九年级上册数学 圆 几何综合专题练习(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册数学 圆 几何综合专题练习(解析版)

一、初三数学 圆易错题压轴题(难)

1.如图,在直角体系中,直线AB 交x 轴于点A(5,0),交y 轴于点B,AO 是⊙M 的直径,其半圆交AB 于点C,且AC=3.取BO 的中点D,连接CD 、MD 和OC . (1)求证:CD 是⊙M 的切线;

(2)二次函数的图象经过点D 、M 、A,其对称轴上有一动点P,连接PD 、PM,求△PDM 的周长最小时点P 的坐标;

(3)在(2)的条件下,当△PDM 的周长最小时,抛物线上是否存在点Q ,使S △PDM =6S △QAM ?若存在,求出点Q 的坐标;若不存在,请说明理由.

【答案】解:(1)证明:连接CM ,

∵OA 为⊙M 直径,∴∠OCA=90°.∴∠OCB=90°. ∵D 为OB 中点,∴DC=DO .∴∠DCO=∠DOC . ∵MO=MC ,∴∠MCO=∠MOC . ∴

又∵点C 在⊙M 上,∴DC 是⊙M 的切线. (2)∵A 点坐标(5,0),AC=3 ∴在Rt △ACO 中,.

∴545(x )x 5)12152-

=--(,∴,解得10

OD 3

=

. 又∵D 为OB 中点,∴

1552

4

+∴D 点坐标为(0,154).

连接AD ,设直线AD 的解析式为y=kx+b ,则有

解得.

∴直线AD 为

∵二次函数的图象过M (5

6

,0)、A(5,0), ∴抛物线对称轴x=

154

. ∵点M 、A 关于直线x=154对称,设直线AD 与直线x=15

4

交于点P , ∴PD+PM 为最小.

又∵DM 为定长,∴满足条件的点P 为直线AD 与直线x=15

4

的交点. 当x=

15

4时,45y (x )x 5)152

=

--(. ∴P 点的坐标为(15

4,56

). (3)存在. ∵

,5

y a(x )x 5)2

=--(

又由(2)知D (0,154),P (15

4,56

), ∴由

,得

,解得y Q =±

103

∵二次函数的图像过M(0,5

6

)、A(5,0), ∴设二次函数解析式为,

又∵该图象过点D (0,15

4

),∴,解得a=

512

. ∴二次函数解析式为

又∵Q 点在抛物线上,且y Q =±103

. ∴当y Q =103

时,,解得x=

1552-或x=1552

+;

当y Q =5

12

-

时,,解得x=

15

4

∴点Q 的坐标为(15524

-,103),或(15524+,10

3),或(154,512-).

【解析】

试题分析:(1)连接CM ,可以得出CM=OM ,就有∠MOC=∠MCO ,由OA 为直径,就有∠ACO=90°,D 为OB 的中点,就有CD=OD ,∠DOC=∠DCO ,由∠DOC+∠MOC=90°就可以得出∠DCO+∠MCO=90°而得出结论.

(2)根据条件可以得出2222OC OA AC 534=-=-=和OC OB

tan OAC AC OA

∠=

=,从而求出OB 的值,根据D 是OB 的中点就可以求出D 的坐标,由待定系数法就可以求出抛物线的解析式,求出对称轴,根据轴对称的性质连接AD 交对称轴于P ,先求出AD 的解析式就可以求出P 的坐标. (3)根据PDM DAM PAM S S S ∆∆∆=-,求出Q 的纵坐标,求出二次函数解析

式即可求得横坐标.

2.如图,∠ABC=45°,△ADE 是等腰直角三角形,AE=AD ,顶点A 、D 分别在∠ABC 的两边BA 、BC 上滑动(不与点B 重合),△ADE 的外接圆交BC 于点F ,点D 在点F 的右侧,O 为圆心.

(1)求证:△ABD ≌△AFE

(2)若AB=42,82<BE ≤413,求⊙O 的面积S 的取值范围.

【答案】(1)证明见解析(2)16π<S ≤40π

【解析】试题分析:(1)利用同弧所对的圆周角相等得出两组相等的角,再利用已知AE=AD ,得出三角形全等;(2)利用△ABD ≌△AFE ,和已知条件得出BF 的长,利用勾股定理和2<BE 13EF,DF 的取值范围, 24

S DE π

=

,所以利用二次函

数的性质求出最值. 试题解析:(1)连接EF ,

∵△ADE 是等腰直角三角形,AE=AD , ∴∠EAD=90°,∠AED=∠ADE=45°, ∵AE AE = , ∴∠ADE=∠AFE=45°, ∵∠ABD=45°, ∴∠ABD=∠AFE ,

∵AF AF =, ∴∠AEF=∠ADB , ∵AE=AD , ∴△ABD ≌△AFE ; (2)∵△ABD ≌△AFE , ∴BD=EF ,∠EAF=∠BAD , ∴∠BAF=∠EAD=90°, ∵42AB = , ∴BF=

42

cos cos45

AB ABF =∠=8,

设BD=x ,则EF=x ,DF=x ﹣8, ∵BE 2

=EF 2

+BF 2

, 82<BE ≤413 ,

∴128<EF 2+82≤208, ∴8<EF ≤12,即8<x ≤12, 则()22284

4S DE x x π

π⎡⎤==

+-⎣

⎦=()2

482

x ππ-+,

2

π

>0, ∴抛物线的开口向上, 又∵对称轴为直线x=4,

∴当8<x ≤12时,S 随x 的增大而增大, ∴16π<S ≤40π.

点睛:本题的第一问解题关键是找到同弧所对的圆周角,第二问的解题关键是根据第一问的结论计算得出有关线段的长度,由于出现线段的取值范围,所以在这个问题中要考虑勾股定理的问题,还要考虑圆的面积问题,得出二次函数,利用二次函数的性质求出最值.

3.如图①,一个Rt △DEF 直角边DE 落在AB 上,点D 与点B 重合,过A 点作二射线AC 与斜边EF 平行,己知AB=12,DE=4,DF=3,点P 从A 点出发,沿射线AC 方向以每秒2个单位的速度运动,Q 为AP 中点,设运动时间为t 秒(t >0)• (1)当t=5时,连接QE ,PF ,判断四边形PQEF 的形状;

(2)如图②,若在点P 运动时,Rt △DEF 同时沿着BA 方向以每秒1个单位的速度运动,当D 点到A 点时,两个运动都停止,M 为EF 中点,解答下列问题:

相关文档
最新文档