空间解析几何例题
空间解析几何习题

空间解析几何习题习题0—11.在空间直角坐标系中,画出下列各点:)2,1,2(),4,3,0(),4,0,0(-。
2.求点),,(c b a 关于(1)各坐标面,(2)各坐标轴,(3)坐标原点的对称点的坐标。
3.自点),,(0000z y x P 分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标。
4.一边长为a 的立方体放置在xOy 面上,其底面的中心在坐标原点,底面的顶点在x 轴和y 轴上,求它各顶点的坐标。
5.求点)5,3,4(-P 到各坐标轴的距离。
6.在yOz 面上,求与三个已知点)2,1,3(A ,)2,2,4(--B 和)1,5,0(C 等距离的点。
7.证明:以三点)9,1,4(A ,)6,1,10(-B ,)3,4,2(C 为顶点的三角形是等腰三角形。
习题0—21.设向量a 与x 同和y 轴的夹角相等,而与z 同的夹角是前者的两倍,求向量a 的方向余弦。
2.设向量的方向余弦分别满足下列条件,试问这些向量与坐标轴、坐标面的关系如何?(1)0cos =α;(2)1cos =β;(3)0cos cos ==βα3.分别求出向量)5,3,2(),1,1,1(-==b a 及)2,1,2(--=c 的模,并写出单位向量000,,c b a 。
4.设向量)1,0,0(),0,1,0(),0,0,1(===k j i ,证明k j i ,,两两正交。
习题0—31.设b a ,为非零向量,问它们分别满足什么条件时,下列等式成立?(1)||||b a b a -=+;(2)||||b ba a =。
2.设c b a v c b a u -+=+-=3,2,试用c b a ,,表示v u 32-。
3.在A B C ?中,设M ,N ,P 分别为BC ,CA AB 的中点,试用AB CA BC ===c b a ,,表示向量AM ,N B ,CP 。
4.设MB AM =,证明:对任意一点O ,有)(21+=。
空间解析几何的实际问题

空间解析几何的实际问题当然可以!以下是根据标题“空间解析几何的实际问题”设计的20道试题,包括选择题和填空题,并且每道题目都有详细的序号介绍。
1. 选择题:1.在三维空间中,以下哪个选项最准确地描述了直线和平面的交点情况?A. 不存在交点B. 有一个交点C. 有无穷多个交点D. 有两个交点2. 填空题:2. 给定平面方程 \( 2x - 3y + 4z = 5 \),直线方程 \( \frac{x-1}{2} = \frac{y+3}{-1} = \frac{z-2}{4}\),它们的交点坐标为________。
3. 选择题:3. 下列哪种情况下,两个平面一定平行?A. 法向量相互垂直B. 法向量共线但不平行C. 法向量平行但不共线D. 法向量相互平行4. 填空题:4. 给定直线上的一点 \( P(1, -2, 3) \) 和平面方程 \( 3x - 2y + 4z = 6 \),点 \( P \)到该平面的距离为________。
5. 选择题:5. 以下哪种情况下,两条直线一定相交于一点?A. 平行且重合B. 相交但不共面C. 共面但不相交D. 不共面且不相交6. 填空题:6. 给定直线方程 \( \frac{x-1}{2} = \frac{y+3}{-1} = \frac{z-2}{4} \) 和平面方程 \( x + 2y - 3z = 4\),它们的交点坐标为________。
7. 选择题:7. 一个平面与另一个平面垂直,它们的法向量分别为 \(\mathbf{n}_1 = (2, -1, 3) \) 和 \( \mathbf{n}_2 = (-1, 3, 2) \),则它们之间的关系是:A. 平行B. 垂直C. 不共面D. 共面8. 填空题:8. 给定直线上的一点 \( Q(2, 1, -3) \) 和平面方程 \( 2x - 3y + 4z = 5 \),点 \( Q \)到该平面的距离为________。
空间解析几何练习题

习题一 空间解析几何一、填空题1、过两点(3,-2)和点(-1,0)的直线的参数方程为 。
2、直线2100x y --=方向向量为 。
3、直角坐标系XY 下点在极坐标系中表示为 。
4、平行与()6,3,6a =-的单位向量为 。
5、过点(3,-2,1)和点(-1,0,2)的直线方程为 。
6、过点(2,3)与直线2100x y +-=垂直的直线方程为 。
7、向量(3,-2)和向量(1,-5)的夹角为 。
8、直角坐标系XY 下区域01y x ≤≤≤≤在极坐标系中表示为 。
9、设 (1,2,3),(5,2,1)=-=-a b , 则(3)⋅a b = 。
10、点(1,2,1)到平面2100x y z -+-=的距离为 。
二、解答题1、求过点(3,1,1)且与平面375120x y z -+-=平行的平面方程。
2、求过点(4,2,3) 且平行与直线31215x y z --==的直线方程。
3、求过点(2,0,-3) 且与直线247035210x y z x y z -+-=⎧⎨+-+=⎩垂直的平面方程。
4、一动点与两定点(2,3,2)和(4,5,6)等距离, 求这动点的方程。
5、求222,01z x y z =+≤≤在XOZ 平面上的投影域。
6、求22219416x y z ++=在XOY 平面上的投影域。
7、求2z z =≤≤在XOZ 平面上的投影域。
8、求曲线222251x y z x z ⎧++=⎨+=⎩在XOY 平面上的投影曲线。
9、求曲线 22249361x y z x z ⎧++=⎨-=⎩在XOY 平面上的投影曲线。
10、求由曲面22z x y =+与曲面2222x y z ++=所围成的区域在柱面坐标系下的表示。
空间解析几何典型例题解析

空间解析几何典型例题解析1. 怎样选取坐标系(1)在进行长度、面积、体积以及夹角的计算或证明时,通常需要选取笛卡尔右手直角标架。
这是因为这样选取标架能够使计算或者证明过程最为简单、方便。
例1 求一个正方体的两条对角线的夹角。
解设立方体之棱长为a 2,则诸顶点的坐标依次为 ),,(),,,(),,,(),,,(a a a D a a a C a a a B a a a A -------- ),,(),,,(),,,(),,,(''''a a a D a a a C a a a B a a a A ----再设'AC 与C A '之夹角为θ, 因为{}1,1,12'-=a AC ,{}1,1,12'--=a C A所以3133111cos =⋅-+=θ, 31arccos =θ. 例2 如果一条射线和一个立方体的四条对角线的夹角是4321,,,θθθθ,求证:常数)(cos cos cos cos 42322212=+++θθθθ.证 按上图方式建立坐标系,则四条对角线的方向数依次为()1,1,1-,()1,1,1,()1,1,1-,()1,1,1--.设给定直线的方向余弦为γμλ,,,则3cos 1γμλθ+-=, 3cos 2γμλθ++=,3cos 3γμλθ++-=, 3cos 4γμλθ+--=于是有42322212cos cos cos cos θθθθ+++=[2)(γμλ+-+2)(γμλ+++2)(γμλ++-+2)(γμλ+--]=[]34)(431222=++γμλ(2)在绘制图形时,应根据图形的形状分别选用斜二轴测画法和正等轴测画法。
不同的画法,意味着观察者相对于被画的图形对应的实体的位置不同,因而观察到的图形也不完全一样。
通常在绘制多面体及双曲抛物面等图形时采用斜二轴测画法较好,在绘制柱面、锥面椭球面单叶双曲面等图形时采用正等轴测画法较好。
大学知识第八节 空间解析几何

空间解析几何1. 在空间直角坐标系中,由参数方程sin 1cos 042sin 2x y z θπθθθ⎧⎪=⎪⎛⎫=-+≤<⎨ ⎪⎝⎭⎪⎪=⎩确定的曲线的一般方程是( )。
22220.20x y A y y z ⎧+=⎨++=⎩ 22220.20x y B y z z ⎧+=⎨++=⎩22220.20x y y C z y ⎧++=⎨+=⎩ 22220.20x y x C y z ⎧++=⎨+=⎩1.【答案】C【解析】联立x=sin θ,y=-1+cos θ消去θ得2220x y y ++=,可知选择C. 2. 设112233(,),(,),(,),A x y B x y C x y 为平面上不共线的三点,则三角形ABC 的面积为() AB AC ⋅ B.12AB AC ⋅ D. AB AC ⋅ 2.【答案】B【解析】由行列式的定义展开计算可得。
3.直线L:12x -:2x y z τ++=A.平行 B.相交但不垂直 C 垂直 D.直线L 在平面上 3.【答案】B 。
【解析】由题意得:直线l 的方向向量为m =(2,-1,一3), 平面τ法向量n =(1,1,1),易知m 与n 不共线,且mn ≠0,而直线l 上的点(1,-1,2)在平面τ上,故两者相交但不垂直。
故选择B 。
4.方程2221x y z -+=-所确定的二次曲面是( )A. 椭球面B.旋转双曲面C. 旋转抛物面D. 圆柱面4.【答案】B5.方程22211694x y z -+=所确定的二次曲面是( )A. 椭球面 B 。
旋转双曲面 C. 旋转抛物面 D. 圆柱面5.【答案】B6.已知抛物面方程222=x y z +(1)求抛物面上在点(1,1,3)M 处的切平面方程;(2)当k 为何值时,所求的切平面与平面340x ky z +-=相互垂直。
6.【解析】(1)令22(,,)2F x y z x y z =+- 则4,2,1F F F x y x y z∂∂∂===-∂∂∂。
空间解析几何(练习题(答案))

1. 过点M (1, —1, 1)且垂直于平面x — y — z+1 = 0及2x+y + z+1 = 0的平面方程.39. y—z+2=03.在平面x—y—2z=0上找一点p, 使它与点(2,1,5), (4,邙,1)及(―2,—1,3)之间的距离相等.5.已知:A(1,2,3),B(5,—1,7),C(1,1,1),D(3,3,2),贝打// =A . 4B . 1C , -D . 227 .设平面方程为x - y = 0,则其位置( )A .平行于x 轴B .平行于y 轴C .平行于z 轴D .过z 轴.8 .平面x—2y+7z+3 = 0与平面3x+5y+z—1 = 0的位置关系()A .平行B .垂直C .相交D .重合9 .直线工二 =丫二9 与平面4x —2y —2z—3 = 0的位置关系()-2 -7 3A .平行B ,垂直C ,斜交D .直线在平面内—―、f—y+1 = 010 .设点A(0,—1,0)到直线,y的距离为( )、x + 2z - 7 = 0A . 75B . 1=C . 1 D,6 55. D 7 , D 8 . B 9 . A 10 . A.3.当m=时,2i _3j +5k 与3i+mj —2k互相垂直.4 .设a=2:+j+k , b=i—2j+2k , C = 3i—4j+2k , 则P c(a j b)= ----------------c4.过点(2, —8⑶且垂直平面x+2y—3z-2 = 0直线方程为10 .曲面方程为:x2 * 4 +y2 +4z2 =4,它是由曲线绕旋转而成的.。
一4,3. m = 一;43且9,工匚2=",29 1 2 -3旋转而成.1 .设 a ={2-3,1 1b =^,-1,3)0 = {1-2,0},则(a = b)xC=( )A . 8B . 10C . fo ,-1,-1)D , {2,1,21}3 .若 a =6i +3j _2k,b//a,且月=14,则b =()A . ±(12i +6j -4k)B . ±(12i +6j jC . ±(12i -4k)D . ±(6j -4k) 4 .若 M 1(1,1,1),M 2(2,2,1),M 3(2,1,2),则 M 1M 2与M 1M 3的夹角中716 .求平面x — y +2z —6 = 0与平面2x + y + z —5 = 0的夹角(ooo5A . 30B . 60C . 90D . arcsin- 61. D 3 . A 4 . C 6. C 8. A 9 . D7.求与平面2x-6y+3z=4平行平面,使点(3,2,8)为这两个平面公垂线中点.3 .确定k 值,使三个平面:kx —3y + z = 2,3x + 2y + 4z = 1, x — 8y — 2z = 3通过同一条 直线.5.求以向量i + j, j + k, k+i 为棱的平行六面体的体积.7 .与平面2x+y+2z+5=0,且与三个坐标面所构成的四面体体积为1的平面方程8 98 .动点到点(0,0,5 )的距离等于它到 x 轴的距离的曲面方程为 .5.已知a ={-3,0,4}, b =0-2,-14},则两向量所成夹角的角平分线上的单位向JTM o (3,-1,2), 直线l 」x y -z 1 = 0 2x- y z-4=0M O 到l 的距离为(x -2 y -3与平面2x + y+z = 6夹角为 (2 2z = 2 -x - y22z=(x") (y-1)或两向量对应坐标成比例 。
空间解析几何练习题

。 3
x 5 y 8 0, x 15 y z 8 与直线 的夹角。 8 1 4 2 y 11z 1 0
x 4 y 4 z 1 x5 y 5 z 5 与直线 的距离。 2 1 2 4 3 5
y z x z 1, 1, 16.已知直线 L1 : b c 和 L2 : a c x 0 y 0.
7.求经过原点,且与两平面 x 2 y 3z 13 0 和 3x y z 1 0 都垂直的平面 方程。
3x 2 y z 1 0, 8.求过点 (2, 3, 1) 和直线 的平面方程。 2 x y 0
9.求过直线
x y z 1 x 1 y z 且平行于直线 的平面方程。 2 1 2 0 1 1
,使得 a b c 0 。
b 为满足 || a || 2 , 5. 设a, 且 a 与 b 的夹角为 || b || 1 的向量,
。 求以 m 5a b , 4
a (2, 1, 3) , b ( x, y, z ) ,若 a c b 有解 c ,问 x , y , z 应满足 什么条件? 7.证明:对任意向量 a , b 成立 || a b || 2 || a b || 2 2(|| a || 2 || b || 2 ) ,并说明 其几何意义。 8.设三个向量 a , b , c 满足 (a b) c 2 ,求 [(a b) (b c)] (c a) 。 9.问向量 a (2, 3, 1) , b (1, 1, 3) , c (1, 9, 11) 是否共面?
a c b c, 10.已知 a , b , c 都不是零向量,问 a b 与 是否等价? a c b c
空间解析几何练习题解决空间中直线与平面的问题

空间解析几何练习题解决空间中直线与平面的问题空间解析几何是解决三维空间中的几何问题的一种方法。
在解决空间中直线与平面的问题时,我们可以利用向量和坐标等工具进行分析和计算。
下面将通过几个练习题来演示如何解决空间中直线与平面的问题。
练习题1:已知直线L:{(x,y,z)|x=a+t1m,y=b+t2n,z=c+t3p},平面P:Ax+By+Cz+D=0,其中A、B、C、D为常数,且直线L与平面P相交。
求直线L与平面P的交点坐标。
解析:直线L与平面P有交点时,交点坐标满足直线上的点同时满足平面的方程。
即将直线L的参数方程代入平面P的方程,得到一个关于参数t1、t2、t3的方程组。
解这个方程组,即可获得交点坐标。
解题步骤:1.将直线L的参数方程代入平面P的方程,得到Ax+(a+t1m)Bx+(b+t2n)Cz+(c+t3p)+D=0。
2.将方程展开,化简得到At1m+Bt2n+Ct3p+Ax+By+Cz+D=0。
3.根据参数的系数相等,得到三个方程:At1+Bt2+Ct3+A=0,Bt1+Ct2=0,Ct1=0。
4.解这个方程组,得到参数t1、t2、t3的值。
5.将参数的值代入直线L的参数方程,即可得到直线与平面的交点坐标。
练习题2:已知直线L:{(x,y,z)|x=1+t,y=2-t,z=3+2t},平面P:x-2y+z+1=0,判断直线L与平面P的关系。
解析:直线与平面的关系有三种情况,即直线在平面上、直线与平面相交、直线与平面平行。
判断直线与平面的关系,可以通过判断直线上的点是否满足平面的方程。
解题步骤:1.将直线L的参数方程代入平面P的方程,得到(1+t)-2(2-t)+(3+2t)+1=0。
2.将方程化简,得到t=0。
3.将t的值代入直线L的参数方程,得到(x,y,z)=(1,2,3)。
4.将直线上的一点代入平面P的方程,若等式成立,则直线在平面上;若不成立,则直线与平面相交。
5.将(1,2,3)代入平面P的方程,得到1-2(2)+3+1=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章 向量代数与空间解析几何习题解答习题4.1一、计算题与证明题1.已知1||=a , 4||=b , 5||=c , 并且0=++c b a . 计算a c c b b a ⨯+⨯+⨯. 解:因为1||=a , 4||=b , 5||=c , 并且0=++c b a 所以a 与b 同向,且b a +与c 反向 因此0=⨯b a ,0=⨯c b ,0=⨯a c 所以0=⨯+⨯+⨯a c c b b a2.已知3||=⋅b a , 4||=⨯b a , 求||||b a ⋅. 解:3cos ||=⋅=⋅θb a b a (1)4sin ||=⋅=⨯θb a b a (2)()222)1(+得()252=⋅b a所以 5=⋅b a3.设力k j i F 532++-=作用在点)1,6,3(A , 求力F 对点)2,7,1(,-B 的力矩的大小. 解:因为()1,6,3A ,()2,7,1-B 所以()31,2--=AB力矩()()k j i k j i F AB M 53232++-⨯-+-=⨯=kj i kj i kj i 41614321252325331532312-+=--+-----=---=所以,力矩的大小为()13641614222=-++=M4.已知向量x 与)2,5,1(,-a 共线, 且满足3=⋅x a, 求向量x 的坐标. 解:设x 的坐标为()z y x ,,,又()2,5,1-=a则325=-+=⋅z y x x a (1)又x 与a 共线,则0=⨯a x 即()()()05252512125251=-+++--=+---=-k y x j x z i z y ky x j y x i z y z yx kj i所以()()()05252222=-+++--y x x z z y即010*********22=-++++xy xz yz z y x (2) 又x 与a 共线,x 与a 夹角为0或π()30325110cos 222222222⋅++=-++⋅++⋅==z y x z y x ax整理得 103222=++z y x (3) 联立()()()321、、解出向量x 的坐标为⎪⎭⎫⎝⎛-51,21,101 5.用向量方法证明, 若一个四边形的对角线互相平分, 则该四边形为平行四边形.证明:如图所示,因为平行四边形ABCD 的对角线 互相平分,则有MA CN ND BM ==,由矢量合成的三角形法则有MA BM BA +=MA BM BM MA MD CM CD +=+=+=所以CD BA =即BA 平行且等于CD四边形ABCD 是平行四边形6.已知点)7,8,3(A , )3,2,1(--B 求线段AB 的中垂面的方程. 解:因为()7,8,3A ,)3,2,1(--BAB 中垂面上的点到B A 、的距离相等,设动点坐标为()z y x M ,,,则由MB MA =得()()()()()()222222321783++-++=-+-+-z y x z y x化简得027532=-++z y x这就是线段AB 的中垂面的方程。
7.向量a , b , c 具有相同的模, 且两两所成的角相等, 若a , b 的坐标分别为)1,1,0()0,1,1(和, 求向量c 的坐标.解:r c b a ===且它们两两所成的角相等,设为θ 则有1101101=⨯+⨯+⨯=⋅b a 则21cos rb a b a =⋅⋅=θ 设向量c 的坐标为()z y x ,,则11cos 0112=⋅⋅=⋅=+=⋅+⋅+⋅=⋅rr r b a y x z y x c a ϑ (1) 11cos 1102=⋅⋅=⋅=+=⋅+⋅+⋅=⋅rr r c b z y z y x c b ϑ (2) 2011222222=++==++=r z y x c所以2222=++z y x (3)联立(1)、(2)、(3)求出⎪⎩⎪⎨⎧===101z y x 或⎪⎪⎪⎩⎪⎪⎪⎨⎧-==-=313431z y x所以向量c 的坐标为()1,0,1或⎪⎭⎫ ⎝⎛--31,34,31 8.已知点)1,6,3(A , )1,4,2(-B , )3,2,0(-C , )3,0,2(--D , (1)求以AB , AC , AD 为邻边组成的平行六面体的体积. (2) 求三棱锥BCD A -的体积. (3) 求BCD ∆的面积.(4) 求点A 到平面BCD 的距离.解:因为()103,,A ,()1,4,2-B ,()3,2,0-C ,()3,0,2--D 所以()0,10,1--=AB()2,8,3--=AC ()4,6,5---=AD(1)()AD AC AB ,,是以它们为邻边的平行六面体的体积()17612120001003465283101=+--++---------=V (2)由立体几何中知道,四面体ABCD (三棱锥BCD A -)的体积3881766161=⨯==V V T (3)因为()222,,-=BC ,()444--=,,BDk j i kj iBD BC 01616444222+--=---=⨯所以()()216161622=-+-=⨯BD BC ,这是平行四边形BCED 的面积因此S S BCD 21=∆□BCED 2821621=⨯= (4)设点A 到平面BCD 的距离为H ,由立体几何使得三棱锥BCD A -的体积H S V BCD T ⋅=∆31所以22112112838833==⋅==∆BCDT S V H 习题4.2一、计算题与证明题1.求经过点)1,2,3(A 和)3,2,1(--B 且与坐标平面xOz 垂直的平面的方程. 解:与xoy 平面垂直的平面平行于y 轴,方程为0=++D Cz Ax (1)把点()123,,A 和点()321--,,B 代入上式得 03=++DC A (2)03=+--D C A (3)由(2),(3)得2D A -=,2DC =代入(1)得022=++-D z Dx D 消去D 得所求的平面方程为02=--z x2.求到两平面0623:=-+-z y x α和1152:=+-+z y x β距离相等的点的轨迹方程. 解;设动点为()z y x M ,,,由点到平面的距离公式得()()()2222221025101025213623-++-+-+-=+-+-+-z y x z y z所以()10102512914623+-+-±=-+-z y x z y x3.已知原点到平面α的距离为120, 且α在三个坐标轴上的截距之比为5:6:2-, 求α 的方程.解:设截距的比例系数为k ,则该平面的截距式方程为1562=++-kz k y k x 化成一般式为0306515=-++-k z y x 又因点()0,0,0O 到平面α的距离为120,则有()120651530222=++--k求出2864±=k所以,所求平面方程为028********=±++-z y x4.若点)1,0,2(-A 在平面α上的投影为)1,5,2(-B , 求平面α的方程. 解:依题意,设平面的法矢为()2,5,4-=n 代入平面的点法式方程为()()()0125524=----+z y x整理得所求平面方程为035254=+--z y x5.已知两平面02467:=--+z y mx α与平面0191132:=-+-z my x β相互垂直,求m 的值.解:两平面的法矢分别为()6,1,1--=m n ,()11,3,22m n -=,由1n ⊥2n ,得066212=--m m求出1966-=m 6.已知四点)0,0,0(A , )3,5,2(,-B , )2,1,0(-C , )7,0,2(D , 求三棱锥ABC D -中ABC面上的高.解:已知四点()()()()7,0,2,2,1,0,3,5,2,0,0,0D C B A --,则()()()9,1,2,4,5,0,7,0,2--=--=--=DC DB DA由DC DB DA ,,为邻边构成的平行六面体的体积为()912450702,,-------==DC DB DA V()[]80700090++--++-=()87090-+-=28=由立体几何可知,三棱锥ABC D -的体积为314286161=⨯==-V V ABC D设D 到平面ABC 的高为H则有 ABC ABC D S H V ∆-⋅=31所以 ABCABCD S V H ∆-=3又()()2,1,0,3,5,2-==AC ABk j i kj i AC AB 24721352++=--=⨯ 所以,69212472121222=++=⨯=∆AC AB S ABC 因此,696928692869213143==⨯=H 7.已知点A 在z 轴上且到平面014724:=+--z y x α的距离为7, 求点A 的坐标.解:A 在z 轴上,故设A 的坐标为()200,,,由点到平面的距离公式,得 ()()7724147222=-+-++-z所以69147±=+-z 则692±=z那么A 点的坐标为()692,0,0±A8.已知点.A 在z 轴上且到点)1,2,0(-B 与到平面9326:=+-z y x α的距离相等, 求点A 的坐标。
解:A 在z 轴上,故设A 的坐标为()z ,0,0,由两点的距离公式和点到平面的距离公式得()()()22222232693120+-+-=-+-+z z化简得022974402=+-z z因为()031164229404742<-=⨯⨯--方程无实数根,所以要满足题设条件的点不存在。
习题4.3一计算题与证明题1.求经过点)0,2,1(-P 且与直线011111-=-=-z y x 和0111+=-=z y x 都平行的平面的方程.解:两已知直线的方向矢分别为()()01101121,,,,,-==v v ,平面与直线平行,则平面的法矢()C B A a ,,=与直线垂直由a ⊥1v ,有00=++B A (1) 由a ⊥2v ,有00=--B A (2) 联立(1),(2)求得0,0==B A ,只有0≠C又因为平面经过点()021,,-P ,代入平面一般方程得 ()00C 2010=+⨯+-⨯+⨯D所以0=D故所求平面方程0=Cz ,即0=z ,也就是xoy 平面。
2.求通过点P(1,0,-2),而与平面3x-y+2z-1=0平行且与直线12341zy x =--=-相交的直线的方程.解:设所求直线的方向矢为()p n m v ,,=, 直线与平面0123=-+z x 平行,则v ⊥n ,有023=+-p n m (1)直线与直线12341zy x =--=-相交,即共面 则有0200311124=+---p n m所以01287=+--n m (2)由(1),(2)得87137123212821---=-=--pn m ,即31504-=-=p n m 取4=m ,50-=n ,31-=p ,得求作的直线方程为3125041-+=-=-z y x 3.求通过点)0,0,0(A )与直线141423-=+=-z y x 的平面的方程. 解:设通过点)0,0,0(A 的平面方程为0)0()0()0(=-+-+-z C y B x A 即 0=++Cz By Ax (1)又直线141423-=+=-z y x 在平面上,则直线的方向矢v 与平面法矢n 垂直 所以 02=++C B A (2)直线上的点()4,4,3-也在该平面上,则0443=+-C B A (3)由(1),(2),(3)得知,将C B A ,,作为未知数,有非零解的充要条件为0443112x =-z y即01158=--z y x ,这就是求作的平面方程。