建筑结构抗震设计原理第四章

合集下载

建筑结构抗震设计(第三版)习题解答1-5章

建筑结构抗震设计(第三版)习题解答1-5章

第一章的习题答案1. 震级是衡量一次地震强弱程度(即所释放能量的大小)的指标。

地震烈度是衡量一次地震时某地区地面震动强弱程度的尺度。

震级大时,烈度就高;但某地区地震烈度同时还受震中距和地质条件的影响。

2. 参见教材第10面。

3. 大烈度地震是小概率事件,小烈度地震发生概率较高,可根据地震烈度的超越概率确定小、中、大烈度地震;由统计关系:小震烈度=基本烈度-1.55度;大震烈度=基本烈度+1.00度。

4. 概念设计为结构抗震设计提出应注意的基本原则,具有指导性的意义;抗震计算为结构或构件达到抗震目的提供具体数据和要求;构造措施从结构的整体性、锚固连接等方面保证抗震计算结果的有效性以及弥补部分情况无法进行正确、简洁计算的缺陷。

5. 结构延性好意味可容许结构产生一定的弹塑性变形,通过结构一定程度的弹塑性变形耗散地震能量,从而减小截面尺寸,降低造价;同时可避免产生结构的倒塌。

第二章的习题答案1. 地震波中与土层固有周期相一致或相近的波传至地面时,其振幅被放大;与土层固有周期相差较大的波传至地面时,其振幅被衰减甚至完全过滤掉了。

因此土层固有周期与地震动的卓越周期相近,2. 考虑材料的动力下的承载力大于静力下的承载力;材料在地震下地基承载力的安全储备可低于一般情况下的安全储备,因此地基的抗震承载力高于静力承载力。

3. 土层的地质年代;土体中的粘粒含量;地下水位;上覆非液化土层厚度;地震的烈度和作用时间。

4. a 中软场地上的建筑物抗震性能比中硬场地上的建筑物抗震性能要差(建筑物条件均同)。

b. 粉土中粘粒含量百分率愈大,则愈容易液化. c .液化指数越小,地震时地面喷水冒砂现象越轻微。

d .地基的抗震承载力为承受竖向荷载的能力。

5. s m v m 5.2444208.32602.82008.51802.220=+++=因m v 小于s m 250,场地为中软场地。

6. 设计地震分组为第二组,烈度为7度,取80=N砂土的临界标贯值:[])(1.09.00w s cr d d N N -+=,其中m d w 5.1=土层厚度:第i 实测标贯点所代表的土层厚度的上界取上部非液化土层的底面或第1-i 实测标贯点所代表土层的底面;其下界取下部非液化土层的顶面或相邻实测标贯点的深度的均值。

建筑结构抗震设计第4章建筑抗震概念设计

建筑结构抗震设计第4章建筑抗震概念设计

表1 有利、一般、不利和危险地段的划分
段 一般地段 不利地段
危险地段
稳定基岩,坚硬土,开阔、平坦、密实、均匀的中硬土 等
不属于有利、不利和危险的地段
软弱土,液化土,条状突出的山嘴,高耸孤立的山丘, 陡坡,陡坎,河岸和边坡的边缘,平面分布上成因、岩 性、状态明显不均匀的土层(含故河道、疏松的断层破 碎带、暗埋的塘浜沟谷和半填半挖地基),高含水量的 可塑黄土,地表存在结构性裂缝等 地震时可能发生滑坡、崩塌、地陷、地裂、泥石流等及 发震断裂带上可能发生地表位错的部位
质量分布的不确定性;基础与上部结构的协同作用;节点的非刚性
转动;偏心、扭转及P—Δ效应;柱轴向变形。考虑或不考虑节点
非刚性转动的影响程度可达5%—10%;考虑柱轴向变形,自振周期
可能加长15%,加速度反应可能降低8%;考虑P—Δ效应可能增加位
移10%。 (3)材料的影响。混凝土的弹性模量随着时间及应变程度而改变。
在海城地震时,从位于大石桥盘龙山高差58m的两个测点 上所测得的强余震加速度峰值记录表明,位于孤突地形上 的比坡脚平地上的平均达1.84倍,这说明在孤立山顶地震波将被 放大。图1表示了这种地理位置的放大作用。
图1 不同地形的震害
天津塘沽港地区,地表下3—5m为冲填土,其下为深厚的 淤泥和淤泥质土,地下水位为-1.6m。1974年兴建的16幢 3层住宅和7幢4层住宅,均采用片筏基础。1976年唐山地 震前,累计沉降分别为200mm和300mm,地震期间沉降量突然增 大,分别增加了150mm和200mm。震后,房屋向一边倾斜,房屋 四周的外地坪地面隆起,如图2所示。
图2 房屋沉降
§4.2 把握建筑形体和结构的规则性
建筑结构的平面、立面规则与否,对建筑的抗震性能具有 重要的影响,建筑结构不规则,可能造成较大扭转,产生 严重应力集中,或形成抗震薄弱层。国内外多次震害表明,房屋形体 不规则、平面上凸出凹进、立面上高低错落,破坏程度比较严重,而 简单、对称的建筑的震害较轻。为此,《抗震规范》规定,建筑设计 应重视其平面、立面和竖向剖面的规则性对抗震性能及经济合理性的 影响,宜择优选用规则的形体,其抗侧力构件的平面布置宜规则对称、 侧向刚度沿竖向宜均匀变化、竖向抗侧力构件的截面尺寸和材料强度 宜自下而上逐渐减小、避免侧向刚度和承载力突变。 建筑平、立面布置的基本原则:对称规则,质量与刚度变化均匀。

建筑结构试验第四章结构动载试验

建筑结构试验第四章结构动载试验

疲劳试验
❖示例
本章小结
1 概述 2 动载试验仪器仪表 3 结构振动测试 4 结构抗震试验 5 结构疲劳试验
宝山壁画
❖ 宝山壁画是引人注目的昂贵文物。此壁画发现于阿鲁科 尔沁旗东沙布乡境内。1994年列为“全国十大考古新发 现”之一。宝山壁画中最引人注目的是《杨贵妃教鹦鹉 图》。该画高0.7米、宽2.3米,用于笔重彩绘制,最突 出的表现了 晚唐风格。唐代擅长绘贵妇仕女的大师周昉 绘制了《杨贵妃教鹦鹉图》,不仅享誉中原,而且还影 响全国各地。发现于阿旗宝山古墓里的这幅画,就是契 丹人聘请中原画家按照周氏风格绘制的, 技法深得周氏 画风的真传。在唐人真迹稀如星风的今天,能够从中完 整了解唐代人物画的杰出成就,堪称美术史研究的辛事。 这幅壁画现今保存在阿鲁科尔沁旗博物馆,历经千年, 恍如新绘,是该馆的镇馆之宝。
结构抗震试验——伪静力试验
❖常用的三种加载方法 ①控制位移加载法;常以屈服位移或最大层间位移
的某一百分比来控制加载 ②控制荷载加载法; ③控制荷载和位移混合加载法。
结构抗震试验——拟动力试验
❖拟动力试验,其实质就是按照某种确定性的地震 反应进行加载。
❖ 由于结构的恢复力模型未知,运动方程无法求解, 故采用“边试验、边求解”的方法分步得到实测 的结构恢复力模型,然后可完成整个试验加载过 程。
结构抗震试验——伪静力试验
❖结构低周反复加载试验的主要研究内容: ♦ 恢复力模型:相当于结构的物理方程 ♦ 抗震性能判定:强度、刚度、变形、延性、耗能 ♦ 破坏机制研究:为抗震设计提供方法和依据
❖伪静力试验的特点: 试验装置及加载设备简单、观测方便,但加载制 度是人为确定的,与真实情况差异较大,且不能 考虑应变速度及阻尼的影响。试验值偏低,一般 情况下低周反复加载静力试验结果偏于安全。

工程结构抗震课程设计

工程结构抗震课程设计

工程结构抗震课程设计一、课程目标知识目标:1. 理解工程结构抗震的基本原理,掌握抗震设计的基本概念和方法。

2. 学习各类建筑结构的抗震特点,了解不同结构类型的抗震性能。

3. 掌握我国抗震设防标准,了解抗震设防等级的划分。

技能目标:1. 能够运用所学知识,分析建筑结构的抗震需求,提出合理的抗震设计方案。

2. 学会使用相关软件进行工程结构抗震分析,具备一定的抗震设计能力。

3. 能够针对特定工程,编制抗震设计方案,并进行简要的抗震评估。

情感态度价值观目标:1. 培养学生的安全意识,使其认识到工程结构抗震的重要性。

2. 增强学生的团队合作精神,提高沟通协调能力。

3. 激发学生对土木工程事业的热爱,培养其从事相关工作的责任感。

本课程针对高中年级学生,结合学科特点和教学要求,注重理论与实践相结合,旨在提高学生的工程结构抗震设计能力。

课程目标具体、可衡量,以便学生和教师在教学过程中明确预期成果。

通过本课程的学习,学生将掌握工程结构抗震知识,具备实际操作技能,同时培养正确的价值观和安全意识。

为实现课程目标,将分解为具体的学习成果,便于后续教学设计和评估。

二、教学内容1. 抗震原理概述:介绍地震波、地震作用、抗震设防目标等基本概念。

- 教材章节:第一章 地震与抗震基本概念2. 抗震设计方法:讲解静力法、反应谱法、时程分析法等抗震设计方法。

- 教材章节:第二章 抗震设计方法3. 建筑结构类型及抗震特点:分析框架结构、剪力墙结构、筒体结构等不同结构类型的抗震性能。

- 教材章节:第三章 建筑结构类型及抗震特点4. 抗震设防标准与等级:阐述我国抗震设防标准,介绍抗震设防等级的划分及应用。

- 教材章节:第四章 抗震设防标准与等级5. 抗震设计案例分析:选取典型工程案例,分析其抗震设计要点及措施。

- 教材章节:第五章 抗震设计案例分析6. 抗震设计软件应用:学习使用PKPM、ETABS等抗震设计软件,进行工程结构抗震分析。

- 教材章节:第六章 抗震设计软件应用7. 实践操作与团队协作:分组进行抗震设计方案编制,培养学生的实际操作能力和团队协作精神。

第四章设计要求及荷载效应组合共59页文档

第四章设计要求及荷载效应组合共59页文档

4.4 稳定和抗倾覆
4.4.2 高层钢结构的稳定验算
大部分钢结构计算需要考虑P-△效应。
《高钢规》5.2.10条 高层建筑钢结构同时符合下列条件
时,可不验算结构的整体稳定。
一、结构各层柱子平均长细比和平均轴压比满足下式要
求:
Nm m 1 N pm 80
式中,λm—楼层柱的平均长细比; Nm—楼层柱的平均轴压力设计值; Npm—楼层柱的平均全塑性轴压力;
钢结构
除框架结构外的转 换层
各种结构类型
1/120 1/50
4.2 侧移限制
4.2.2 防止倒塌层间位移限制
对框架结构,当轴压比小于0.40时,可提高10%;当柱子全 高的箍筋构造采用比本规程中框架柱最小配箍特征值大30% 时,可提高20%,但累计提高不宜超过25%。
4.3 舒适度要求
高度不小于150m的高层建筑结构应具有良好的使用条 件,满足舒适度要求。按现行国家标准《建筑结构荷载规 范》规定的10年一遇的风荷载取值计算的顺风向与横风向 结构顶点最大加速度不应超过表4-4的值。必要时,可通过 专门风洞试验结果计算确定顺风向与横风向结构顶点最大 加速度 a m a x。
Npm fyAm
fy—钢材屈服强度; Am—柱截面面积的平均值。
4.4 稳定和抗倾覆
4.4.2 高层钢结构的稳定验算
二、结构按一阶线性弹性计算所得的各楼层相对侧移值, 满足下列公式要求:
u 0.12 Fh
h
Fv
式中,Δu—按一阶线性弹性计算所得的质心处层间侧移; h—楼层层高; ∑Fh—计算楼层以上全部水平作用之和; ∑Fv—计算楼层以上全部竖向作用之和;
式中,E J d 为结构一个主轴方向的弹性等效侧向刚度,可按倒 三角形分布荷载作用下结构顶点位移相等的原则,将结构的侧

工程结构抗震与防灾_东南大学_4 第四章建筑结构基础隔震和消能减震设计_2 第2讲建筑结构隔震设计

工程结构抗震与防灾_东南大学_4  第四章建筑结构基础隔震和消能减震设计_2  第2讲建筑结构隔震设计

图 隔震结构计算简图
分析对比结构隔震与非隔震两种情况下各层最大层 间剪力,宜采用多遇地震下的时程分析。
弹性计算时,简化计算和反应谱分析时宜按隔震支 座水平剪切应变为100%时的性能参数进行计算;当采 用时程分析法时按设计基本地震加速度输入进行计算。
4.2
建筑结构消能减震设计
(3)上部结构水平地震作用计算-水平向减震系数应用
c.当橡胶支座的第二形状系数小于5.0时,应降低平均压应力限值;小于5不 小于4时,降低20%;小于4但不小于3时,降低40%;
d.外径小于300mm的橡胶支座,丙类建筑的平均压应力限值为10MPa。
4.2
建筑结构消能减震设计
(3)隔震支座水平剪力计算
隔震支座的水平剪力应根据隔震层在罕遇地震下的水平剪力按各隔
② 隔震层以上结构的抗震措施
当水平向减震系数为大于0.40时(设置阻尼器为0.38)不应
降低非隔震时的要求;水平向减震系数不大于0.40 (设置阻尼器 为0.38)时,可适当降低抗震规范对非隔震建筑的要求,但烈度 降低不得超过1度,与抵抗竖向地震作用有关的抗震构造措施不 应降低。
4.2
建筑结构消能减震设计
隔震层在罕遇地震下应保持稳定,不宜出现不可恢复变形。 隔震层橡胶支座在罕遇地震的水平和竖向地震同时作用下,拉应力
不应大于1Mpa。 隔震层的平面布置应力求具有良好的对称性。
4.2
建筑结构消能减震设计
(2) 隔震支座竖向承载力验算
抗震规范规定:隔震支座在重力荷载代表值作用下的竖向压应力 设计值不应超过下表列出的限值。
经历相应设计基准期的耐久试验后,刚度、阻尼特性变化不超过初期 值的±20%;徐变量不超过支座橡胶总厚度的0.05倍;

《建筑结构抗震设计》全套课件

《建筑结构抗震设计》全套课件

《建筑结构抗震设计》全套课件第一部分:建筑抗震设计概述一、引言随着城市化进程的加快,高层建筑和大型公共设施日益增多,建筑结构抗震设计显得尤为重要。

地震是一种破坏性极强的自然灾害,对建筑结构的影响巨大。

因此,如何设计出能够抵御地震影响的建筑结构,是建筑设计师和工程师们必须面对的挑战。

二、抗震设计的基本概念抗震设计是指根据建筑所在地区的地震烈度、地质条件、建筑类型和用途等因素,通过合理的结构设计、材料选择和施工工艺,使建筑结构在地震发生时能够保持稳定,避免或减少人员伤亡和财产损失。

三、抗震设计的原则1. 以预防为主:在设计阶段就应充分考虑地震因素的影响,采取有效的抗震措施,而不是等到地震发生后才进行补救。

3. 材料选择:应选择具有良好抗震性能的材料,如钢筋、混凝土等。

4. 施工质量:施工质量直接影响到建筑结构的抗震性能,必须严格按照设计要求和施工规范进行施工。

四、抗震设计的步骤1. 地震烈度评估:根据建筑所在地区的地震活动历史和地质条件,评估地震烈度。

2. 结构设计:根据地震烈度、建筑类型和用途等因素,进行结构设计,包括结构体系、构件截面尺寸、材料选择等。

3. 抗震措施:采取有效的抗震措施,如设置防震缝、增加支撑体系、采用减震隔震技术等。

4. 施工质量控制:严格控制施工质量,确保结构设计的实现。

五、抗震设计的未来发展通过本课件的学习,希望同学们能够掌握建筑结构抗震设计的基本概念、原则和步骤,为未来的建筑设计工作打下坚实的基础。

六、抗震设计的具体方法1. 静力设计法:这是一种传统的抗震设计方法,主要考虑建筑结构在地震作用下的静力平衡。

设计时,需要计算结构在地震作用下的内力和变形,并确保结构具有足够的强度和刚度。

2. 动力设计法:这种方法考虑了地震作用的动力效应,通过计算结构的动力响应来评估其抗震性能。

动力设计法需要考虑地震动的频谱特性、结构的自振频率和阻尼比等因素。

3. 基于性能的抗震设计:这种方法以建筑结构的性能目标为导向,通过选择合适的性能指标和抗震措施,确保结构在地震发生时能够达到预定的性能要求。

抗震设计第四章

抗震设计第四章

第 4 章 钢筋砼框架与框架-抗震墙房屋
4-4 框架、框架-抗震墙结构和抗震墙结构水平地震作用的计算 高度不超过 40m, 以剪切变形为主,且质量和刚度沿高度分布比较均匀的框架、框架-剪力墙结构,可采用底部剪力法计算水平地震作用标准值。 剪力墙结构,宜采用振型分解反应谱法计算水平地震作用标准值。也可近似采用底部剪力法。
第 4 章 钢筋砼框架与框架-抗震墙房屋
框架结构单独基础系梁的设置: 框架结构单独基础有下列情况之一时,宜沿两个主轴方向设置基础连系梁: 一级框架和Ⅳ类场地的二级框架: 各柱基承受的重力荷载代表值差别较大。 基础埋置较深,或各基础埋置深度差别较大, 地基主要受力层范围内存在软弱粘土层、液化土层和严重不均匀土层。 桩基承台之间。
二、填充墙的震害
第 4 章 钢筋砼框架与框架-抗震墙房屋
第 4 章 钢筋砼框架与框架-抗震墙房屋
三、地基和其他原因造成的震害
第 4 章 钢筋砼框架与框架-抗震墙房屋
第 4 章 钢筋砼框架与框架-抗震墙房屋
第 4 章 钢筋砼框架与框架-抗震墙房屋
§ 4-3 抗震设计一般规定 一、房屋适用的最大高度 根据震害经验和经济合理的要求,“规范”规定了乙、丙和丁类建筑的框架结构和框架-抗震墙结构适用的最大高度,不应超过表4-1的规定:
第 4 章 钢筋砼框架与框架-抗震墙房屋
两端固定柱产生 侧移时 , 柱端剪力为:
第 4 章 钢筋砼框架与框架-抗震墙房屋
第 4 章 钢筋砼框架与框架-抗震墙房屋
五、结构的布置 1. 框架结构和框架-抗震墙结构中,框架和抗震墙均应双向设置,柱中线与抗震墙中线、梁中线与柱中线之间偏心距不宜大于柱宽的 1/4。 2. 框架-抗震墙和板柱-抗震墙结构中,抗震墙之间无大洞口的楼、屋盖的长宽比,不宜超过表4-5的规定;超过时,应计入楼盖平面内变形的影响。

建筑结构抗震设计原理

建筑结构抗震设计原理
建筑结构抗震设计原理
地震是建筑结构安全性的重大威胁。了解抗震设计原理对于建造可靠的抗震 结构至关重要。
抗震设计的重要性
1 保护生命财产
2 提高建筑可靠性
抗震设计可以减少地震 对建筑物和人员的危害, 保护生命和财产安全。
通过考虑地震力和结构 响应,抗震设计可以增 加建筑结构的稳定性和 可靠性。
3 减少修复成本
良好的连接方式和强度 可以确保结构组件在地 震中不会解体或失稳。
建筑物抗震性能评估方法
1 基于行为的评估
通过观察和测试建筑物 的行为,评估结构的抗 震能力。
2 基于性能的评估
根据结构的承载能力和 变形程度,评估建筑物 的抗震性能。
3 基于等级的评估
根据建筑物的使用性质 和重要性,将其分为不 同的抗震等级。
地震加固项目
对老旧建筑进行抗震加固,提 高其抗震能力,保护历史文化 遗产。
地震模拟试验
通过地震模拟试验,验证抗震 设计方案的可行性和有效性。
抗震设计中的力学分析方法
1
静力分析
通过计算结构在地震作用下的静力响应,评估结构的抗震能力。
2
模态分析
通过计算结构的固有频率和振型,分析结构的抗震特性。
3
动力时程分析
通过模拟实际地震过程,预测结构的动态响应。
抗震设计实际案例和应用
国际金融中心
中国上海的一座高层建筑,采 用了先进的抗震设计技术,经 历过多次地震验证。
常见的抗震设计措施
增加侧向刚度
通过加强结构的侧向刚度, 减少地震力对建筑物的影 响。
增加阻尼
通过增加结构的阻尼,减 少地震能量的传递和损失。
合理布局
通过合理的平面布局和结 构Leabharlann 距,减少地震对建筑 物的集中作用。

9-第四章-钢结构的延性设计

9-第四章-钢结构的延性设计
三、结构的延性
4 延性设计方法
框架结构的整体位移延性系数
控 制
构件截面的曲率延性系数
必须强迫结构按预定次序和位置出现塑 性铰以使结构按预定的模式破坏
钢结构延性设计的基本概念
钢结构延性设计的基础
截面、构件、结构(包括节点)的塑性分析
Ductile Design of Steel Structures
如何防止较脆的且只能承受有 限变形的非结构构件产生破坏
必须限制结构的弹性位移, 如层间位移等
钢结构延性设计的基本概念
一、结构抗震设计的三准则
2 中震可修
强度准则
对于不常发生的中等地震,允 许有一些非结构构件受到损坏。
但必须避免结构的某些不为由于大的非弹性 变形而损坏,以免昂贵而又困难的修复工作
在地震动荷载下总的结 构反应必须是弹性的
当抗震成为人们关注的热点后,研究方向主要朝两个方向发展:
一、建立更加完善的构件模型,把精力主要放在 构件与结构的稳定性上,当支撑设置适当,失稳 与塑性可能同时发生。
二、发展设计方法和构造措施,以使结构在地震荷载
下要构发造生措循施环保非证弹在性延此变性之形前和十不能分发保生持重失稳要稳定破的坏塑。性行为。需
钢结构延性设计的基本概念
三、结构的延性
* 延性概念的发展
根据上述概念,过去的观点一直认为:
钢材是目前建筑材料延性最好的,因此,在钢结构设
计中,想当然地利用了钢材的塑性变形能力;
但是,事实材表料明:的仅延仅材性料的良结好构延的性并延不性能保证结
构获得应具备的延性。
Material ductility alone is not a guarantee of ductile structural when steel components and connections can fail in brittle manner

建筑结构的抗震设计原理

建筑结构的抗震设计原理

建筑结构的抗震设计原理第一章:引言建筑结构的抗震设计是工程建设中必不可少的一个环节。

地震是一种自然灾害,其破坏力极强,不仅会给人类带来生命上的蹂躏,同时也会对建筑结构造成严重的破坏。

因此,在建筑结构的设计中,抗震设计是一个至关重要的考虑因素。

本文将针对建筑结构的抗震设计原理进行分析和讨论。

第二章:建筑结构的抗震设计基本原理建筑结构的抗震设计基本原理主要有三点:1.强度和刚度:这是建筑结构的两个最基本的属性。

强度是指建筑结构的承载能力。

在震动情况下,建筑结构的承载能力就显得尤为重要。

刚度是指建筑结构的持久性。

在地震发生时,建筑结构需要保持稳定性和可靠性,不会发生崩塌或坍塌。

2.增加阻尼:阻尼是指建筑结构在地震情况下发生变形的能力。

增加阻尼可以提高建筑结构的抗震能力,降低震动对结构的影响。

3.纵向和横向结构:纵向结构是指建筑结构的耐震性能能够抵抗地震的纵向震动。

横向结构是指建筑结构的耐震性能能够抵抗地震的横向震动。

这两种结构的设计均需要考虑地震力的不同方向。

第三章:抗震设计的特别考虑因素在建筑结构的抗震设计中,还需要考虑以下特别因素:1.地形的影响:当建筑在地势较高或地形不规则的地区建造时,需要采用特殊的结构设计来考虑地形对建筑结构的影响。

2.地震因素的影响:地震力是建筑结构抗震设计的核心考虑因素,在设计中需要考虑地震的发生几率、地震的震级、地震的频率等因素,以确保建筑结构在各种地震情况下都有较好的抗震性能。

3.建筑结构的使用寿命:建筑结构的使用寿命是一个非常重要的考虑因素,因为它会直接影响建筑结构的耐震性。

能够满足建筑物使用寿命标准的建筑结构显然会具有更好的抗震能力。

第四章:抗震设计的常用方法在建筑结构的抗震设计中,下面是几种常用的方法:1.阻尼剪力增加:这是一种常用的加强建筑结构抗震能力的方法。

在建筑结构的某些关键节点处,加入一些可供变形的部件,以起到增强阻尼剪力的作用。

2.加强承载体系:适当加强建筑承载体系,增加建筑结构的刚度和抵抗力,减少结构物志向的变形。

第四章地震作用计算

第四章地震作用计算
烈度、场地类别 8度 Ⅰ、Ⅱ类场地和7度 8度 Ⅲ、Ⅳ类场地 9度 房屋高度范围( m) >100 >80 >60
水平地震作用计算
一、产生扭转地震反应的原因 两方面:建筑自身的原因和地震地面运动的原因。 1. 建筑结构的偏心
m
产生偏心的原因:
a. 建筑物的柱体与墙体等抗 侧力构件布置不对称。 b. 建筑物的平面不对称。
jk --- 为 j振型与k振型的耦联系数;
T --- 为 k振型与j振型的自振周期比;
考虑双向水平地震作用下扭转的地震作用效应
2 S EK S x (0.85S y ) 2
S EK S (0.85S x )
2
2
取两者中较大值
S x ( S y ) --- 为仅考虑x(y)向水平地震作用时的地震作用效应。
目前,国外抗震设计规定中要求考虑竖向地震作用的 结构或构件有: 1. 长悬臂结构; 2. 大跨度结构; 3. 高耸结构和较高的高层建筑; 4. 以轴向力为主的结构构件(柱或悬挂结构); 5. 砌体结构; 6. 突出于建筑顶部的小构件。
我国抗震设计规范规定前三类结构要考虑向上或向下 竖向地震作用的不利影响。
§地震作用计算
一、结构抗震计算原则 各类建筑结构的抗震计算应遵循下列原则:
1 、一般情况下,可在建筑结构的两个主轴方向分别考虑水平地震作用 并进行抗震验算,各方向的水平地震作用应由该方向抗侧力构件承担。 2 、有斜交抗侧力构件的结构,当相交角度大于15度时,应分别考虑各 抗侧力构件方向的水平地震作用。 3 、质量和刚度分布明显不对称的结构,应考虑双向水平地震作用下的 扭转影响其他情况宜采用调整地震作用效应的方法考虑扭转影响。 4 、 8度和9度时的大跨度结构、长悬臂结构,9度时的高层建筑,应考虑 竖向地震作用。

建筑结构抗震设计课后习题全解

建筑结构抗震设计课后习题全解

第一章绪论地震按其成因分为哪几种类型?按其震源的深浅又分为哪几种类型?构造地震、火山地震、陷落地震和诱发地震。

深浅:构造地震可分为浅源地震(d<60km)、中源地震(60 –300km),深源地震(>300km)什么是地震波?地震波包含了哪几种波?各种地震波各自的传播特点是什么?对地面和建筑物的影响如何?地震波:地震引起的振动以波的形式从震源向各个方向传播并释放能量。

是一种弹性波,分为体波(地球内部传播)、面波(地球表面传播)。

体波:分为纵波(p波):在传播过程中,其介质质点的振动方向与波的前进方向一致。

特点是:周期短,振幅小;影响:它使地面发生上下振动,破坏性较弱。

橫波(s波):在传播过程中,其介质质点的振动方向与波的前进方向垂直。

特点是:周期长,振幅大。

影响:它使地面发生前后、左右抖动,破坏性较强,。

面波:分为洛夫波(L波):传播时将质点在与波前进方向相垂直的水平方向上作蛇形运动。

影响:其波长大、振幅强,只能沿地表面传播,是造成建筑物强烈破坏的主要因素。

地震波的传播速度:纵波>横波>面波橫波、面波:地面震动猛烈、破坏作用大。

地震波在传播过程中能量衰减:地面振动减弱、破坏作用逐渐减轻。

地震波是指从震源产生向四外辐射的弹性波。

地震发生时,震源区的介质发生急速的破裂和运动,这种扰动构成一个波源。

由于地球介质的连续性,这种波动就向地球内部及表层各处传播开去,形成了连续介质中的弹性波。

什么地震震级?什么是地震烈度和基本烈度?什么是抗震设防烈度?地震震级:表示地震本身强度或大小的一种度量指标。

地震烈度:指某一地区的地面和各类建筑物遭受一次地震影响的强弱程度。

基本烈度:在一定时期内(一般指50年),某地区可能遭遇到的超越某一概率的最大地震烈度。

抗震设防烈度:就是指指地面及房屋等建筑物受地震破坏的程度。

什么是多遇地震和罕遇地震?多遇地震一般指小震,50年可能遭遇的超越概率为63%的地震烈度值。

罕遇地震一般指大震,50年超越概率2%~3%的地震烈度。

建筑抗震设计多媒体课件第4章_图文

建筑抗震设计多媒体课件第4章_图文
4、控制截面 (1)框架梁: 梁端支座截面(左端、右端):在竖向荷载作用下,支座截面可 能产生最大负弯矩和最大剪力;在水平荷载作用下,支座截面 还会出现正弯矩。 跨中截面:一般产生最大正弯矩,有时也可能出现负弯矩。
框架梁控制截面最不利内力类型: 梁端支座截面:-Mmax、+Mmax和Vmax 梁跨中截面: -Mmax、+Mmax
优点:考虑了节点转动对柱侧移刚度的影响;考虑了柱 反弯点位置的变化。
三、框架结构内力计算及荷载效应组合
计算步骤: ①计算各柱的侧移刚度D
D 12ic
h2
②计算各柱分配到的地震剪力Vik
V ik
Dik
n
Dim
m 1
Vik—第i层第k根柱分配到的剪力; Dik—第i层第k根柱的侧移刚度; Dim—第i层第m根柱的侧移刚度,设该层共有n根柱。
三、框架结构的抗震概念设计
5、框架结构布置
(4)框架梁、柱中心线宜重合。当梁柱中心线不能重合时,在 计算中应考虑偏心对梁柱节点核心区受力和构造的不利影响, 以及梁荷载对柱子的偏心影响。 梁、柱中心线之间的偏心距,9度抗震设计时不应大于柱截 面在该方向宽度的1/4;6~8度抗震设计时不宜大于柱截面在 该方向宽度的1/4。
(1)框架结构房屋的防震缝宽度,当高度不超过15m时不应小 于100mm;高度超过15m时,6度、7度、8度和9度分别每增 加高度5m、4m、3m和2m,宜加宽20mm。
三、框架结构的抗震概念设计
4、框架结构防震缝的设置 防震缝:为减轻不规则体形对抗震性能的不利影响,将建筑 物分割为若干规则单元的缝隙。
内力组合时应将各种荷载 作用下梁柱轴线的弯矩值和 剪力值换算到梁柱边缘处, 然后进行内力组合。
三、框架结构内力计算及荷载效应组合

车轶 建筑结构抗震设计课后答案

车轶 建筑结构抗震设计课后答案

车轶建筑结构抗震设计课后答案第1章绪论1、震级和烈度有什么区别和联系?答:地震震级是表示地震大小的一种度量。

其数值是根据地震仪记录到的地震波图确定的。

地震烈度是指某一区域内的地表和各类建筑物遭受一次地震影响的平均强弱程度。

一次地震,表示地震大小的震级只有一个。

然而,由于同一次地震对不同地点的影响不一样,随着距离震中的远近变化,会出现多种不同的地震烈度。

2、如何考虑不同类型建筑的抗震设防?答:对于不同使用性质的建筑物,地震破坏所造成后果的严重性是不一样的。

因此对于不同用途建筑物的抗震设防。

,不宜采用同一标准,而应根据其破坏后果加以区别对待。

对各类建筑物的抗震设防标准的具体规定为:标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达到在遭遇高于当地抗震设防烈度的预估罕遇地震影响时不致倒塌或发生危及生命安全的严重破坏的抗震设防目标。

重点设防类,应按高于本地区抗震设防烈度一度的要求加强其抗震措施;但设防烈度为9时应按比9度更高的要求采取抗震措施;地基基础的抗震措施,应符合有关规定。

特殊设防类,应按高于本地区抗震设防烈度提高一度的要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高的要求采取抗震措施。

同时,应按批准的地震安全性评价的结果且高于本地区抗震设防烈度的要求确定其地震作用。

适度设防类,允许比本地区抗震设防烈度的要求适当降低其抗震措施,但抗震设防烈度为6度时不应降低。

一般情况下,仍应按本地区抗震设防烈度确定其地震作用。

3、怎样理解小震、中震与大震?答:从概率意义上说,小震就是发生机会较多的地震。

根据分析,当分析年限值取50年时,上述概率密度曲线的峰值烈度所对应的被超越概率为63.2%,因此可以将这一峰值烈度定义为小震烈度,又称多遇地震烈度。

而全国地震区划图所规定的各地的基本烈度,可取为中震对应的烈度。

它在50年内的超越概率一般为10%。

大震是罕遇的地震,它所对应的地震烈度在50年内超越概率2%左右,这个烈度又可称为罕遇地震烈度。

建筑结构抗震总复习第四章-多自由度体系结构的地震反应

建筑结构抗震总复习第四章-多自由度体系结构的地震反应

[M
]
m1
0
0
m2
[K
]
k1 k2
-k2
-k2
k2
I=11
x(t
)
x1 x2
t t
x(t
)
x1 x2
t t
则两自由度体系的运动方程可写成
M xtKxt=-M Ixg t
多自由度体系的运动方程也可以按上式表示
(4.3)
5
运动方程的建立
矩阵[M]称为体系的质量矩阵;矩阵[K]称为体系的刚度
两个自由度的层间剪切模型计算简图
3
运动方程的建立
根据达朗贝尔原理上述两力构成平衡力系(暂不考虑 阻尼影响)
质点1 fI1 fS1=-m1x1 t m1xg t -k1x1 t k2x2 t k2x1 t =0
即 质点2

m1x1 t k1 k2 x1 t k2x2 t =-m1xg t fI 2 fS2=-m2x2 t -m2xg t -k2 x2 t x1 t =0
矩阵;而 xt 和 xt 称为体系的加速度矢量和位
移矢量。如考虑阻尼影响,则体系的运动方程为
M xtCx t K x t =-M Ixg t (4.4)
矩阵[C]称为体系的阻尼矩阵,如采用瑞利阻尼假定,则阻 尼矩阵为
C=0 M 1 K 其中,0, 1为与体系有关的常数
6
多自由度体系的自振频率及振型
不一定也达到最大。从而结构地震作用的最大值并不等于各
振型地震作用最大值之和,根据随机振动理论,近似地取
“平方和开方”。
20
底部剪力法(寻求更为简便的适合设计的方法) 适用条件: • 结构的质量和刚度沿高度分布比较均匀; • 房屋的总高度不超过40m; • 建筑结构在地震作用下的变形以剪切变形 为主; • 建筑结构在地震作用时的扭转效应可忽略 不计。 结构在地震作用下的反应一第一振型为主, 图 3-18 底部剪力法地震作用分布 且近似为直线。

抗震结构设计原理

抗震结构设计原理

第一章绪论1、地震按其成因分为:火山地震、陷落地震和构造地震2、震源:底层构造运动中,地球内部断层错动断裂并引起周围介质震动的部位震中:震源正上方的地面位置叫震中震中区(极震区):震中附近的地面震动最剧烈,也是破坏严重的地区震中距:震源至地面的垂直距离叫做震源深度3、地震波:体波(纵波、横波)随深度增大而增大….面波(L波、R波)随深度增大而减小纵波>横波>面波(面波的振幅最大)4、震级:表示地震本身大小的尺度地震裂变:是指某一地区地面及房屋建筑等工程结构遭受到一次地震影响的强烈程度。

关系区别:一次地震表示地震大小的震级只有一个,但由于各地区距离震中的远近不同、震源深度不同,地质情况和建筑物情况不同,故各地区所遭受到的地震影响程度不同。

5、基本烈度:指某地区在今后一定时间内,在一般场地条件下可能遭受的最大地震烈度,我国确定以50年内超过概率为10%的烈度为基本烈度(474年一遇)抗震设防烈度:一个地区作为抗震设防依据的地震烈度,一般情况下可采用中国地震动区划图地震基本烈度,6度以上地区建筑必须进行抗震烈度设防。

6、地震动三个基本要素:幅值、频率和持时(在近场内基岩上的低振动加速度峰值大于软弱场地上的,而远场则相反)7、四个抗震设防类别:特殊、重点、标准、适度设防,简称甲乙丙丁(甲乙抗震措施提升一度,计算时甲提升一度,乙不提升)小震烈度:50年内超63.2% 中震10% 大震2-3%中震烈度(基本烈度)=小震烈度(众值或多遇)+1.55=大震(罕遇)-1.00三水准设防目标:小震不坏、中震可修、大震不倒两阶段抗震方法:第一阶段设计为承载力及弹性形变验算,取第一水准(相当于小震)的参数计算。

这样可满足第一二水准设防要求。

第二阶段设计为弹塑性形变验算,满足第三水准设防要求。

第二章场地、地基和基础1、场地:是指工程群体所在地,具有相似的反应普特征。

按场地上建筑物的震害轻重程度,把建筑场地划分四类,即对建筑抗震有利、一般、不利和危险的地段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

27.0
19.0
17.0
19.0
0.0
0.0
横墙间距大震害严重。
第四章 多层砌体房屋和底部框架、内框架房屋§4.3抗震设计的一般规定
§4.3 抗震设计的一般规定
一、平立面布置要规则 房屋平面最好为矩形。
二、房屋高度、层数、层高要限制
1.一般情况下,层数和总高度不应超过下表
房屋类别
烈度
最小
(mm)
6
3、受施工质量的影响较大;如砂浆不饱满,易出现裂缝,减弱抗震性能。
第四章 多层砌体房屋和底部框架、内框架房屋§4.1概述
若能针对砌体结构的弱点进行合理设计,采用适当的构 造措施,确保施工质量,砌体结构的抗震性能是能够得到改 善的。
天津市8度区经7度设防的74年通用住宅震害统计(%)
基本完好ห้องสมุดไป่ตู้轻微破坏 中等破坏 严重破坏 倒塌
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
传统的砌体结构多采用粘土实心砖和混合砂浆砌筑, 通过内外墙的咬砌达到具有一定整体性连接。楼板多采用 预制钢筋混凝土空心板,梁和其他构件亦多用预制装配构 件。
第四章 多层砌体房屋和底部框架、内框架房屋§4.1概述
大量震害表明传统的砌体结构抗震性能较差:
1923年日本关东大地震,东京约有砖石结构房屋7000栋,几乎全部 遭到不同程度的破坏。
第四章 多层砌体房屋和底部框架、内框架房屋§4.1概述
第四章 多层砌体房屋和底部框架、内框架房屋
§4.1 概述
多层砌体房屋:由粘土砖、烧结多孔粘土砖、粉煤灰中型 实心砌块和混凝土中小型砌块砌体通过砂 浆砌筑而成的房屋。
多层砌体房屋是我国当前建筑业中使用最广泛的一种 建筑形式。在民用建筑中约占90%以上,在整个建筑业中约 占80%。
楼板和屋盖是地震时传递水平地震作用的主要构件。
对于预制板楼板、楼盖,由于整体性较差、板缝偏小混凝土 灌缝不够密实,地震时易于拉裂。9度以上地区,由于墙体开裂、 错位、倒塌引起楼板、楼盖掉落。预制板端部搁置长度过短或无 可靠的板与板及板与墙的拉接措施,也造成震害。
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
一、倒塌
1、全部倒塌 房屋整体性好,而底层强度不足时; 房屋整体性不好,而上层墙体过于弱时;
2、上部倒塌 房屋上层自重大,刚度差; 上层砌体强度过弱,整体性差时;
3、局部倒塌
个别部位的整体性特别差,纵墙与横墙间联系不好,平 面或立面有显著的局部突出,抗震缝处理不当等;
坍 塌 是外 较纵 常墙 见全 的部 震脱 害开 。横
第四章 多层砌体房屋和底部框架、内框架房屋§4.3抗震设计的一般规定
三、其它破坏
1、楼梯间破坏 楼梯间的墙体一般震害较重。
原因是:横墙间距小,抗剪刚度大; 空间刚度较小; 墙体有削弱等;
2、房屋附属物
突出屋面的屋顶间(电梯机房、水箱间等)、烟囱、女儿墙, 由于“鞭端效应”引起破坏。
房屋附属物的破坏比下部主体结构破坏严重。6度区有所破坏, 7度区普遍破坏,8-9度区几乎全部破坏或倒塌。 5、楼板和屋盖
墙 而
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
二、裂缝
抗剪承载力不足,产生裂缝,主要有“X”形、水平和竖向三种类型。 1、 “X”形裂缝 墙体在竖向压力和反复水平剪力作用产生的裂缝。
常出现“X”形裂缝的位置: 与主震方向平行的墙体; 在横向,房屋两端的山墙; 在纵向,窗间墙。
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
五、不同用途多层砖房的震害
天津市8度区住宅、医院、中小学教学楼震害统计(%)
破坏程度
基本完好 轻微破坏 中等破坏 严重破坏 倒塌
住宅 70.7 19.5 9.8 0.0 0.0
建筑用途
医 院 中小学教学楼
46.0
40.0
10.0
22.0
四、不同烈度地震作用下多层砖房的震害
破坏程度
基本完好 轻微破坏 中等破坏 严重破坏 倒塌
唐山地区多层砖房的震害统计(%)


8
9
10
11
11.8
1.3
0.6
0.3
35.3
6.8
5.0
1.5
29.4
34.3
6.5
4.7
23.5
32.5
19.9
11.7
0.0
25.1
68.0
81.8
未经抗震设防的多层砖房在高烈度区的倒塌率非常高。
1948年原苏联阿什哈巴德地震,砖石结构房屋的破坏和倒塌率达到 70%-80%。
1976年唐山地震,对烈度为10度、11度区的123栋2-8层砖混结构房 屋调查,倒塌率为63.2%,严重破坏为23.6%,尚能修复使用的4.2%,实 际破坏率达95.8%。
抗震性能差的原因:
1、刚度大、自重大,地震作用也大; 2、砌体材料质脆,抗剪、抗拉、抗弯强度低,地震作用下极易出现裂缝;
7
8
9
高度 层数 高度 层数 高度 层数 高度 层数
普通粘土砖 240 24 8 21 78 18 6 12 4
多孔粘土砖 240 21 7 190 21 7
21 7 18 6
18 6 15 5
12 4 --- ---
混凝土小砌块 190 21 7 21 7 18 6 --- ---
2.对医院、教学楼等及横墙较少的多层砌体房屋,总高度应比前表 的规定降低3m,层数相应减少一层;各层横墙很少的多层砌体房屋, 还应根据具体情况再适当降低总高度和减少层数。
若主震方向与横纵墙成某一角度时,常在房屋的角部出现局部倒塌。
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
2、 水平裂缝
大都发生于外纵墙窗口的上下皮处。 当房屋纵向承重,横墙间距大而屋盖刚度弱时,纵墙出平面受 弯产生水平裂缝。
3、 竖向裂缝 大都发生于横纵墙交接处或变化较大的两部体系的交接处。
70.7
19.5
9.8
0.0
0.0
唐山地区8度区多层砖房的震害统计(%)
基本完好 轻微破坏 中等破坏 严重破坏 倒塌
11.8
35.3
29.4
23.5
0.0
从震害调查可见:经抗震设防可减轻砌体结构的震 害,减少严重破坏和倒塌率。
第四章 多层砌体房屋和底部框架、内框架房屋§4.2震害及其分析
§4.2 震害及其分析
相关文档
最新文档