车辆路径问题资料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

车辆路径问题(VRP)一般定义为:对一系列装货点和卸货点,组织适当的行车线路,使车辆有序地通过它们,在满足一定的约束条件(如货物需求量、发送量、交发货时间、车辆容量限制、行驶里程限制、时间限制等)下,达到一定问题的目标(如路程最短、费用最少、时间尽量少、使用车辆数尽量少等)。

目前有关VRP的研究已经可以表示(如图1)为:给定一个或多个中心点(中心仓库,central depot)、一个车辆集合和一个顾客集合,车辆和顾客各有自己的属性,每辆车都有容量,所装载货物不能超过它的容量。起初车辆都在中心点,顾客在空间任意分布,车把货物从车库运送到每一个顾客(或从每个顾客处把货物运到车库),要求满足顾客的需求,车辆最后返回车库,每个顾客只能被服务一次,怎样才能使运输费用最小。而顾客的需求或已知、或随机、或以时间规律变化。

图1 VRP示意图

一、在VRP中,最常见的约束条件有:

(1) 容量约束:任意车辆路径的总重量不能超过该车辆的能力负

荷。引出带容量约束的车辆路径问题(CapacitatedVehicle Routing Problem,CVRP)。

(2) 优先约束:引出优先约束车辆路径问题(VehicleRouting Problem with precedence Constraints,VRPPC)。

(3) 车型约束:引出多车型车辆路径问题(Mixed/Heterogeneous Fleet Vehicle Routing Problem,MFVRP/ HFVRP)。

(4) 时间窗约束:包括硬时间窗(Hard Time windows)和软时间窗(Soft Time windows) 约束。引出带时间窗(包括硬时间窗和软时间窗)的车辆路径问题(V ehicle Routing Problem withTime windows,VRPTW)。

(5) 相容性约束:引出相容性约束车辆路径问题(VehicleRouting Problem with Compatibility Constraints,VRPCC)。

(6) 随机需求:引出随机需求车辆路径问题(VehicleRouting Problem with Stochastic Demand,VRPSD)。

(7) 开路:引出开路车辆路径问题(Open Vehicle RoutingProblem)。

(8) 多运输中心:引出多运输中心的车辆路径问题(Multi-Depot Vehicle Routing Problem)。

(9) 回程运输:引出带回程运输的车辆路径问题(VehicleRouting Problem with Backhauls)。

(10) 最后时间期限:引出带最后时间期限的车辆路径问题(Vehicle Routing Problem with Time Deadlines)。

(11) 车速随时间变化:引出车速随时间变化的车辆路径问题(Time -Dependent Vehicle Routing Problem )。

二、CVRP 问题描述及其数学模型

CVRP 的描述:设某中心车场有k 辆车,每辆配送车的最大载重量Q ,需要对n 个客户(节点)进行运输配送,每辆车从中心车场出发给若干个客户送货,最终回到中心车场,客户点i 的货物需求量是q i (i =1,2,…,n ),且q i

定义变量如下:

建立此问题的数学模型:

minz = c ij x ijk (2.2)

约束条件:

y ki =1 (i =0,1,…,n ) (2.3)

x ijk =y kj (j =0,1,…,n k =1,2,…,m ) (2.4) x jik =y kj (j =0,1,…,n k =1,2,…,m ) (2.5)

q i y ki ≤Q (k =1,2,…,m ) (2.6)

三、车辆路径问题算法综述

目前,求解车辆路径问题的方法非常多,

基本上可以分为精确算k ∑i

∑i ∑i ∑

j ∑i

∑k

法和启发式算法2大类。

3.1 精确算法

精确算法是指可求出其最优解的算法,主要运用线性规划、整数规划、非线性规划等数学规划技术来描述物流系统的数量关系,以便求得最优决策。精确算法主要有:

分枝定界法(Branch and Bound Approach)

割平面法(Cutting Planes Approach)

网络流算法(Network Flow Approach)

动态规划算法(Dynamic Programming Approach) 总的说来,精确性算法基于严格的数学手段,在可以求解的情况下,其解通常要优于人工智能算法。但由于引入严格的数学方法,计算量一般随问题规模的增大呈指数增长,因而无法避开指数爆炸问题,从而使该类算法只能有效求解中小规模的确定性VRP,并且通常这些算法都是针对某一特定问题设计的,适用能力较差,因此在实际中其应用范围很有限。

3.2 启发式算法

由于车辆路径优化问题是NP难题,高效的精确算法存在的可能性不大(除非P=NP),所以寻找近似算法是必要和现实的,为此专家主要把精力花在构造高质量的启发式算法上。启发式算法是在状态空间中的改进搜索算法,它对每一个搜索的位置进行评价,得到最好的位

置,再从这个位置进行搜索直到目标。在启发式搜索中,对位置的估价十分重要,采用不同的估价可以有不同的效果。目前已提出的启发式算法较多,分类也相当多,按Van Breedam的分类法,主要的启发式算法有以下几类:构造算法、两阶段法、智能化算法。

3.2.1 构造算法(Constructive Algorithm)

这类方法的基本思想是:根据一些准则,每一次将一个不在线路上的点增加进线路,直到所有点都被安排进线路为止。该类算法的每一步把当前的线路构形(很可能是不可行的)跟另外的构形(也可能是不可行的)进行比较并加以改进,后者或是根据某个判别函数(例如总费用)会产生最大限度的节约的构形,或是以最小代价把一个不在当前构形上的需求对象插入进来的构形,最后得到一个较好的可行构形。这类算法中中最著名的是Clarke和Wright在1964年提出的节约算法。

构造算法最早提出来解决旅行商问题,这些方法一般速度快,也很灵活,但这类方法有时找到的解离最优解差得很远。

3.2.2 两阶段法(Two-phase Algorithm)

学者们通过对构造算法的研究,认为由构造算法求得的解可以被进一步改进,为此提出了两阶段法。第一阶段得到一可行解,第二阶段通过对点的调整,在始终保持解可行的情况下,力图向最优目标靠近,每一步都产生另一个可行解以代替原来的解,使目标函数值得以改进,一直继续到不能再改进目标函数值为止。Gillet和Miller于1974

相关文档
最新文档