碲镉汞红外探测器的研究

碲镉汞红外探测器的研究
碲镉汞红外探测器的研究

科技项目(课题)模拟申报书

班级:

学号:

课题负责人:

项目名称:碲镉汞红外探测器的研究

指导老师:

申报时间:

电子专业科技方法训练

一、国内外与本项目有关的科学技术现状和发展趋势(包括计算机检索情况):

碲镉汞(MCT)红外探测器是最重要的红外探测器之一。目前,国内MCT 红外探测器水平与国际先进水平还存在一定差距,难以满足我国红外技术发展的需要。然而,由于红外领域的敏感性,国外对我国实行技术上的封锁,因此发展红外光电子材料和器件只能走独立自主的道路。MCT器件的制作非常复杂,周期长且价格昂贵,这使得器件模拟技术成为器件发展的一个重要工具。通过器件模拟技术,人们能知道是什么物理因素制约了探测器性能,从而改善器件性能。它不仅减少了开发的费用,而且为提高产品的质量、可靠性和性能,为器件的优化提供了一种切实可行、省时省力的方法。器件模拟技术已经成为MCT器件设计和制作中的一个重要过程。随着红外技术的不断发展,先进的红外系统要求探测器具有更高的探测识别能力、具备双/多色同时探测能力、更加智能化,因此三代红外焦平面探测器的主要标志是:双/多色探测、超大规模凝视面阵、低成本制备等。其中,双/多色是三代器件的主要发展方向。碲镉汞(HgCdTe,MCT)材料由于具有量子效率高、可高温工作、响应波长随组份变化连续可调、不同组分晶格常数变化不大等显著优点,成为三代红外焦平面探测器件发展的重点之一。双色红外探测器是三代红外探测器发展方向之一,能对双波段辐射信息进行处理,大大提高了系统抗干扰和目标识别能力,应用于导弹预警、红外侦察、成像制导等多种领域。国际上欧美等国家起步较早,焦平面结构以及数字化,而只有叠层式工艺才能实现这一目标,即单个像元能探测两个不同波段,当与先进的多色信息处理算法相结合时,双色红外探测器与单色探测器相比可以进一步提高探测灵敏度。

二、研究内容、方法和技术路线(包括工艺流程):

为加快MCT器件的发展,缩短与国际先进水平的差距,建立与我国自身工艺条件下的材料器件水平相适应的器件模拟平台是十分必要的。本论文正是以此为目的,致力于建立并应用适用于MCT器件模拟的解析模型和数值模型,对我国第二代和第三代探测器进行性能分析、优化和设计;其主要内容如下:

1.MCT光伏探测器的建模研究。建立了适用于MCT器件的载流子浓度近似模型,将MCT材料的导带非抛物线性和载流子简并效应考虑到器件性能模拟当中;并利用解析模型研究了MCT材料的这两种特性对器件暗电流特性的影响。

2.同质MCT光伏探测器的电学性能分析。建立了同质MCT长波探测器的暗特性分析方法,以及提取参数的误差分析方法;使用该方法不仅能分析影响器件性能的暗电流机制,还能提取器件的物理参数。使用该方法对长波器件的变温性能进行了分析研究,获得了器件物理参数随温度的变化规律;并拟合提取了大量长波MCT器件的基本物理参数,获得了反映我所自身工艺条件下MCT器件物理参数值的统计性结果。

3.异质MCT光伏探测器的特性分析。利用数值模型理论分析了MCT异质结的能带结构,研究了pn结与组分结相对位置以及界面电荷密度对器件能带结构的影响,并提出了能带结构的优化设计规律。使用商用软件验证了自编一维数值程序的正确性;利用该程序定量计算了不同组分缓变长度的异质结器件的动态电阻和量子效率,进而得到组分缓变长度对器件性能的影响规律;对应最佳性能器件的组分缓变长度与能带结构优化设计的结果一致。

4.MCT光伏探测器的优化设计研究。通过建立MCT材料参数库,将

DESSIS软件应用于MCT器件模拟。研究了器件吸收层厚度以及界面电荷对器件光响应的影响;理论上得到了吸收层最佳厚度值及降低界面电荷影响的途径。研究设计了一种能够降低平面结型MCT焦平面阵列光串音的新型结构,在理论上验证了在平面结型MCT焦平面阵列上应用微透镜的可行性,提出了微透镜结构参数的设计思路。对单元中波/中波双色探测器的优化设计进行了探索;并对国际上几种主流结构的双色探测器进行了理论模拟和优化设计,理论上获得了最优器件结构。

二代MCT探测器阵列技术在20世纪70年代后期开始发展起来,在以后的十年里达到了量产的阶段,第一个混成结构演示是在70年代中期,探测器与ROIC通过铟柱互连,这样的结构可以对探测器和ROIC单独进行优化、具有近乎100%的填充因子的优点;混成结构也可用环孔工艺制造,即在探测器制造前把探测器和ROIC芯片黏结在一起形成一个独立芯片,环孔是由离子铣刻蚀而成,这种结构提供了比倒装互连混成结构更加稳固的机械和热学特性。在以上两种单色混成结构基础上,发展出了不同的双色探测器结构,由于单片式双色红外焦平面探测器可以避免使用分立阵列而存在的空间对准和时间寄存现象,同时大大简化了光学设计、减少了尺寸、质量和功耗并且降低了成本,欧美很多公司和研究机构对此作了大量的研究工作。下面介绍几种比较典型的双色红外焦平面探测器阵列结构。美国DRS公司在高密度垂直集成光电二极管(HDVIP)结构基础上发展了有自己特色的双色结构[3],如图3所示,是由纵向上两个单波段的HgCdTe单色焦平面芯片与双色SiROIC黏合而成。同ROIC的接触是通过MCT 刻蚀到硅上的一些通路而实现,二极管的n+/n-区通过刻蚀过程本身和随后的离子注入工艺形成。已制作出间距为50μm的MW/MW和MW/LW红外320×240

元焦平面阵列,由480×640元读出集成电路同时读出。这种结构的双色探测器芯片各个波段的探测与单色红外焦平面完全一样,所以具有较好的性能德国AIM公司利用MCT液相外延技术,研制出了一种双色焦平面阵列探测器组件,这也说明了利用AIM公司确立的MCT液相外延技术来制作这种双色器件是可行的。德国AIM公司在三层碲镉汞液相外延薄膜材料上,利用台面刻蚀工艺技术,将上层碲镉汞薄膜材料隔离成岛,露出下层碲镉汞薄膜材料,采用离子注入成结工艺,在两层材料上同时制备出p-n结(如图10所示),再进行电极引出和倒装互连,研制出中波-中波双色192×192[7]。由于液相外延技术存在的一些技术难点,在2003年以后德国AIM公司将双色探测器研制重点放在了量子阱和超晶格的研制上。表1

各公司双色MCTIRFPA探测器性能参数表性能参数公司探测波段光敏元数像元尺寸/像元间距/μm×μm截止波段/μmNETD/mK有效像元/%器件工作温度

/KSOFRADIR/LETIMW/MWSW/MW320×256间距

30×303.2/5.21.0/3.015>99.977AIMMW/MW192×192间距

56×563.4/4.04.2/5.0<30<25RVSMW/LW640×48020×205.5/10.520<25>98>9778M W/LW1280×72020×20DRSMW/LW320×240间距

50×505.2/10.292397.196.3MW/MW320×240间距

50×504.2/5.218.1899.499.677RockwellMW/MW128×12840×403.9/5.9BAEMW/L W64×64间距75×754.3/10.3SelexMW/LW640×512SW/MW320×256间距

24×245.0/10.029.61.65/4.05<22>998090图10

德国AIM公司制备的双色MCTIRFPA截面示意图

BAE(英国、美国)系统公司采用MOCVD多层碲镉汞外延方法,利用微台面技

术,设计和制造了图11所示的p-n-n-n-p型结构的双色64×64凝视型碲镉汞红外焦平面探测器[8],像元尺寸为75μm,截止波长为4.3μm和10.3μm。英国Selex 公司的双色探测器以中波-长波640×512、短波-中波320×256器件为主,已经成为货架产品向外提供。

三、项目主要技术经济指标、社会效益:

(一)技术指标:双色MCT红外焦平面探测器关键制备技术1)双色MCT红外焦平面探测器材料生长技术最开始是用体晶生长技术来制备探测器材料,70年代初期发展起来的液相外延(LPE)技术在经过20多年才发展成熟,在90年代初替代了体晶生长技术成为MCT探测器制备的关键技术之一,用于一代和二代探测器大规模生产,但是LPE技术由于自身的一些特点(如工艺温度高等)不适合三代探测器所需各种先进结构的要求。这些都为分子束外延(MBE)和金属有机物化物气相沉积(MOCVD)技术的发展提供了更大的舞台,这两种技术在80年代初期发展起来,由于MBE的Hg源特殊设计成功的克服了MOCVD在生长时Hg的低黏附系数[9],而且MBE的生长温度不到200℃,而MOCVD的生长温度高达350℃,在这种高温下Hg空位的形成使得其P型层的掺杂非常难于控制,因此目前MBE技术成为多色红外探测器结构多层材料生长的首选技术。

在MBE外延MCT衬底的选择上,主要的有CdZnTe,Si,Ge,GaAs,Sapphire,InSb 等几种:CdZnTe与MCT有好的晶格匹配但是也存在不足,如面积小、成本高、与硅ROIC之间大的热失配等,因此在超大规格FPA(1K×1K,2K×2K等)材料制备上CdZnTe就不适合作为衬底材料;Ge作为一种可供选择的衬底材料,主要是因为Si材料在外延前对氧化层的处理不易,其与硅有着近似的优点,才选择Ge 作为衬底;Si与MCT晶格失配达到19%,所以在Si上外延MCT前要先外延CdTe 等材料的复合衬底结构,尽管如此,但在FPA技术上Si衬底具有非常大的吸引力,这不仅是因为其成本低,而是因为与硅ROIC不存在热失配,这样可以制备更大规格的焦平面芯片,这种结构将具有很好的长时间热循环可靠性。综合来看

在更大规格FPA制备中,Si是目前MCT外延首选的衬底材料。

1、阶段目标:

1、2013年08月,完成各单元的实验研究

2、2013年09月,完成样机制作机软件设计

3、2013年10月,完成样机性能检测

2、最终目标:提供实验数据,样机各种参数和能指导生产的图纸和工艺文件一套,以及整个传感器设计的指导书一份。

(二)经济指标:

预计材料费用约500万元,市场售价定在1—2千元,将受到各高校、研究所、陶瓷生产厂家的欢迎,有较明显的经济效益

(三)社会效益:碲镉汞红外探测器对于工业自动化生产和过程控制对于化工产生有着至关重要的作用,对于全国各大化工厂等生产有着很大的促进作用,也给普通居民的生活带来了很大的便利,所以都有很大的社会效益。

四、项目(课题)计划进度(按年月详细填写):

起止年月计划要求

2013年07月2002年08月2003年09月2003年10月完成调研

完成个单元设计、数据处理方案等实验研究

完成样机的组装、调试、图纸资料等技术文件的编制完成样机的性能测试及技术鉴定

五、现有人才、技术、物质基础条件(包括本课题做过哪些前期工作),现有仪器设

备、水电、燃料、材料、环保等条件:

本项目主要负责人电子技术具有浓厚的兴趣,掌握了扎实的专业基础知识和科研创新能力,对于本次项目的研究有着深厚的理论基础。

本项目的指导老师余石金教授是全国优秀教授,在我校有着很高的声誉,对传感器有着多年深厚的研究,有着多年的项目指导经验,为本次的项目研究提供了理论与技术的保证。

我院的机械电子工程学院对于各类探测器有着多方面的教学和科学技术研究,机电学院的实验室可提供各种实验设备,并可为本项目研究提供各种试验条件。

六、经费预算:

(一)经费的构成:单位:万元

三项经费贷款科技发展基金其它

国家省(市)科委国家省(市)省科委市科委自筹

中国江西0.5 (二)经费年度计划:

2013 年8 月2013 年9 月2013 年10 月

1 1 0.5

(三)三项经费分项计划:

分项内容经费额(万元)备注

1、设备、仪器购置费 1

2、材料样品费0.5

3、试验费0.2 0.3

4、其他费用0.5

5、合计 2.5

七、项目(课题)的承担单位及主要研究人员:

项目(课题)负责人

姓名性别年龄为本课题工作时间(%)在课题中分担的任务所在单位

八、指导老师意见:

该同学在为期三周的科技方法训练过程中,认真查阅相关文献资料,并进行了有效地归纳与总结,最后形成《科技项目(课题)模拟申报书》。本申报书填写格式规范,研究内容详实,研究进展安排合理,符合电子专业科技方法训练的要求。

(签名盖章)

年月日

红外探测技术及红外探测器发展现状

红外探测技术及红外探测器发展现状 中国安防行业网2014/7/25 14:10:00 关键字:红外,探测技术,发展现状浏 览量:6731 一、技术现状 红外探测技术目前主要分为近红外、中红外和远红外三种研究领域。 其中,中红外探测技术由于中红外线的高强度和高穿透性,应用最为广泛,研究也最为成熟,甚至可以分析物质的分子组成; 远红外的主要优点就是其穿透性,可用于探测、加热等,应用也比较广泛。 只有近红外,由于其强度小,穿透力一般,故长期以来没有引起重视,只是近些年来才成为研究热点,因为用近红外技术可以做某些成分的定量检测,最关键的是还不必破坏试样。 (一)技术优势 红外技术有四大优点:环境适应性好,在夜间和恶劣天候下的工作能力优于可见光;隐蔽性好,不易被干扰;由于是靠目标和背景之间、目标各部分的温度和发射率差形成的红外辐射差进行探测,因而识别伪装目标的能力优于可见光;红外系统的体积小,重量轻,功耗低。 (二)制约因素 目标的光谱特性;探测系统的性能;目标和探测口之间的环境和距离——这三大因素是红外技术发展过程中需要解决的主要问题。例如:为充分利用大气窗口,探测器光谱响应从短波红外扩展到长波红外,实现了对室温目标的探测;探测器从单元发展到多元,从多元发展到焦平面,上了两大台阶,相应的系统实现了从点源探测到目标热成象的飞跃;系统从单波段向多波段发展;发展了种类繁多的探测器,为系统应用提供了充分的选择余地。 (三)国内领先技术 红外探测器芯片一直受制于西方政府和供应商。为打破国外技术垄断,2012年4月,高德红外用2.4亿元超募资金实施“红外焦平面探测器产业化项目”。2014年2月25日,高德红外公告,公司“基于非晶硅的非制冷红外探测器”项目成果已获湖北省科技厅鉴定通

红外探测器高性能读出电路的研究

收稿日期:2009-03-30;修订日期:2009-05-08 基金项目:国家自然科学基金资助项目(60806010) 作者简介:姜俊伟(1986-),男,安徽阜阳人,硕士生,主要研究方向为光电探测器集成电路设计。Email:lxjjw2003@https://www.360docs.net/doc/af3442504.html, 导师简介:赵毅强(1964-),男,河北辛集人,教授,博士,主要从事集成电路设计和红外系统方面的研究。Email:yq_zhao@https://www.360docs.net/doc/af3442504.html, 第38卷第5期 红外与激光工程2009年10月 Vol.38No.5 Infrared and Laser Engineering Oct.2009 红外探测器高性能读出电路的研究 姜俊伟,赵毅强,孟范忠,郭 莹 (天津大学电子信息工程学院专用集成电路设计中心,天津300072) 摘 要:设计了一种高性能电容反馈跨阻放大器(CTIA )与相关双采样电路(CDS )相结合的红外 探测器读出电路。该电路采用CTIA 电路实现对微弱电流信号的高精度读出,并通过CDS 电路抑制 CTIA 引入的固定模式噪声(FPN ),最后采用失调校正技术减小CDS 引入的失调,从而减小了噪声对电路的影响,提高了读出电路的精度。采用特许半导体(Chartered)0.35μm 标准CMOS 工艺对电路进行流片,测试结果表明:在20pA ~10nA 范围内该电路功能良好,读出精度可达10bit 以上,线性度达 97%,达到了设计要求。该读出电路可用于长线列及面阵结构红外探测系统。 关键词:电容反馈跨阻放大器;相关双采样电路; 固定模式噪声; 失调校正技术 中图分类号:TN215 文献标识码:A 文章编号:1007-2276(2009)05-0787-05 High performance readout integrated circuit for IR detectors JIANG Jun 蛳wei,ZHAO Yi 蛳qiang,MENG Fan 蛳zhong,GUO Ying (ASIC Design Center,School of Electronic and Information Engineering,Tianjin University ,Tianjin 300072,China) Abstract:A kind of readout integrated circuit (ROIC)for long linear IR detectors,composed of capacitor feedback trans 蛳impedance amplifier (CTIA)and correlated double sample (CDS)circuit,was proposed.The readout accuracy of weak current signal was obviously improved by the CTIA circuit.Besides,in order to reduce the fixed patten noise (FPN)induced by CTIA,CDS circuit with offset calibration technique was utilized.By employing the above techniques,the influence of noise on this circuit was greatly reduced.Meanwhile the precision of the ROIC was improved.The final ROIC chip was fabricated with Chartered 0.35μm standard CMOS processing.Test results show that the readout accuracy could reach up to 10bit during the current varied from 20pA to 10nA,and the linearity could reach up to 97%,which was in perfect accordance with the specification.The ROIC could be applied in long linear and staring array IR detectors systems. Key words:CTIA; CDS; FPN; Offset calibration technique 0引言 近年来,红外探测系统被广泛地应用于工业控制、医疗诊断、环境监测、资源探测、军事侦察和航空 航天等领域[1],集成化、微型化红外探测系统正成为发展趋势。由于红外探测器输出信号十分微弱,读出电路的性能优劣直接影响系统的灵敏度和动态范围,因此,宽探测范围下微弱信号的高精度读出是红外探

吸顶式红外探测器接线说明

485型吸顶式 红外探测器 1. 简介 1.1 概述 RS-HW-N01为高稳定性被动红外探测器。采用先进的信号分析处理技术,具有超高的探测和防误报性能。当有入侵者通过探测区域时,探测器将自动探测区域内人体的活动。如有动态移动现象,则会产生报警,设备为485输出,标准的Modbus-RTU协议,可二次开发。适合家庭住宅区、楼盘别墅、厂房、仓库、商场、写字楼等场所的安全防范。 1.2 参数指标 ■供电电源:10~30V DC ■功耗:0.4W ■技术话电:156.2895.6186 ■传感器类型:双元热释红外传感器 ■报警延时:30s、10s、5s输出可选 ■安装方式:吸顶 ■安装高度:2.5~6m ■探测范围:直径6m(安装高度3.6m时) ■探测角度:全方位360° ■信号输出:RS485 ■通信协议:Modbus-RTU ■工作环境:-10℃~50℃,≤95%,无凝露 1.3 功能特点 ■采用8-bit低功耗CMOS处理器 ■具有自动温度补偿功能 ■抗RFI干扰:20~1000MHZ(如移动通信) ■三种报警延时输出可选

1.4 系统框架图 系统方案框图 2. 外形尺寸 1号设备 2号设备 3号设备 n 号设备 485总线 USB 转485或232转485 10~30V DC UPS 电源(选配) AC220V 市电 监控电脑

3. 安装与使用说明 3.1 设备安装前检查 设备清单: ■红外设备1台 ■合格证、保修卡、售后服务卡等 ■12V/2A防水电源1台(选配) ■USB转485(选配) 3.2 接线说明 宽电压电源输入10~30V均可。485信号线接线时注意A\B两条线不能接反,总线上多台设备间地址不能冲突。 线色说明备注 棕色电源正10~30V DC 黑色电源负 黄色485-A 蓝色485-B 3.3 安装说明 1)选定合适的位置,用螺钉将安装底板固定在天花板上,再将探测器挂上 2)建议安装高度为2.5~6m 3)安装位置应避免靠近空调、电风扇、电冰箱、烤箱及可引起温度迅速变化的物体,同时应避免太阳光直射在探测器 4)探测器透镜前面避免有物体遮挡,以免影响探测效果 3.4 使用说明 1)按说明接好线,然后盖上探测器盖盒 2)接通电源,指示灯闪烁,探测器进入自检状态 3)60s后指示灯熄灭,探测器进入正常检测状态,此刻如果有人在探测器覆盖区域内走动,LED指示灯亮,同时RS485报警输出 4)LED ON跳帧控制LED指示灯是否有提示,不影响探测器正常工作

双鉴红外探测器工作原理

微波—被动红外复合的探测器,它将微波和红外探测技术集中运用在一体。在控制范围内,只有二种报警技术的探测器都产生报警信号时,才输出报警信号。它既能保持微波探测器可靠性强、与热源无关的优点又集被动红外探测器无需照明和亮度要求、可昼夜运行的特点,大大降低探测器的误报率。这种复合型报警探测器的误报率则是单技术微波报警器误报率的几百分之一。简单的说,就是把被动红外探测器和微波探测器做在了一起,主要是提高探测性能,减少误报。除此之外,市场上也有把微波和主动红外、振动探测器、声音探测器等组合的产品,大家可参考说明书了解。 被动红外探测技术是一探测人体红外辐射与背景物体(墙、家具、树木、地形等)红外辐射相比较而产生的差异部分依据的,背景红外辐射量往往是微弱而稳定的。入侵者(包括各种动物在内)的红外辐射量往往是大的,可以引起警报信号。如果只用一种技术进行探测,各种动物(如狗、猫、老鼠等)及各种非动物的红外辐射源(如暖气、强灯光、太阳光等)往往也会引起警报的,这种报警是符合工作原理的,专门从事双技术探测器研究的科研人员,将微波探测技术和被动红外探测技术组合在一个机壳里构成一种入侵探测器。组成的这种双技术探测器,都选用了不同的工作原理的两种技术组合在一起,使从工作原理上无法避免的误报警的到了抑制。因为双技术探测器要求两种技术都提供报警信息时,才提供一个触发报警信息。其中任何一种提供报警信息,都不触发报警。因此使误报问题得到有效的控制,同时也扩大了探测器的使用范围 微波红外复合探测器的内部结构 下图中是一款有线红外微波复合探测器,其中最上端部分为信号接收、信号处理、信号输出部分;中间为微波探测,下端为红外探测;

中远红外探测器发展动态

中远红外探测器发展动态 1 红外光电探测器的的历史 红外探测成像具有作用距离远、抗干扰性好、穿透烟尘雾霾能力强、可全天候、全天时工作等优点在军用和民用领域都得到了极为广泛的应用按照探测过程的物理机理,红外探测器可分为两类即热探测器和光电探测器。光电探测器的工作原理是目标红外辐射的光子流与探测器材料相互作用,并在灵敏区域产生内光电效应。因具有灵敏度高、响应速度快的优点,光电探测器在预警、精确制导、火控和侦察等红外探测系统中得到广泛应用。 红外焦平面阵列可探测目标的红外辐射,通过光电转换、电信号处理等手段,可将目标物体的温度分布图像转换成视频图像,是集光、机、电等尖端技术于一体的红外光电探测器H。目前许多国家,尤其是美国等西方军事发达国家,都花费大量的人力、物力和财力进行此方面的研究与开发,并获得了成功。红外光电探测器研究从第一代开始至今已有40余年历史,按照其特点可分为三代。第一代(1970s~1980s)主要是以单元、多元器件进行光机串/并扫描成像,以及以4×288为代表的时间延迟积分(TDI,time delay integration)类扫描型(scanning)红外焦平面列阵。单元、多元探测器扫描成像需要复杂笨重的二维、一维扫描系统结构,且灵敏度低。第二代红外光电探测器是小、中规格的凝视型(staring)红外焦平面列阵。M×N凝视型红外焦平面探测元数从1元、N元变成M×N元,灵敏度也分别从l与N1/2增长M×N1/2倍和M1/2。而且,大规模凝视焦平面阵列,不再需要光机扫描,大大简化整机系统。 目前,正在发展第三代红外光电探测器。探测器具有大面阵、小型化、低成本、双色(two-color)与多色(multi-color)、智能型系统级灵巧芯片等特点,并集成有高性能数字信号处理功能,可实现单片多波段融合高分辨率探测与识别。因此,本文将重点综述三代红外光电探测器的材料体系及其研究现状,并分析未来红外光电探测器的材料选择及发展趋势。 2 三代探测器的材料体系与发展现状 红外光电探测器的材料很多,但真正适于发展三代红外光电探测器,即响应波段灵活可调的双色与多色红外焦平面列阵器件的材料则很少。目前,主要有传统的HgCdTe和QWIPs,以及新型的二类SLs和QDIPs,共四个材料体系。作为

芯片红外焦探测器

芯片红外焦探测器 根据红外焦平面阵列芯片的组成方式红外焦平面探测器的渎出电路和信号处理电路通常集成在同一硅片上,要求读出电路具有高电荷容量、高转移效率、低噪声和低功耗。读出电路最常用的KEMET有CCD和CMOS两种工艺。CCD工艺的优点是响应均匀、噪声低;CMOS工艺的优点是转移注入效率高、抑制红外(直流)背景能力强、响应动态范围大、功耗小(工作电压低)、漏电流小、速度快、集成度更高、外引线更少,成品率高、成本更低,易于与红外探测器芯片工艺集成等,因此CCD与CMOS T艺成为红外焦平面探测器读出电路的主要工艺方法。信号处理电路功能包括增益控制、背景抑制、抗光晕等。而红外焦平面探测器应用中还要进行的非均匀校正、盲元填充等功能要由其他外围电路去完成。 一:红外焦平面探测器的介绍: 将红外辐射能转换为电能或其他物理量的器件称为红外探测器。红外探测器 分为红外光量子探测(光电伏特效应,光伏型)和热探测(热电效应,最常见光导型)二类,当前高性能红外焦平面探测器主要是量子效率较高的光伏型探测器。根 据大气对红外辐射透射率窗口,TDK电感红外探测器覆盖的红外波段为短波、中波、长波和超长波。 从1956年开始,以美国生产非制冷的硫化铅红外探测器(工作波段1~3μm)为导引的“响尾蛇”空空导弹为标志,红外探测器的军事应用进入了飞速发展阶段。首先是对化铅探测器进行制冷,大大提高了探测灵敏度;相继又出现了锑化铟、碲 镉汞等多种新材料、多响应元及不同排列方式(线列、面阵)等构成多品种的实用 均红外探测器,冉加适当的光机电扫描获得红外图像信息,实现了全天时昼夜红外 成像,于红外成像侦察、成像制导等武器装备,可实时获取战场情报、对来袭目标 告警,并大大提高武器打击精度,是带动现代战争模式变革的主要技术因素之一。 随着探测器像元规模的断扩大,需要的信号放大和处理电路(一般在非制冷环境) 数量也越来越多,其引线数、体积、重量、耗电量、参数一敛性和可靠性等因素使 得探测器像元不得不控制在一定的围内(一般在200元以下),严重制约了红外探

红外技术的发展现状与发展趋势

红外技术的发展现状与发展趋势 第一部分红外技术的发展及主要应用领域 红外技术的发展 1800年,英国天文学家F.W.赫歇耳利用水银温度计来研究太阳光的能量分布发现了红外辐射,从那时起,人们就致力于研究各种红外探测器以便更好地研究和探测红外辐射。在红外探测器发展中,以下事件具有重要意义: 上世纪70年代,热成像系统和电荷耦合器件被成功地应用。 上世纪末以焦面阵列(FPA)为代表的红外器件被成功地应用。 红外技术的核心是红外探测器。 红外探测器 单元红外探测器:如InSb(锑化铟)、HgCdTe(碲镉汞)、非本征硅,以及热电等探测器。 线列:以60元、120元、180元和256元等,可以拼接到1024元甚至更多元。 4N系列扫描型焦平面阵列:如211所的研制生产的4x288。 凝视型焦平面阵列(IRFPA): 致冷型256x256、320x240、384x288,更大规模的如640x512,1024×1024和1280×720 元阵列也已有了; 非致冷型160×120、320x240已广泛应用于各个行业中,384x288、640x480也已开始应用。 红外探测器按其特点可分为四代: 第一代(1970s-80s):主要是以单元、多元器件进行光机串/并扫描成像; 第二代(1990s-2000s):是以4x288为代表的扫描型焦平面; 第三代:凝视型焦平面; 第四代:目前正在发展的以大面阵、高分辨率、多波段、智能灵巧型为主要特点的系统芯片,具有高性能数字信号处理功能,甚至具备单片多波段探测与识别能力。 目前非制冷焦平面探测器的主流技术为热敏电阻式微辐射热计,根据使用的热敏电阻材料的不同可以分为氧化钒探测器和非晶硅探测器两种。 非制冷焦平面阵列探测器的发展,其性能可以满足部分的军事用途和几乎所有的民用领域,真正实现了小型化、低价格和高可靠性,成为红外探测成像领域中极具前途和市场潜力的发展方向。 氧化钒技术由美国的Honeywell公司在九十年代初研发成功,目前其专利授权BAE、L-3/IR、 FLIR-INDIGO、DRS、以及日本NEC、以色列SCD等几家公司生产。非晶硅技术主要由法国的 CEA/LETI/LIR实验室在九十年代末研发成功,目前主要由法国的SOFRADIR和ULIS公司生产。 目前世界上只有美国、法国、日本、以色列四个国家拥有非制冷焦平面探测器产业化生产的能力,其核心技术仅有美国和法国两个国家掌握,日本和以色列则由美国取得技术许可,在其国内生产和有限制地使用。对我国的出口则设置了更多严格的限制,如大家遇到的帧频限制。

红外探测器简介

红外探测器 设计研发部-平 一、红外探测器市场以及应用领域 红外探测技术目前主要分为近红外、中红外和远红外三种研究领域。其中,中红外探测技术由于中红外线的高强度和高穿透性,应用最为广泛,研究也最为成熟;远红外的主要优点就是其穿透性,可用于探测、加热等,应用也比较广泛。近红外,由于其包含氢氧键、碳氢键、碳氧键等功能键的特征吸收线。大气中的水气、二氧化碳、大气辉光等也集中在这个波段。特有的光谱特性使得短波红外探测器可以在全球气候监测、国土资源监测、天文观测、空间遥感和国防等领域发挥重大作用。红外探测器广泛应用于军事、科学、工农业生产和医疗卫生等各个领域,尤其在军事领域,红外探测器在精确制导、瞄准系统、侦察夜视等方面具有不可替代的作用。随着红外探测技术的飞速发展,红外探测器在军事、民用等诸多领域都有着日益广泛的应用。作为高新技术的红外探测技术在未来的应用将更加广泛,地位更加重要。 小型红外探测器是受价格驱动的商品市场,而中型和大型阵列探测器则是受成本和性能驱动的市场,并且为新产品提供了差异化的空间。但是在每种红外探测器技术(如热电/热电偶/微测辐射热计)之间存在着巨大的障碍。由于这些技术都是基于不同的制造工艺,如果没有企业合并或收购,很难从一种技术转换到另外一种技术。 红外探测器已进入居民日常安防中,其中主动式红外探测器遇到

树叶、雨、小动物、雪、沙尘、雾遮挡则不应报警,人或相当体积的物品遮挡将发生报警。主动红外探测器技术主要采用一发一收,属于线形防,现在已经从最初的单光束发展到多光束,而且还可以双发双收,最大限度地降低误报率,从而增强该产品的稳定性,可靠性。据美国相关公司市场调研分析师预测,全球军用红外探测器需求额有望在2020年达到163. 5亿美元,复合年均增长率为7. 71%。 红外探测器按探测机理可分为热探测器和光子探测器,按其工作中载流子类型可以分为多数载流子器件和少数载流子器件两大类,按照探测器是否需要致冷,分为致冷型探测器和非致冷型探测器。非致冷探测器目前主要是非晶硅、氧化钒和InGaAs等探测器,致冷型探测器主要包括碲镉汞三元化合物、量子阱红外光探测器Ⅱ类超晶格等。在过去的几十年里,大量的新型材料、新颖器件不断涌现,红外光电探测器完成了第一代的单元、多元光导器件向第二代红外焦平面器件的跨越,目前正朝着以大规模、高分辨力、多波段、高集成、轻型化和低成本为特征的第三代红外焦平面技术的方向发展。 二、焦平面红外探测器应用现状 热探测器的应用早于光子探测器。热探测器包括热释电探测器、温差电偶探测器、电阻测辐射热计等。热探测器具有宽谱响应、室温工作的优点,但是它响应时间较慢、高频时探测率低,目前主要应用于民用领域。光子探测器是基于光电效应制备的探测器,通过配备致冷系统,具有高量子效率、高灵敏度、低噪声等效温差、快速响应等优点。在军事领域,光子探测器占据主导地位。常用的光子探测器有

各种探测器介绍说明资料讲解

报警系统由哪几部分组成? 简单的报警系统由前端探测器、中间传输部分和报警主机组成。大一些的系统也可将探测器和报警主机看做是前端部分,从报警主机到接警机之间是传输部分,中心接警部分看做是后端部分。 报警系统按信息传输方式不同,可分哪几种? 按信息传输方式不同,从探测器到主机之间可分为有线和无线2种。从主机到中心接警机之间也可分为有线和无线2种,其中有线系统还可分为基于电话线传输和基于总线传输2种类型。 探测器分为哪几种类型?市面上常见的有哪些类型? 红外、微波、震动、烟感、气感、玻璃破碎、压力、超声波等等。其中红外探测器还可分为主动红外和被动红外,烟感还可分为离子式和光电式。市面上常见的有红外探测器(被动红外)、对射、栅栏(主动红外)、双鉴探测器、震动探测器、玻璃破碎探测器。 主动红外探测器的工作原理? 主动红外探测器由红外发射器和红外接收器组成。红外发射器发射一束或多数经过调制过的红外光线投向红外接收器。发射器与接收器之间没有遮挡物时,探测器不会报警。有物体遮挡时,接收器输出信号发生变化,探测器报警。 被动红外探测器工作原理? 被动红外探测器中有2个关键性元件,一个是菲涅尔透镜,另一个是热释电传感器。自然界中任何高于绝对温度(-273o)的物体都会产生红外辐射,不同温度的物体释放的红外能量波长也不同。人体有恒定的体温,与周围环境温度存在差别。当人体移动时,这种差别的变化通过菲涅尔透镜被热释电传感器检测到,从而输出报警信号。 微波探测器工作原理? 微波探测器应用的是多普勒效应原理。在微波段,当以一种频率发送时,发射出去的微波遇到固定物体时,反射回来的微波频率不变,即f发=f收,探测器不会发出报警信号。当发射出去的微波遇到移动物体时,反射回来的微波频率就会发生变化,即f发≠f收,此时微波探测器将发出报警信号。 什么是双元红外探测器?什么是四元红外探测器?

红外探测器的原理特点与安装

红外探测器的原理特点与安装 前言 红外探测器是防盗报警系统中最关键的组成部分,直接决定系统的灵敏性与稳定性,是整个系统品质的保障。中国安防厂商在这些年来,无论在技术的掌握与生产能力的提升上,均有明显的改善,这得归功于中国厂商不断吸收外商的产品设计和生产技术,并致力于降低成本,使中国安防产品开始得到工程商们的认同,加上低价对于甲方有着重要的吸引力,使得国产品在市场上成长迅速。虽然国产品的品质仍与进口产品有段差距,但在用户对安防产品不熟悉的情况下,中国安防产品仍极具竞争优势。 许多外国厂商也承认,以前外商大幅依靠技术优势来应对中国国产品的成本优势,但近年来差距已经缩小,优势渐减,可见中国厂商在技术上已经逐步赶上国外厂商,部分厂商更具有创新能力,推出具特色的产品,使得中国安防产品的水准大幅提高。这个现象主要来自许多厂商对于品牌意识与产品质量的重视,加大了投资与研发力度。 红外探测器的原理及特点 人体都有恒定的体温,一般在37度左右,会发出特定波长10gm左右的红外线,被动红外探测器就是靠探测人体发射的10gm左右的红外线而进行工作的。人体发射的10gm左右的红外线通过菲涅尔滤 光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。 1?被动红外探测器是以探测人体辐射为目标的,所以热释电元件对波长为10gm 左右的红外辐射必须非常敏感。 2?为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲涅尔滤光片,使环境的干扰受到明显的控制作用。 3?其传感器包含两个互相串联或并联的热释电元件。而且制成的两个电极化方 向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。 4 ? 一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元 接收,但是两片热释电元接收到的热量不同,热释电也不同不能抵消,经信号处理而报警。 被动红外深测器优缺点 优点:本身不发任何类型辐射,器件功耗很小,隐蔽性较好,价格低廉。 缺点:容易受各种热源、阳光源干扰;被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探测器接收;易受射频辐射的干扰;环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵。 如何正确安装与使用被动红外探测器 被动红外探测器是一种在安防工程中使用极为普遍的一类探测器。但要其正常使用,既要防止漏报, 又要减少误报,主要是将误报现象降到最低的限度。要做到这一点,必须首先要了解被动红外探测器的一些基本概念

红外探测器原理

红外探测器原理 安防2007-10-16 10:17:07 阅读888 评论3 字号:大中小订阅 被动红外探测器 凡是温度超过绝对0℃的物体都能产生热辐射,而温度低于1725℃的物体产生的热辐射光谱集中在红外光区域,因此自然界的所有物体都能向外辐射红外热。而任 何物体由于本身的物理和化学性质的不同、本身温度不同所产生的红外辐射的波 长和距离也不尽相同,通常分为三个波段。 近红外:波长范围0.75~3μm 中红外:波长范围3~25μm 远红外:波长范围25~1000μm 人体辐射的红外光波长3~50μm,其中8~14μm占46%,峰值波长在9.5μm。㈠被动红外报警探测器 在室温条件下,任何物品均有辐射。温度越高的物体,红外辐射越强。人是恒温动物,红外辐射也最为稳定。我们之所以称为被动红外,即探测器本身不发 射任何能量而只被动接收、探测来自环境的红外辐射。探测器安装后数秒种已适 应环境,在无人或动物进入探测区域时,现场的红外辐射稳定不变,一旦有人体 红外线辐射进来,经光学系统聚焦就使热释电器件产生突变电信号,而发出警报 。被动红外入侵探测器形成的警戒线一般可以达到数十米。 被动式红外探测器主要由光学系统、热传感器(或称为红外传感器)及报警 控制器等部分组成。其核心是不见是红外探测器件,通过关学系统的配合作用可 以探测到某个立体防范空间内的热辐射的变化。红外传感器的探测波长范围是8~14μm,人体辐射的红外峰值波长约为10μm,正好在范围以内. 被动式红外探测器(Passive Infared Detector,PIR)根据其结构不同、警 戒范围及探测距离也有所不同,大致可以分为单波束型和多波束型两种。单波束PIR采用反射聚焦式光学系统,利用曲面反射镜将来自目标的红外辐射汇聚在红外传感器上。这种方式的探测器境界视场角较窄,一般在5°以下,但作用距离较远,可长达百米。因此又称为直线远距离控制型被动红探测器,适合保护狭长的走廊、通道以及封锁门窗和围墙。多波束型采用透镜聚焦式光学系统,目前大都采 用红外塑料透镜——多层光束结构的菲涅尔透镜。这种透镜是用特殊塑料一次成

红外探测器

红外探测器 一、简介 红外探测器(Infrared Detector)是能把接收到的红外辐射能转换成一种便于计量的物理量的器件,将入射的红外辐射信号转变成电信号输出的器件。 红外辐射是波长介于可见光与微波之间的电磁波,人眼察觉不到。要察觉这种辐射的存在并测量其强弱,必须把它转变成可以察觉和测量的其他物理量。一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。现代红外探测器所利用的主要是红外热效应和光电效应。这些效应的输出

大都是电量,或者可用适当的方法转变成电量。 二、发展历史 1800年,F.W.赫歇耳在太阳光谱中发现了红外辐射的存在。当时,他使用的是水银温度计,即最原始的热敏型红外探测器。 1830年,L.诺比利利用当时新发现的温差电效应(也称塞贝克效应),制成了一种以半金属铋和锑为温差电偶的热敏型探测器。称作温差电型红外探测器(也称真空温差电偶)。其后,又从单个温差电偶发展成多个电偶串联的温差电堆。 1880年,S.P.兰利利用金属细丝的电阻随温度变化的特性制成另一种热敏型红外探测器,称为测辐射热计。1947年,M.J.E.高莱发明一种利用气体热膨胀制成的气动型红外探测器(又称高莱管)。 在40年代,又用半导体材料制作温差电型红外探测器和测辐射热计,

使这两种探测器的性能比原来使用半金属或金属时得到很大的改进。半导体的测辐射热计又称热敏电阻型红外探测器。热敏电阻型红外探测器:用氧化物半导体制成很小的薄片,表面涂黑。当薄片吸收红外辐射而温度升高时,电阻发生变化,用电阻的改变量度量红外辐射的强弱。 60年代中期,出现了热释电型探测器。它也是一种热敏型探测器。 三、类别及基本原理 不同种类的物体发射出的红外光波段是有其特定波段的,该波段的红外光处在可见光波段之外。因此人们可以利用这种特定波段的红外光来实现对物体目标的探测与跟踪。将不可见的红外辐射光探测出并将其转换为可测量的信号的技术就是红外探测技术。 热效应探测器:热效应探测器吸收红外辐射后,温度升高,可以使探测材料产生温差电动势、电阻率变化,自发极化强度变化,或者气体体积与压强变化等,测量这些物理性能的变化就可以测定被吸收的红外辐射能量或功率。

焦平面红外探测器应用现状

焦平面红外探测器应用现状 0 引言 红外探测器广泛应用于军事、科学、工农业生产和医疗卫生等各个领域,尤其在军事领域,红外探测器在精确制导、瞄准系统、侦察夜视等方面具有不可替代的作用。近年来,红外探测器的需求不断增加。据美国相关公司市场调研分析师预测,全球军用红外探测器需求额有望在2020年达到163.5亿美元,复合年均增长率为7.71%。 红外探测器按探测机理可分为热探测器和光子探测器,按其工作中载流子类型可以分为多数载流子器件和少数载流子器件两大类,按照探测器是否需要致冷,分为致冷型探测器和非致冷型探测器。非致冷探测器目前主要是非晶硅和氧化钒探测器,致冷型探测器主要包括碲镉汞三元化合物、量子阱红外光探测器Ⅱ类超晶格等。 在过去的几十年里,大量的新型材料、新颖器件不断涌现,红外光电探测器完成了第一代的单元、多元光导器件向第二代红外焦平面器件的跨越,目前正朝着以大规模、高分辨力、多波段、高集成、轻型化和低成本为特征的第三代红外焦平面技术的方向发展。 1 焦平面红外探测器应用现状 热探测器的应用早于光子探测器。热探测器包括热释电探测器、温差电偶探测器、电阻测辐射热计等。热探测器具有宽谱响应、室温工作的优点,但是它响应时间较慢、高频时探测率低,目前主要应用于民用领域。光子探测器是基于光电效应制备的探测器,通过配备致冷系统,具有高量子效率、高灵敏度、低噪声等效温差、快速响应等优点。在军事领域,光子探测器占据主导地位。常用的光子探测器有碲镉汞(HgCdTe)、InAs / InGaSb Ⅱ类超晶格、GaAs / AlGaAs量子阱等。近年来量子点红外光探测器也引起广泛关注,量子点红外光探测器在理论上具有很多优点,但实际制备的量子点红外光探测器与理论预测的还是有一定差距。表1对几种常用的光子型焦平面红外探测器进行了比较。 在精确制导领域,主流制导方式有红外制导和雷达制导,这两种方式各有优势,在某些特定的场合,红外制导更是显示出其不可替代性。与雷达制导的主动探测相比,红外探测是

2019年红外探测器行业分析报告

2019年红外探测器行业分析报告 2019年7月

目录 一、红外基本概念及其主要应用 (5) 1、红外线不为人眼所见但却无处不在 (5) 2、红外探测可实现夜视、测温、穿透云雾等功能,军民两用空间广阔 (7) 3、短/中/长波红外探测适用场景各不相同 (9) (1)短波红外原理及应用 (10) (2)中长波原理及应用 (11) 4、红外探测器是红外产业链的核心 (12) 二、红外探测器原理与核心指标 (13) 1、热探测器和光子探测器 (13) 2、单元数日益增加,红外焦平面探测器已是主流 (14) 3、阵列规模、NETD、像元间距是红外探测器的核心指标 (18) 三、主流红外探测器类型及其特点 (20) 1、红外探测器发展历程 (20) 2、制冷型红外探测器 (23) (1)碲镉汞红外探测器 (23) (2)量子阱红外探测器(QWIPs) (25) (3)II类超晶格红外探测器(II-SLs) (26) (4)量子点红外探测器(QDIPs) (27) 3、非制冷型红外探测器 (28) (1)VOx微测辐射热计 (29) (2)非晶硅微辐射测热计 (30) (3)短波红外传感器 (32) 4、未来发展趋势 (32)

四、红外探测器制造企业及其技术路线 (33) 1、国外红外探测器企业 (33) (1)Raytheon Vision Systems(RVS) (33) (2)Teledyne Imaging Sensors(TIS) (34) (3)Sofradir(法国) (35) (4)Leonardo DRS (36) (5)Semi Conductor Devices(SCD) (36) (6)FLIR system (37) 2、国内红外探测器研究机构 (39) (1)上海技物所 (39) (2)中电11所 (40) (3)北方夜视集团 (41) (4)高德红外 (42) (5)大立科技 (43) (6)睿创微纳 (44) (7)国惠光电 (45) (8)海康微影 (46)

红外探测报警电路设计

摘要 本设计给出了一种基于热释电红外传感器的被动型红外探测报警电路,该电路能探测人体发出的红外线,当有人进入传感器的探测区域内时,即可发出报警声。该红外探测报警电路在原理上主要由信号检测电路、信号放大电路、电压比较电路以及报警电路组成,本设计将在对各个模块电路的功能及电路参数计算的基础上,实现模拟仿真,以对本设计提出的实现方案进行验证。 关键词:热释电红外传感器;红外探测;报警

目录 1 概述 (1) 2 红外报警电路总体方案 (2) 2.1总体方案框图 (2) 2.2各模块电路功能说明 (2) 2.2.1 电源电路 (2) 2.2.2 信号检测电路 (3) 2.2.3 信号放大电路 (3) 2.2.4 电压比较电路 (4) 2.2.5 报警电路 (4) 3 模块电路设计 (5) 3.1电源电路 (5) 3.2信号检测电路 (6) 3.3信号放大电路 (7) 3.3.1 电路功能分析 (7) 3.3.2 电路参数计算 (10) 3.4电压比较电路 (13) 3.5报警电路 (15) 3.5.1 HEF4538B触发控制电路 (15) 3.5.2 KD9561报警电路 (16) 4 电路仿真 (17) 4.1信号放大电路仿真 (18) 4.1.1 测试信号 (18) 4.1.2 放大电路输出波形 (19) 4.2电压比较电路仿真 (24) 5 课程设计总结及体会 (24) 5.1课程设计总结 (25) 5.2设计体会 (26) 参考资料 (27) 附录A 红外传感器报警电路原理图 (28) 附录B 红外传感器报警电路元器件清单 (29)

红外探测报警电路设计 1 概述 随着时代的不断进步,人们对自己所处环境的安全性提出了更高的要求,尤其是在家居安全方面,不得不时刻留意那些不速之客。现在很多小区都安装了智能报警系统,因而大大提高了小区的安全程度,有效保证了居民的人身财产安全。 由于红外线是不可见光,有很强的隐蔽性和保密性,因此在防盗、警戒等安保装置中得到了广泛的应用。此外,在电子防盗、人体探测等领域中,被动式热释电红外探测器也以其价格低廉、技术性能稳定等特点而受到广大用户和专业人士的欢迎。 在本设计中采用热释电红外传感器来进行被动式红外报警电路的设计,这种热释电红外传感器能以非接触形式检测出人体辐射的红外线,并将其转变为电压信号,同时,它还能鉴别出运动的生物与其它非生物。热释电红外传感器既可用于防盗报警装置,也可以用于自动控制、接近开关、遥测等领域。采用该种红外传感器设计的报警电路与目前市场上销售的大多数报警器材相比具有以下特点: ●不需要红外线或电磁波等发射源; ●灵敏度高,控制范围大; ●隐蔽性好,可流动安装。 由于具有以上特点,热释电红外传感器被广泛应用于各种防盗监控系统中,为人们所居住的环境的安全性提供了可靠保障。

红外探测器原理及电路图

D1发射红外线,D2接收红外信号。LM567第⑤、⑥脚为译码中心频率设定端,一般通过调整其外接可变电阻W改变捕捉的中心频率。图中红外载波信号来自LM567的第5角,也即载波信号与捕捉中心频率一致,能够极大的提高抗干扰特性。 音频译码器LM567作用器要领 1、LM567输出部分与普通数字IC等有所不同,其内部是一个集电极开路的NPN型三极管,使用时,⑧脚与正电源间必须接一电阻或者其它负载,才能保证IC译码后输出低电平。 2、实验表明:LM567接通电源瞬间,⑧脚会输出一低电平脉冲。因此,用于作遥控器译码控制时,应在输出端后加装RC积分延时电路,以免每次断电后,重新复电时产生误动作。 3、LM567第⑤、⑥脚为译码中心频率设定端,一般通过调整其外接可变电阻W改变频率,经笔者实验发现,当W阻值变为0Ω或无限大时,⑧脚电平状态即使无信号输入时也会变为低电平,因此,在调整W时,不能使其短路或开路。 4、LM567的工作电压对译码器的中心频率有所影响,故最好采用稳压供电。 5、LM567②脚外接电容决定着锁相环捕捉带宽,容量越小,捕捉带宽越宽,但使用时,不可为增大捕捉带宽而一味减小电容容量,否则,不但会降低抗干扰能力,严重时还会出现误触发现象,降低整机的可靠性 1. 概述 集成锁相环路解码器LM567是美国国家半导体公司生产的56系列集成锁相环路中的一种,其同类产品还有美国Signetics公司的SE567/INE567等。LM567是一个高稳定性的低频集成锁相环路解码器,由于其良好的噪声抑制能力和中心频率稳定性而被广泛应用于各种通讯设备中的解码以及AM、FM信号的解调电路

中。 2. LM567内部结构及工作原理 LM567为8脚直插式封装,其内部结构、引脚定义及外围元件连接方法如图1所示。 LM567内部包含了两个鉴相器PD1及PD2、放大器AMP、电压控制振荡器VCO等单元电路。鉴相器PD1、PD2均采用双平衡模拟乘法器电路,在输入小信号情况下(约几十mV),其输出为正弦鉴相特性,而在输入大信号情况下(几百mV以上),其输出转变为线性(三角)鉴相特性。锁相环路输出信号由电压控制振荡器VCO 产生,电压控制振荡器的自由振荡频率(即无外加控制电压时的振荡频率)与外接定时元件RTCT的关系式为: f0≈1/1.1RTCT 选用适当的定时元件,可使LM567的振荡频率在0.01Hz~500kHz范围内连续变化。电路工作时,输入信号在鉴相器PD1中与VCO的输出信号鉴相,相差信号经滤波回路滤波后,成为与相差成一定比例的电压信号,用于控制VOC输出频率 f0跟踪输入信号的相位变化。若输入信号频率落在锁相环路的捕获带内,则环路锁定,在振荡器输出频率与输入频率相同时,二者之间只有一定相位差而无频率差。 环路用于FM信号解调时,脚2输出的经过滤波后的相差信号可作为FM解调信号的输出,而当环路用于单音解调时,电路则利用PD2输出的相差信号。 PD2的工作方式与PD1略有不同,它是利用压控振荡器输出的信号f0经90°移相后再与输入信号进行鉴相,是一正交鉴相器。在环路锁定情况下,PD2的两个输入信号在相位上相差约为90°,因而PD2的输出电压达到其输出范围内的最大值,再经运算放大器AMP反相,在其输出端输出一个低电平。AMP的输出端为OC输出方式,低电平输出时可吸收最大100mA的输出电流。该端口的低电平输出信号除可由上拉电阻转换为电压信号以与TTL或CMOS接口电路相匹配外,还可直接驱动LED及小型继电器等较大负载。LM567的电气参数如表1所列。值得一提的是,接在2脚的环路滤波电容C2与内部电阻一道构成锁相环路的RC积分滤波器,该滤波器时间常数的大小在很大程度上决定了锁相环路的环路带宽BW 的大小。当BW较大时,捕获范围大而稳定性差。减小BW则正好相反,其稳定性较好而捕获范围变小。LM567的环路带宽BW可由下式计算: BW=1070(Vi/f0C2)1/2 式中,Vi为输入信号的幅值(rms) C2为滤波电容的容量(单位为μF) 实际上,由上式计算得出的并不是环路带宽BW的实际值,而是环路带宽BW与环路中心频率f0的百分比,其值再乘上100%才是锁相环路的实际捕获带宽。实际应用中调整C2的大小可使BW在0%~4%范围内变化。BW宽度与f0C2乘积之间的关系如图2。LM567在正常工作时的最小输入信号为20mV。当用于单音解码时,其工作特性为:当LM567信号输入端加入幅度为20mV以上的交流信号且频率落入f0±BW范围内时,输出端输出一个低电平的检测信号,这就是所谓的“频率继电器”特性。利用这一特性,LM567可广泛应用于各种低频单一频率信号的解码。 3. LM567的应用 根据实际工作需要,我们利用LM567的“频率继电器”工作方式,设计了一个脉冲光电检测电路,用于生产线上工作的计数及工位检测。具体电路如图

(仅供参考)红外焦平面探测器普及知识

红外焦平面探测器普及知识 红外焦平面阵列(IR FPA)技术已经成为当今红外成像技术发展的主要方向。红外焦平面阵列像元的灵敏度高,能够获取更多的信息以及更高的可变帧速率。红外焦平面阵列探测器对入射的红外能量进行积分,然后产生视频图像,经过调节后被提供给视频显示器,以供人观察。焦平面阵列每个像元的输出是一种模拟信号,它是与积分时间内入射在该元件上的红外能量成正比的。但是由于制造工艺和使用环境的影响,即使对温度均匀的背景,焦平面背景中所有像元产生的输出信号也是不一致的,即红外焦平面阵列器件的非均匀性(Nonuniformity,NU)。为了满足成像系统的使用要求,需要对红外焦平面阵列探测器进行非均匀性校正。 从生产工艺而言,单纯从提高焦平面阵列质量的角度来降低其非均匀性,不仅困难而且造价昂贵。因此,通过校正算法减小非均匀性对红外焦平面阵列成像质量的影响,提高成像质量,不仅是必须的,同时具有很高的经济价值和应用价值。目前,对红外图像质量的改善,一般是根据红外焦平面阵列对于温度响应的不一致性,采用非均匀性校正的方法,提高红外图像的质量。主要有两类校正方法:基于红外参考辐射源的非均匀性校正算法和基于场景的自适应校正方法。在实际应用中,普遍采用的是基于红外参考辐射源定标的校正方法。但是,采用参考辐射源定标的校正方法校正的红外图像,因红外焦平面阵列器件由于长时间的工作,受到时间、环境等因素的影响,红外图像质量逐渐下降,出现类似细胞状和块状的斑纹,影响了红外图像的质量。所以,需要在基于参考辐射源定标的校正方法的基础上,对于红外图像的质量进行改善。 国内外现状和发展趋势 自然界的一切物体,只要其温度高于绝对零度,总是在不断地辐射能量。红外热成像技术就是把这种红外热辐射转换为可见光,利用景物本身各部分温度辐射与发射率的差异获得图像细节,将红外图像转化为可见图像。利用这项技术研制成的装置称为红外成像系统或热像仪。用热像仪摄取景物的热图像来搜索、捕获和跟踪目标,具有隐蔽性好、抗干扰、易识别伪装、获取信息丰富等优点。因此,红外热成像技术在海上救援、天文探测、遥感、医学等各领域得到广泛应用。 红外热成像系统可以分为制冷和非制冷两种类型,制冷型有第一代和第二代之分,非制冷型可分为热释电摄像管和热电探测器阵列。第一代热成像系统主要由红外探测器、光机扫描器、信号处理电路和视频显示器组成,其中红外探测器是系统的核心器件,一般是分离式探测器。这种

相关文档
最新文档