(完整版)初中数学十字相乘法因式分解
(完整版)初中历史十字相乘法因式分解
![(完整版)初中历史十字相乘法因式分解](https://img.taocdn.com/s3/m/a0f82d0bc950ad02de80d4d8d15abe23482f03cb.png)
(完整版)初中历史十字相乘法因式分解初中历史十字相乘法因式分解十字相乘法是初中数学中常用的一种因式分解方法。
通过这种方法,我们可以将一个多项式分解成两个或多个简化的因式。
什么是十字相乘法?十字相乘法是一种运用代数式的乘法原理来进行因式分解的方法。
它适用于二次方程的因式分解,也可以用于其他多项式的分解。
如何使用十字相乘法进行因式分解?首先,我们需要一个多项式,如$x^2 + 5x + 6$。
我们将该多项式按照标准形式排列(由高次幂到低次幂),得到$x^2 + 5x + 6$。
其次,我们需要寻找一个分解形式,它可以将前一步得到的多项式分解成两个因式的乘积。
在这个例子中,我们需要找到两个因式之间的关系。
我们要找到两个乘数,使得它们相乘得到6,同时相加得到5。
根据这个要求,我们可以尝试以下组合:- 1和6:1 + 6 = 7- 2和3:2 + 3 = 5我们发现,2和3的乘积等于6,同时它们的和等于5。
因此,我们可以将$x^2 + 5x + 6$分解成$(x + 2)(x + 3)$。
总结十字相乘法是一种有效的因式分解方法,适用于多项式的分解。
通过找到两个乘数,使得它们相乘等于常数项,并且相加等于项数系数,我们可以将多项式分解成两个或多个简化的因式。
同时要注意,十字相乘法只适用于特定类型的多项式,特别是二次方程。
在应用这种方法时,我们应该先将多项式按照标准形式排列,然后寻找乘数来进行分解。
希望这份文档对你有帮助,以理解和应用十字相乘法进行因式分解。
如果有任何疑问,请随时提问。
八年级数学十字相乘法因式分解
![八年级数学十字相乘法因式分解](https://img.taocdn.com/s3/m/e74121058e9951e79b8927a0.png)
实际在使用此公式时,需要把 一次项系数和常数项进行分拆,在 试算时,会带来一些困难。
下面介绍的方法,正好解决了 这个困难。
即:x 2+(p+q)x+pq=(x+p)(x+q)
解因式
解:2(6x 2+x)2-11(6x 2+x) +5 = [(6x2+x) -5][2(6x 2+x)-1]
= (6x 2+x-5) (12x 2+2x-1 )
= (6x -5)(x +1) (12x 2+2x-1 )
1
-5
6
-5
2
-1
-1-10=-11
1
1
-5+6=1
练习:将下列各式分解因式 1、 7x 2-13x+6 答案(7x+6)(x+1)
2、 -y 2-4y+12 答案- (y+6)(y-2)
3、 15x2+7xy-4y 2 答案 (3x-y)(5x+4y)
4、 10(x +2)2-29(x+2) +10
答案 (2x-1)(5x+8)
5、 x 2-(a+1) x+a 答案 (x-1)(x-a)
例5 将 2x 2-3xy-2y2+3x+4y-2 分 解因式
;宁波象山包船捕鱼 宁波象山包船捕鱼
;
的事。 ? 她不属于我们,因为她是天使。 是“国家”错了 ? 在民法的慈母般的眼里,每一个人就是整个国家。——孟德斯鸠 1 ? 一百年前的法兰西。正义的一天—— ? 1898年1月13日,著名作家左拉在《震旦报》上发表致共和国总统的公开信,题为《我控诉》,将一宗为当局所讳的 冤案公曝天下,愤然以公民的名义指控“国家犯罪”,替一位素昧平生的小人物鸣不平…… ? 该举震撼了
(完整版)初中化学十字相乘法因式分解
![(完整版)初中化学十字相乘法因式分解](https://img.taocdn.com/s3/m/ef5f88307ed5360cba1aa8114431b90d6d858911.png)
(完整版)初中化学十字相乘法因式分解
初中化学十字相乘法因式分解是化学学科中的一种常用的化学
式化简方法。
该方法适用于由多个化合物组成的复杂化合物的化学
式化简。
十字相乘法因式分解的基本原理是根据化学式中的原子元素的
数量和化合价,寻找可相乘的因子,从而达到分解化学式的目的。
下面将以化合物C6H12O6为例,详细介绍十字相乘法因式分
解的步骤:
1. 首先,找到化合物中各个原子元素的化合价。
在C6H12O6中,碳的化合价为4,氢的化合价为1,氧的化合价为2。
2. 根据化合物元素的化合价,找到可相乘的因子。
在
C6H12O6中,碳的化合价为4,氢的化合价为1,氧的化合价为2,可以得到因子4、1和2。
3. 将化合物中各个原子元素的数量进行配平,使得因子的乘积
等于化合物中各个原子元素的数量。
在C6H12O6中,碳的原子数
量为6,氢的原子数量为12,氧的原子数量为6。
可得到化合物的
化学式化简为(CH2O)6。
以上就是初中化学十字相乘法因式分解的基本步骤和操作方法。
通过这种方法,可以将复杂化合物的化学式简化为更为简洁和清晰
的形式,便于研究和理解。
初中数学:因式分解有哪些方法?十字相乘法因式分解4道例题全解
![初中数学:因式分解有哪些方法?十字相乘法因式分解4道例题全解](https://img.taocdn.com/s3/m/7734b39058f5f61fb6366630.png)
初中数学:因式分解有哪些方法?十字相乘法因式分解4道例题全解因式分解方法步骤:①如果多项式的各项有公因式,那么先提公因式;②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解④分解因式,必须进行到每一个多项式因式都不能再分解为止。
也可以用一句话来概括:“先看有无公因式,再看能否套公式。
十字相乘试一试,分组分解要相对合适。
”分组分解法分组分解是分解因式的一种简洁的方法,下面是这个方法的详细讲解。
能分组分解的多项式有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。
比如:ax+ay+bx+by=a(x+y)+b(x+y)=(a+b)(x+y)我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。
同样,这道题也可以这样做。
ax+ay+bx+by=x(a+b)+y(a+b)=(a+b)(x+y)几道例题:1.5ax+5bx+3ay+3by解法:原式=5x(a+b)+3y(a+b)=(5x+3y)(a+b)说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。
2.x2-x-y2-y解法:原式=(x2-y2)-(x+y)=(x+y)(x-y)-(x+y)=(x+y)(x-y-1)利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。
三一分法,例:a2-b2-2bc-c2原式=a2-(b+c)2=(a-b-c)(a+b+c)十字相乘法十字相乘法在解题时是一个很好用的方法,也很简单。
这种方法有两种情况。
①x2+(p+q)x+pq型的式子的因式分解这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。
因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p+q)x+pq=(x+p)(x+q) .例1:x2-2x-8=(x-4)(x+2)②kx2+mx+n型的式子的因式分解如果有k=ab,n=cd,且有ad+bc=m时,那么kx2+mx+n=(ax+c)(bx+d).例2:分解7x2-19x-6图示如下:a=7 b=1 c=2 d=-3因为-3×7=-21,1×2=2,且-21+2=-19,所以,原式=(7x+2)(x-3).十字相乘法口诀:分二次项,分常数项,交叉相乘求和得一次项。
十字相乘法因式分解
![十字相乘法因式分解](https://img.taocdn.com/s3/m/134a984ceef9aef8941ea76e58fafab069dc4496.png)
汇报人:XX
汇报时间:20XX/XX/XX
YOUR LOGO
目录
CONTENTS
1 十字相乘法的概念 2 十字相乘法的应用 3 十字相乘法的步骤与技巧 4 十字相乘法的扩展应用 5 学习十字相乘法的建议
十字相乘法的概念
定义与公式
定义:十字相乘法是一 种因式分解方法,通过 将多项式分解为两个因 式的乘积,从而简化代 数式。
特点与优势
优势:便于理解和应用,简 化数学问题
特点:将多项式因式分解为 两个一次式的乘积
应用范围:适用于多项式的 因式分解
与其他因式分解方法的比较: 简单易懂,易于掌握
十字相乘法的应用
代数式因式分解
代数式因式分解的定义 十字相乘法的应用 代数式因式分解的步骤 代数式因式分解的注意事项
方程求解
适用于一元二次 方程的求解
简化计算过程, 提高解题效率
扩展到其他数学 领域,如代数方 程、分式方程等
在实际生活中广 泛应用于各种问 题求解
函数性质研究
函数图像的 对称性
函数的单调 性
函数的最值 问题函数Fra bibliotek周期 性十字相乘法的步骤与技巧
步骤解析
确定系数:将多项式的每一项的系数列出,并观察是否能够找到一个因数使其等于零。
验证:通过代入验证因式是 否成立,确保结果正确。
整理:将因式整理为标准形 式,便于后续计算。
注意事项
确保二次项系数为1,以便进行十字相乘 寻找合适的因数,使乘积等于常数项 注意符号问题,确保结果的正确性 熟练掌握因式分解的步骤和技巧,以便更好地应用十字相乘法
十字相乘法的扩展应用
与其他因式分解方法的结合
在实际生活中的应用
人教版八年级上册数学因式分解十字相乘法优质PPT
![人教版八年级上册数学因式分解十字相乘法优质PPT](https://img.taocdn.com/s3/m/34255395ad02de80d5d84031.png)
-2)]( x + 1 )
人教版八年级上册数学因式分解十字 相乘法 优质PPT
公式推导
归纳总结
x2 + ( a + b )x + a b = x2 + ax + bx + ab
= x(x + a) + b(x + a) = (x + a) (x + b) ∴ x2 + ( a + b )x + a b = (x + a) (x + b)
一次项系数-7 =(-1)+(-6) ≠2+3 ≠(-2) +(-3)
(1)解: x2 -7x+6 =(x-1)(x-6)
因式分解时常数项因数分解的一般规律:
1.常数项是正数时,它分解成两个同号因 数,它们和一次项系数符号相同。
人教版八年级上册数学因式分解十字 相乘法 优质PPT
例2. 人教版八年级上册数学因式分解十字相乘法优质PPT
人教版八年级上册数学因式分解十字 相乘法 优质PPT
人教版八年级上册数学因式分解十字 相乘法 优质PPT
练习:在 横线上 填 、符号
__ x2 4x 3 =(x + 3)(x _+_ 1)
- x2 2x 3 =(x __ 3)(x _+_ 1)
- - y2 9y 20 =(y__ 4)(y __ 5)
运用公式必须同时具备的三个条件:
(1)二次项系数式是1的二次三项式
(2)常数项是两个数之积
(3)一次项系数是常数项的两个因数之和
人教版八年级上册数学因式分解十字 相乘法 优质PPT
人教版八年级上册数学因式分解十字 相乘法 优质PPT
(完整word)初中数学十字相乘法因式分解
![(完整word)初中数学十字相乘法因式分解](https://img.taocdn.com/s3/m/868ec59da8114431b80dd80f.png)
初中数学十字相乘法因式分解要点:一、2()x p q x pq +++型的因式分解特点是:(1)二次项的系数是1(2)常数项是两个数之积(3)一次项系数是常数的两个因数之和。
对这个式子先去括号,得到:pq x q p x +++)(2)()(22pq qx px x pq qx px x +++=+++=))(()()(q x p x p x q p x x ++=+++=1的二次三项式分解因式。
二、一般二次三项式2ax bx c ++的分解因式大家知道,2112212122112()()()a x c a x c a a x a c a c x c c ++=+++。
反过来,就可得到:2121221121122()()()a a x a c a c x c c a x c a x c +++=++我们发现,二次项系数a 分解成12a a ,常数项c 分解成12c c ,把1212,,,a a c c 写成1122a c a c ⨯,这里按斜线交叉相乘,再相加,就得到1221a c a c +,那么2ax bx c ++就可以分解成1122()()a x c a x c ++.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法。
【典型例题】[例1] 把下列各式分解因式。
(1)232++x x (2)672+-x x 分析:(1)232++x x 的二次项的系数是1,常数项212⨯=,一次项系数213+=,这是一个pq x q p x +++)(2型式子。
(2)672+-x x 的二次项系数是1,常数项)6()1(6-⨯-=,一次项系数=-7)1(- )6(-+,这也是一个pq x q p x +++)(2型式子,因此可用公式pq x q p x +++)(2+=x ( ))(q x p +分解以上两式。
解:(1)因为212⨯=,并且213+=,所以)2)(1(232++=++x x x x(2)因为)6()1(6-⨯-=,并且)6()1(7-+-=-,所以)6)(1(672--=+-x x x x[例2] 把下列各式因式分解。
十字相乘法-因式分解(经典版)
![十字相乘法-因式分解(经典版)](https://img.taocdn.com/s3/m/1af4ed7ba6c30c2258019e66.png)
ax+(-ax)=0
③首项有负号时(也是提取公因式时第一要点)
- x2 x 6 - (x 2)(x 3)
转化到我们熟悉分解方式
- x2 x 6 (- x2 - x - 6)
x 2
x 3 3x 2x -x
总结:
- x2 2ax - a2(- x2 - 2ax a2) 完全平方公式
( 2 y2 1) -( 3 y2 1)
x ⑥ 2 系数不为1
2x 2 -11xy - 6y 2
则需对前后两个因式的系数均分解,口算,心算能 力不足时需要在草稿纸上写出多种十字交叉分解的 情形,特别是当前后两项系数数值比较大。
2xx- 6yy (x y)(x 6y)
⑦首项和末项为多个因式相乘,如abc
中间项多了一个因式(y2 1)
回到我们熟悉的分解方式
x 2
x 3
只需在右边分解的因式 分别乘以多了的那个因 式
题型④ x2 - xy - 6y 2
x
2 分别乘以
x
2y
x
x 3 另一个因式y
3y
题型⑤ x2 - x(y2 1)-(6 y2 1)2
x x 2
分别乘以
x x 3 另一个因式(y2+1)
这种的分解方式比较多,难度较大,建议 后期的学习中再慢慢了解
最后:关于十字相乘法的项数及次数问题,笔者认 为,这个没有特定要求,如前面的例子平方差公式, 只有两项也能用这种思想,再比如题型⑤
x2 - x(y2 1)-( 6 y2 1)2
如果()里面是一个很项数的很多项式,同样 看作一个整体,那也是可以用这种思想的,我 认为类似于三个整式的代数和形式代数式均可 考虑使用十字相乘法。
7 初二数学 十字相乘法----因式分解
![7 初二数学 十字相乘法----因式分解](https://img.taocdn.com/s3/m/74393e50d5bbfd0a78567396.png)
• 当常数项为正数时,拆分成的两个有理数一定同号, 符号与一次项系数相同。
• 当常数项为负数时,拆分成的两个有理数异号;绝对值 大的数与一次项系数同号。
17
18
拓展引申1
把下列各式分解因式
(1)(x+y)2-4(x+y)-5 =(x+y+1)(x+y-5)
(2) y2-2y(x-1)-15(x-1)2 =[y+3(x-1)][y-5 (x-1)]
=(y+3x-3)(y-5 x+5)
13
分解下列因式
(1)(m+n)2-5(m+n)+6 =(m+n-2)(m+n-3)
(2)x2+(2k+2)+2k+1 =(x+2k+1)(x+1)
14
拓展引申2
首项系数非1的整系数二次三项式的因式分解
1.6x2 7x 2 (2x 1)(3x 2)
2.3x2 11x 10 (3x 5)(x 2)
总结
ax2 bx c (a1x c1)(a2 x c2 )
a a1
x
4
⑵ y2- 8y+15
=(y-3)( y-5)
y
-3
y -5
4
例1把下列各式分解因式
⑶ x2 – 3x-4
=(x+1)(x-4)
方法:
➢ 先把首项和尾项拆分成两个因式相乘 ➢ 交叉相乘再相加等于中间项
(不仅要验证绝对值,更要验证符号)
5
例1把下列各式分解因式
⑶ x2 – 3x-4
=(x+1)(x-4)
1
十字相乘法因式分解(经典全面)
![十字相乘法因式分解(经典全面)](https://img.taocdn.com/s3/m/773d3ff6f121dd36a32d8266.png)
十字相乘法分解因式(1)对于二次项系数为1方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式它的特征是“拆两头,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。
1 2解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例1、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习1、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习2、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式—— c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例2、分解因式:101132+-x x分析: 1 -2(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习3、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)多字母的二次多项式例3、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。
八年级数学十字相乘法因式分解-P
![八年级数学十字相乘法因式分解-P](https://img.taocdn.com/s3/m/c61c3b0771fe910ef12df8ff.png)
实际在使用此公式时,需要把 一次项系数和常数项进行分拆,在 试算时,会带来一些困难。
下面介绍的方法,正好解决了 这个困难。
即:x 2+(p+q)x+pq=(x+p)(x+q)
解因式
解:2(6x 2+x)2-11(6x 2+x) +5 = [(6x 2+x) -5][2(6x 2+x)-1] = (6x 2+x-5) (12x 2+2x-1 ) = (6x -5)(x +1) (12x 2+2x-1 )
1
-5
6-52来自-1-1-10=-11
1
1
-5+6=1
练习:将下列各式分解因式 1、 7x 2-13x+6 答案(7x+6)(x+1)
例2 分解因式 3x 2-10x+3
解:3x 2-10x+3
x
-3
=(x-3)(3x-1) 3x
-1
-9x-x=-10x
例3 分解因式 5x 2-17x-12
解:5x 2-17x-12 5x
+3
=(5x+3)(x-4) x
-4
-20x+3x=-17x
例4 将 2(6x 2+x) 2-11(6x 2+x) +5 分
=(2x 2-3xy-2y 2)+3x+4y-2
=(2x +y)(x-2y)+3x+4y-2
=(2x +y-1)(x-2y+2)
2
1
(2x+y)
-1
1
-2 (x-2y)
2
-4+1=-3
2(2x+y) - (x- 2 y)=3x+4y
x
p
x
人教版初中八年级数学上册14.3.2因式分解的(十字相乘法)ppt课件
![人教版初中八年级数学上册14.3.2因式分解的(十字相乘法)ppt课件](https://img.taocdn.com/s3/m/03368321c850ad02df804107.png)
试因式分解5x2–6xy–8y2。
这里仍然可以用十字相乘法。
5 x2 – 6 xy – 8 y2
x
–2y
5x
4y
4xy – 10xy = –6xy
∴5x2–6xy–8y2 =(x– 2y)(5x+4y)
简记口诀: 首尾分解,交叉 相乘,求和凑中。
十字相乘法3随堂练习:
1)2(x2+y2)+5xy
先讨论交流,后分解因式。
=x2+3x+2
(2) (x+2)(x-1) =X2+x-2
(3) (x-2)(x-1) =x2-3x+2
(4) (x+2)(x+3)
一般地,
=x2+5x+6
(x+p)(x+q) =x2+(p+q)x+pq
x2+(p+q)x+pq
= (x+p)(x+q)
x2 + 3x + 2 =(x+1)(x+2)
x
-4
练习一:分解因式
-4x-2x=-6x
(1) x2-2x-15
=(x-5)(x+3)
(2) -y2 -4y+12
= - (y+6)(y-2)
对于二次项系数为1的二次三项式分解的方法是 “拆常数项,凑一次项”
例2 分解因式 3x -10x2+3
解:3x -210x+3
x
-3
=(x-3)(3x-1)
用十字相乘法分解下列因式
1、x4-13x2+36 2x2+3xy-4y2 3、x2y2+16xy+48 4、(2+a)2+5(2+a)-36
八年级数学十字相乘法因式分解
![八年级数学十字相乘法因式分解](https://img.taocdn.com/s3/m/8229ea67dd3383c4ba4cd211.png)
手机在线电影 现在手机看电视已经成为每个人生活的一部分,哪呢怎么才能离线的观看自己喜欢看的电视呢? 手机在线电影 手机怎么下载首先,我们要在手机面板上,找到我们需要的软件,这样我们才可以完成下面的每一个步奏;进入之后,我们可以看到右上角有一个下载的图标,我们点击这个图标就可以进入了;进入之后,我们可以按照自己的意愿,来操作和下载,我们需要的每一个剧情,可以按 手机在线电影 电脑安装影视客户端观看免费电影和电视剧,不需付任何费用,高清1080p电影和电视剧 手机在线电影 Window可安装客户端Mac也可安装客户端 手机在线电影 1、打开任何浏览器,输入网址访问,选择客户端去,进行下载客户端2、根据你的电脑系统来选择哪个安装包,有Window客户端安装程序和Mac客户端安装程序 手机在线电影 3、首页操作简化,左上角菜单有:热门影片、推荐影片、电影、电视剧和动漫。除了这点,你也可以使用搜索功能,去找你想要的片子~4、观看任何影片时,你可以调整360、720或1080高清。尽量选择1080真的非常高清~ 手机在线电影 在我们使用腾讯看剧的时候,我们往往不会只观看一个剧目,那么我们在观看多个电视剧的时候,我们要怎么快速找到自己要长时间追的电视剧呢?办法自然是有的,我们可以选择将电视剧添加到我的收藏里面,这样我们下次观看的时候,直接在我的收藏里面找到该电视剧即可 手机在线电影 电脑:Windows10腾讯:V201010.29 手机在线电影 1、首先呢,我们就是需要打开腾讯2、然后我们打开自己想看的电视剧,进入到播放界面3、找到上方的工具栏,找到一个爱心形状4、点击一下,便可将正在观看的电视剧添加到收藏了 手机在线电影 暴风影音怎么下载电视剧?暴风影音下载电视剧方法,在使用暴风影音时很多人想下载电视剧但是不知道怎么下载,下面小编就和大家分享暴风影音怎么下载电视剧?暴风影音下载电视剧方法 手机在线电影 暴风影音 手机在线电影 暴风影音怎么下载电视剧1、在下载电视剧之前你需要等登陆暴风影音的账号,如果没那就先注册暴风影音账号再登陆。2、登陆之后点击暴风影音界面的《电视剧》再找到自己想要下载的电视剧进入《影片详情》界面。3、打开电视剧的影片详情界面后点击《下载》图标,再选择的
分解因式(十字相乘法)
![分解因式(十字相乘法)](https://img.taocdn.com/s3/m/33c5a3e748d7c1c709a14527.png)
(3)x2+6xy-16y2 (4)x2y2-7xy-18
(5)3x2 + 10x + 8 ( 6 ) (a+b)2 + 4(a+b) - 5
注意 x2+(a+b)x+ab=(x+a)(x+b)
实际在使用此公式时, 关键是需要把常数项拆成两个数的___积_____, 使得这两个数相加等于___一__次__项__系___数_____.
下面我们就来试试
例1:用十字相乘法分解因式:对,怎么办呢?
十字相乘法
因式分解
复习
因式分解: 1.提取公因式法 2.运用公式法: 两项——平方差公式
三项——完全平方公式
3.分组分解法:2+2型 3+1型
随堂练习
39x2 x 2y y2 ;
3 解:9 x2 x 2 y y2
= 9 x2 y2 x 2 y
=x yx y 2x y =x yx y 2
例4;试将 x2 6x 16 分解因式
解: x2 6x 16
x2 6x 16
x 8x 2
提示:当二次项系数为负 时 , 先提出负号再因式分解 。
练习 用十字相乘法分解因式:
-y2+7y-12
解:原式=-(y-3)(y-4)
例5;试因式分解(a+b)2+4(a+b)–5。
(a+b)2+4(a+b)–5 =(a+b+5)(a+b-1)
x
46
3x + 4x ≠ 7x 2x + 6x ≠ -8x
学以致用 例 2 分解因式:x2 7x 6
初中十字相乘(因式分解)
![初中十字相乘(因式分解)](https://img.taocdn.com/s3/m/4914cb272af90242a895e520.png)
十字相乘法一.例题解析:①定义:利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.有()()()b x a x ab x b a x ++=+++2注意:这里常数项是2,只有1×2。
当常数项不是质数时,要通过多次拆分的尝试,直到符合要求为止。
通常是拆分常数项,验证一次项 ②题型例题:例2-7数 分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种2 13 × -52×(-5)+3×1=-7是正确的,因此原多项式可以用直字相乘法分解因式。
解 6x 2-7x-5=(2x+1)(3x-5)。
指出:通过例1和例2可以看到,运用十字相乘法把一个二镒项系数不是1的二次三贡式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式。
对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数。
例如把x2+2x-15分解因式,十字相乘法是:1 -31 × 51×5+1×(-3)=2所以x2+2x-15=(x-3)(x+5)。
例3把5x2+6xy-8y2分解因式。
分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项【(3)18x2-21x+5;(4) 20-9y-20y2;(5)2x2+3x+1;(6)2y2+y-6;(7)6x2-13x+6;(8)3a2-7a-6;(9)6x2-11x+3;(10)4m2+8m+3;(11)10x2-21x+2;(12)8m2-22m+15;(13)4n2+4n-15;(14)6a2+a-35;(15)5x2-8x-13;(16)4x2+15x+9;(17)15x2+x-2;(18)6y2+19y+10;(19) x2+x-6 (20) x2+2x-24参考答案:(1)(a-6)(a-1),(2)(2x+5)(4x-7)(3)(3x-1)(6x-5),(4)-(4y-5)(5y+4)(5)(x+1)(2x+1),(6)(y+2)(2y-3)(7)(2x-3)(3x-2),(8)(a-3)(3a+2)(9)(2x-3)(3x-1),(10)(2m+1)(2m+3)(11)(x-2)(10x-1),(12)(2m-3)(4m-5)(13)(2n+5)(2n-3),(14)(2a+5)(3a-7)(15)(x+1)(5x-13),(16)(x+3)(4x+3)(17)(3x-1)(5x-2),(18)(2y+5)(3y+2)(19) (x-2)(x+3) (20) (x+6)(x-4)。
(完整版)十字相乘法因式分解
![(完整版)十字相乘法因式分解](https://img.taocdn.com/s3/m/2f369848a6c30c2259019e77.png)
当q>0时,q分解的因数a、b( 当q<0时, q分解的因数a、b(
) 同号 ) 异号
观察:p与a、b符号关
系
x2 14x 45 (x 5)(x 9)
x2 29x 138 (x 23)(x 6)
小结: 当q>0时,q分解的因数a、b(
) 同号
且(a、b符号)与p符号相同
x2 7x 60 (x 12)(x 5) x2 14x 72 (x 4)(x 18)
当q<0时, q分解的因数a、b(
) 异号
(其中绝对值较大的因数符号)与p符号相同
练习:在 横线上 填 、 符号
__ __ x2 4x 3 =(x + 3)(x + 1)
_-_ __ x2 2x 3 =(x
3)(x + 1)
_-_ _-_ y2 9y 20 =(y
4)(y 5)
_-_ __ t2 10t 56 =(t
4)(t +14)
当q>0时,q分解的因数a、b( 同号 )且(a、b符号)与p符号相同
当q<0时, q分解的因数a、b( 异号) (其中绝对值较大的因数符号)与p符号相同
试将 x2 6x 16 分解因式
x2 6x 16
x2 6x 16
x 8x 2
提示:当二次项系数为 -1 时 , 先提出负号再因式分解 。
十字相乘法②
试因式分解6x2+7x+2。
这里就要用到十字相乘法(适用于二次三项式)。
既然是二次式,就可以写成(ax+b)(cx+d)的形式。 (ax+b)(cx+d)=acx2+(ad+bc)x+bd
十字相乘法因式分解(经典全面)
![十字相乘法因式分解(经典全面)](https://img.taocdn.com/s3/m/c6d168db192e45361166f5f5.png)
十字相乘法分解因式(1)对于二次项系数为1方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式它的特征是“拆两头,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.例5、分解因式:652++x x 分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。
1 2解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例1、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习1、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习2、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式—— c bx ax ++2条件:(1)21a a a = 1a 1c (2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例2、分解因式:101132+-x x分析: 1 -2(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习3、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)多字母的二次多项式例3、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。
初中数学因式分解-十字相乘与分组分解法(含解析)
![初中数学因式分解-十字相乘与分组分解法(含解析)](https://img.taocdn.com/s3/m/788ec37dc281e53a5902ff45.png)
初中数学因式分解-十字相乘与分组分解考试要求:知识点汇总:一、十字相乘法十字相乘法:一个二次三项式2ax bx c ++,若可以分解,则一定可以写成1122()()a x c a x c ++的形式,它的系数可以写成12a a 12c c ,十字相乘法就是用试验的方法找出十字线两端的数,其实就是分解系数a ,b ,c ,使得:12a a a =,12c c c =,1221a c a c b +=,2()()()x a b x ab x a x b +++=++若24b ac -不是一个平方数,那么二次三项式2ax bx c ++就不能在有理数范围内分解二、分组分解分组分解法:将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.例题精讲:一、十字相乘【例 1】分解因式:⑴256x x ++ ⑵256x x -+⑶276x x ++ ⑷276x x -+【解析】 ⑴(2)(3)x x ++;⑵(2)(3)x x --;⑶(1)(6)x x ++;⑷(1)(6)x x --【巩固】 分解因式:268x x ++【解析】268(2)(4)x x x x ++=++【巩固】 分解因式:278x x +-【解析】278(8)(1)x x x x +-=+-【例 2】分解因式:2376a a --【解析】 2376(32)(3)a a a a --=+-【巩固】 分解因式:2383x x --【解析】 2383(31)(3)x x x x --=+-【巩固】 分解因式:25129x x +-【解析】 25129(3)(53)x x x x +-=+-【巩固】 分解因式:42730x x +-【解析】 4222730(3)(10)x x x x +-=-+【巩固】 分解因式:2273320x x --【解析】 2273320(94)(35)x x x x --=+-【例 3】分解因式:212x x +-【解析】 221212(3)(4)x x x x x x +-=-++=+-+【巩固】 分解因式:2612x x -+-【解析】 22612(612)(23)(34)x x x x x x -+-=-+-=-+-【例 4】分解因式:2214425x y xy +-【解析】 2214425(16)(9)x y xy x y x y +-=--【巩固】 分解因式:22672x xy y -+【解析】 22672(2)(32)x xy y x y x y -+=--【巩固】 分解因式:22121115x xy y --【解析】 22121115(35)(43)x xy y x y x y --=-+【例 5】分解因式:⑴2()4()12x y x y +-+-;⑵2212()11()()2()x y x y x y x y +++-+-【解析】 ⑴把x y +看作一个整体,利用十字相乘法分解即可.2()4()12(2)(6)x y x y x y x y +-+-=+++-⑵将,x y x y +-看作整体,则原式[][]4()()3()2()(53)(5)x y x y x y x y x y x y =++-++-=++.【巩固】 分解因式:257(1)6(1)a a ++-+【解析】[][]257(1)6(1)53(1)12(1)(23)(23)a a a a a a ++-+=-+++=-+【巩固】 分解因式:2(2)8(2)12a b a b ---+【解析】[][]2(2)8(2)12(2)2(2)6(22)(26)a b a b a b a b a b a b ---+=----=----【例 6】分解因式:1a b c ab ac bc abc +++++++【解析】 把a 视为未知数,其它视为参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学十字相乘法因式分解要点:一、2()x p q x pq +++型的因式分解特点是:(1)二次项的系数是1(2)常数项是两个数之积(3)一次项系数是常数的两个因数之和。
对这个式子先去括号,得到:pq x q p x +++)(2)()(22pq qx px x pq qx px x +++=+++=))(()()(q x p x p x q p x x ++=+++=1的二次三项式分解因式。
二、一般二次三项式2ax bx c ++的分解因式大家知道,2112212122112()()()a x c a x c a a x a c a c x c c ++=+++。
反过来,就可得到:2121221121122()()()a a x a c a c x c c a x c a x c +++=++我们发现,二次项系数a 分解成12a a ,常数项c 分解成12c c ,把1212,,,a a c c 写成1122a c a c ⨯,这里按斜线交叉相乘,再相加,就得到1221a c a c +,那么2ax bx c ++就可以分解成1122()()a x c a x c ++.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法。
【典型例题】[例1] 把下列各式分解因式。
(1)232++x x (2)672+-x x 分析:(1)232++x x 的二次项的系数是1,常数项212⨯=,一次项系数213+=,这是一个pq x q p x +++)(2型式子。
(2)672+-x x 的二次项系数是1,常数项)6()1(6-⨯-=,一次项系数=-7)1(- )6(-+,这也是一个pq x q p x +++)(2型式子,因此可用公式pq x q p x +++)(2+=x ( ))(q x p +分解以上两式。
解:(1)因为212⨯=,并且213+=,所以)2)(1(232++=++x x x x(2)因为)6()1(6-⨯-=,并且)6()1(7-+-=-,所以)6)(1(672--=+-x x x x[例2] 把下列各式因式分解。
(1)22-+x x (2)1522--x x分析:(1)-+x x 22的二次项系数是1,常数项2)1(2⨯-=-,一次项系数2)1(1+-=,这是一个pq x q p x +++)(2型式子。
(2)1522--x x 的二次项系数是1,常数项3)5(15⨯-=-,一次项系数)5(2-=- 3+,这也是一个pq x q p x +++)(2型式子。
以上两题可用))(()(2q x p x pq x q p x ++=+++式子分解。
解:(1)因为2)1(2⨯-=-,并且2)1(1+-=,所以)1)(2(22-+=-+x x x x(2)因为3)5(15⨯-=-,并且3)5(2+-=-,所以)3)(5(1522+-=--x x x x注意:(1)当常数项是正数时,它分解成两个同号因数,它们和一次项系数的符号相同。
(2)当常数项是负数时,它分解成两个异号因数,其中绝对值较大的因数和一次项系数的符号相同。
[例3] 把下列各式因式分解。
(1)3722+-x x (2)5762--x x (3)22865y xy x -+解:(1))12)(3(3722--=+-x x x x 1231--7)1(1)3(2-=-⨯+-⨯ (2))53)(12(5762-+=--x x x x 5312-713)5(2-=⨯+-⨯ (3))45)(2(86522y x y x y xy x -+=-+ yy 4521-y y y 6)2(5)4(1=⨯+-⨯[例4] 将40)(3)(2----y x y x 分解因式。
分析:可将y x -看成是一个字母,即a y x =-,于是上式可化为4032--a a 二次项系数是1,常数5)8(40⨯-=-,一次项系数5)8(3+-=-,所以可用)(2q p x ++x ))((q x p x pq ++=+式子分解。
解:因为5)8(40⨯-=-,并且5)8(3+-=-,所以40)(3)(2----y x y x )5)(8(]5)][(8)[(+---=+---=y x y x y x y x[例5] 把222265x y x y x --分解因式。
分析:多项式各项有公因式2x ,第一步先提出各项公因式2x ,得到:)65(65222222--=--y y x x y x y x ,经分析652--y y 它符合pq y q p y +++)(2型式子,于是可继续分解。
第二步,按pq y q p y +++)(2型二次三项式分解,得到:)1)(6()65(222+-=--y y x y y x解:)1)(6()65(652222222+-=--=--y y x y y x x y x y x[例6] 将xy y x 168155-分解因式。
解:xy y x 168155-)49)(49()1681(222244-+=-=y x y x xy y x xy)23)(23)(49(22-++=xy xy y x xy注意:多项式分解因式的一般步骤是:(1)如果多项式各项有公因式,那么先提出公因式。
(2)在各项提出公因式后,或各项没有公因式的情况下,可考虑运用公式法,对于四项式多项式可以考虑运用分组分解法。
(3)要分解到每个多项式不能再分解为止。
【模拟试题】一. 填空题:1. =--2832x x ( )( )2. =--22352y xy x )7(y x -( )3. =+-22144320y xy x )74(y x -( )4. =+-519182x x ( )(12-x )5. =++-6113522mn n m -( )( )6. =--235116a a ( )( )7. =-+652x kx (23-x )( )=k8. )25)(74(14432y x y x y xy m --=+-,则=m9. )5)(74(43202n x y x m xy x +-=+-,则=m ,=n10. 分解因式=++-+16)3(8)3(2242x x x x 。
二. 选择题:1. 16102++x x 分解因式为( )A. )8)(2(++x xB. )8)(2(+-x xC. )8)(2(-+x xD. )8)(2(--x x2. 223013y xy x --分解为( )A. )10)(3(y x y x --B. )2)(15(y x y x -+C. )3)(10(y x y x ++D. )2)(15(y x y x +-3. 把352962+-x x 分解因式为( )A. )53)(72(--x xB. )52)(73(--x xC. )52)(73(+-x xD. )53)(72(+-x x4. 把22244n mn m x -+-分解因式为( )A. )2)(2(n m x n m x +-++B. )2)(2(n m x n m x +--+C. )2)(2(n m x n m x +---D. )2)(2(n m x n m x -+++5. 在下列二次三项式中,不是pq x q p x +++)(2型式子的是( )A. 20122++x xB. 10092++x xC. 14132--x xD. 5292-+x x三. 解答题:1. 将下列各式因式分解。
(1)652-+x x (2)302--x x (3)144302++x x 1)(3)21118x x ++ (4)22526a a -+ (5)2232x xy y -+2. 将下列各式因式分解。
(1)171824-+-m m (2)42242073y y x x -- (3)23145b b +-(4)223x x -- (5)2257x x +- (6)2321a a --3. 因式分解。
(1)24)7(10)7(222--+-x x x x (2)2222224)()(2z y z y x x +++-4. 已知028471522=+-y xy x ,求yx 的值。
5. 已知0622=--b ab a (0≠a ,0≠b ),求ba ab +的值6. 已知0262922=++-+b a b a ,求b a 32-的值。
试题答案一.1. 7-x ;4+x2. y x 5+3. y x 25-4. 59-x5. 35-mn ;27+mn6. a 72-;a 53+7. 32+x ;68. 220x 9. 214y ;y 2- 10. 2222)23()2()1(-+++x x x x二.1. A 2. D 3. B 4. B 5. B三.1. 解:(1))1)(6(652-+=-+x x x x (2))5)(6(302+-=--x x x x(3))6)(24(144302++=++x x x x2. 解:(1))1)(17()1718(1718222424---=+--=-+-m m m m m m )1)(1)(17(2-+--=m m m(2))53)(2)(2()53)(4(20732222224224y x y x y x y x y x y y x x +-+=+-=--(3))2)(2)(2()2)(4()82(822222435+-+=+-=--=--x x x x x x x x x x x x x3. 解:(1))73)(52()356(356222424+-=--=--++n n k n n k k k n k n a a a a a a a a a(2))54)(12(81)5148(8854722++=++1=++x x x x x x 4. 解:(1))27)(127(24)7(10)7(22222--+-=--+-x x x x x x x x )27)(4)(3(2----=x x x x(2)222222222222224)()]([)()(2z y x z y x z y z y x x --=+-=+++-5. 解:028471522=+-y xy x 0)45)(73(=--y x y x ∴ y x 37=或y x 54= 当y x 37=时,(1)3737==y y y x (2)当54=x y 时,5454==y y y x 6. 解:0622=--b ab a 0)2)(3(=+-b a b a b a 3= b a 2-=当b a 3=时,31333133=+=+=+b b b b b a a b 当b a 2-=时,21222122-=--=-+-=+b b b b b a a b 7. 解:0262922=++-+b a b a 0)169()12(22=++++-b b a a0)13()1(22=++-b a 1=a 31-=b 312)31(31232=+=--⨯=-b a。