sec' FreqScale: 'log' MagUnits: 'dB' MagScale: 'linear' MagVisible: 'on' MagLowerLimMode: 'auto' MagLowerLim: 0 PhaseUnits: 'deg' PhaseVisible: 'on' PhaseWrapping: 'off' PhaseMatching: 'off' PhaseMatchingFreq: 0 PhaseMatchingValue: 0 我们可以通过修改上面的每一项修改伯德图的风格,比如我们使用下面的语句画我们的伯德图: P=bodeoptions; P.Grid='on'; P.XLim={[10 40000]}; P.XLimMode={'manual'}; P.FreqUnits='HZ'; num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den); bode(H,P) 这时,我们将会看到以下的伯德图: 。

如何绘制伯德图

如何绘制伯德图

低频高频渐近线的交点为:20log K 20log K 20logT ,得:
T 1,o
1 T
,称为转折频率或交换频率。
T可uesd以ay,用Mar这ch 3两1, 2段020渐近线近似的表示惯性环节的对数幅频特性。 4
惯性环节的Bode图
10 渐近线
0
-10
20dB / Dec
-20

-45°
T T T 20T 10T 5T
112 2T T T
5 10 20 TTT
一阶微分环节的波德图
惯性环节的波德图
Tuesday, March 31, 2020
17
二阶微分环节的频率特性
③ 二阶微分环节: G(s) T 2s2 2Ts 1
幅频和相频特性为:
A()
(1
T
2
2
)2
(2T
)2,
(
)
tg 1
第三节 典型环节的频率特性 之一 波德图
Tuesday, March 31, 2020
1
比例环节的bode图
二、典型环节的波德图
⒈ 比例环节:G(s) K, (K 0),G( j) K 幅频特性:A() K;相频特性:() 0
L() / dB
20log K
20log K
20log K
()
频率特性分别为:
G( j) j G( j) 1 jT G( j) 1 T 2 2 j2T
Tuesday, March 31, 2020
14
纯微分环节的波德图
① 纯微分: A( )
L( )(dB)
20
L( ) 20 log A( ) 20 log
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档