分析化学 色谱分析法
色谱分析法教学设计
色谱分析法教学设计前言色谱分析法是现代分析化学中最常用的一种分析方法,广泛应用于食品、环境、生物、医药等领域。
在教学中,色谱分析法也是必不可少的一部分。
本文旨在介绍一种针对大学本科分析化学课程的色谱分析法教学设计,以提升学生的学习效果和兴趣。
设计目的本教学设计的主要目的是:•提高学生对色谱分析法的理解和应用能力;•培养学生的实践操作能力;•增强学生的自主学习能力。
教学内容和安排教学内容本教学设计的主要内容包括以下部分:1.色谱分析原理及常见分离方法;2.色谱仪的结构、工作原理及常见操作方法;3.色谱分析标准曲线的建立及数据处理方法;4.色谱分析应用案例的讨论。
教学安排1.理论教学:通过PPT课件的形式,介绍色谱分析原理、分离方法、色谱仪的结构和操作方法等内容。
时间约为3课时;2.实验教学:通过实验操作,学生可以掌握色谱分析样品的制备、进样、分离和检测方法。
时间约为2课时;3.案例教学:通过讨论实际应用案例,学生可以更好地理解色谱分析法在生物、医药等领域中的应用。
时间约为1课时。
教学方法为了达到上述教学目标,本设计采用以下教学方法:1.讲授:理论知识通过PPT课件讲授,含有图表、视频等辅助材料;2.操作演示:通过色谱仪的操作演示,让学生了解色谱仪的结构和操作方法;3.实验操作:学生自主进行实验操作,加深对色谱分析方法的理解和掌握;4.案例讨论:通过小组讨论或课堂讨论,推动学生思考和交流。
教学要求为了保证教学质量,本教学设计要求:1.学生要预习和复习教材;2.学生要认真听讲,做好笔记;3.学生要认真完成实验操作;4.学生要积极参与讨论。
教学评价方法本教学设计的评价方法如下:1.成绩占比:理论考试(50%)+实验考评(30%)+课堂表现(20%);2.理论考试:包括选择题、判断题和简答题;3.实验考评:包括实验操作技能、实验报告的完成情况及质量;4.课堂表现:包括听讲、笔记和讨论等方面的表现。
结语色谱分析法教学设计旨在通过理论讲授、实验操作和案例讨论,提高学生对色谱分析法的理解和应用能力,并培养自主学习能力。
无机及分析化学第十二章色谱分析法
液相色谱法
按两相所处状 态不同分类
流动相为液体,当固定相为固体吸附剂时,称为液-固色谱; 当固定相为液体,称为液-液色谱。
气相色谱法
流动相为气体,当固定相为固体吸附剂时,称为气-固色谱; 当固定相为液体,称为气-液色谱。
按操作形式 不同分类
柱色谱法 将固定相装于柱管内,构成色谱柱,利用色谱柱分离混合组 分的方法。
1. 气相色谱法的分类 (1) 按固定相的物态 可分为气-固色谱、气-液色谱。 (2) 按色谱原理不同 可分为吸附色谱、分配色谱。 (3) 按色谱柱的不同 可分为填充柱色谱法、毛细管柱色谱法。 2. 气相色谱法的特点 气相色谱法具有分辨效能高,选择性好,试样用量少、灵敏度高、分析速度快及 应用广泛等特点。主要用来分离测定一些气体及易挥发性物质。对于挥发性较差 的液体、固体,需采用制备衍生物或裂解等方法,增加挥发性来测量。
薄层色谱法 将固定相涂铺在平板上,制成薄层板,点样后,用展开剂(流 动相)将其展开,然后用薄层板斑点定位后进行定量和定性分 析的方法。
纸色谱法
以滤纸作为载体,以滤纸上面吸附的水作为固定相,然后与 薄层色谱法相同的操作形式进行分离分析的方法。
按色谱过程的 分离原理分类
吸附色谱法
用吸附剂作固定相,利用吸附剂表面对不同组分吸附能力的 差异来进行的分离分析方法。 分配色谱法
第三节 柱色谱
一、原理 柱色谱法是把固体吸附剂填充在直立的填充色谱柱内。将要分离的溶液试样由顶端加 入,然后连续地加入流动相或者洗脱液,随着展开剂自上而下流过,被分离的组分在 吸附剂表面不断产生吸附-解吸,再吸附-再解吸的过程,不同的组分,与固定相的吸 附能力有差异,与固定相吸附弱的组分,在柱内迁移速度较快,先流出色谱柱;与固 定相吸附强的组分,在柱内迁移速度较慢,后流出色谱柱,从而达到分离的目的。
色谱分析方法
色谱分析方法色谱分析是一种重要的分离和检测技术,广泛应用于化学、生物、环境等领域。
色谱分析方法主要包括气相色谱、液相色谱、超临界流体色谱等,每种方法都有其特定的应用领域和优势。
本文将就色谱分析方法进行介绍,希望能对读者有所帮助。
首先,气相色谱是一种以气体为载气相的色谱分离技术。
它适用于挥发性较好的化合物的分离和检测,如石油化工、食品安全等领域。
气相色谱的分离原理是通过化合物在固定相和流动相之间的分配来实现,固定相通常是一种涂覆在毛细管或填充在管柱中的吸附剂,而流动相则是惰性气体。
气相色谱具有分离效率高、分析速度快、灵敏度高等优点,因此在实际应用中得到了广泛的应用。
其次,液相色谱是一种以液体为流动相的色谱分离技术。
它适用于挥发性较差的化合物的分离和检测,如生物药品、环境监测等领域。
液相色谱的分离原理是通过化合物在固定相和流动相之间的分配来实现,固定相通常是一种涂覆在填充柱或固定在固定相支持物上的吸附剂,而流动相则是液体。
液相色谱具有分离能力强、适用范围广、分析准确等优点,因此在实际应用中也得到了广泛的应用。
此外,超临界流体色谱是一种以超临界流体为流动相的色谱分离技术。
它适用于疏水性化合物的分离和检测,如天然产物提取、药物分析等领域。
超临界流体色谱的分离原理是通过化合物在固定相和流动相之间的分配来实现,固定相通常是一种涂覆在填充柱或固定在固定相支持物上的吸附剂,而流动相则是超临界流体。
超临界流体色谱具有分离速度快、溶解度大、环保性好等优点,因此在实际应用中也得到了广泛的应用。
综上所述,色谱分析方法是一种重要的分离和检测技术,不同的色谱方法有着各自的特点和应用领域。
在实际应用中,我们可以根据样品的性质和分析要求选择合适的色谱方法,以达到最佳的分离和检测效果。
希望本文对读者对色谱分析方法有所帮助,谢谢阅读!。
第五章 色谱分析法分析化学
• VM 为色谱柱中流动相的体积,即柱内固定相间的空隙体积 • Vs为色谱柱中固定相的体积。在气液色谱中它为固定液体积;在 气固色谱中则为吸附剂表面容量 • VM 与 Vs之比称为相比以 β 表示
2018/11/22
11
色谱分析法
§11-2 固定相
气固色谱固定相 气液色谱固定相
2018/11/22
2018/11/22
固定液
固定液分类方法
如按化学结构、极性、应用等的分类方法。在各种色谱手册中,一
般将固定液按有机化合物的分类方法分为:脂肪烃、芳烃、醇、 酯、聚酯、胺、聚硅氧烷等, 最高最低使用温度 高于最高使用温度易分解,温度低呈固体;
混合固定相
对于复杂的难分离组分通常采用特殊固定液或将两种甚至两种以 上配合使用;
SQ APL OV-101 OV-3 OV-7 OV-17 OV-22 DNP OV-210 OV-225
150 300 350 350 350 300 350 130 250 250
乙醚 苯 丙酮 甲苯 甲苯 甲苯 甲苯 乙醚 氯仿
0 — +1 +1 +2 +2 +2 +2 +2 +3
非极性和弱极 性各类 高 沸点有机化合物 各类高沸点弱 极性有 机 化合物,如芳烃
2018/11/22
气固色谱固定相
2018/11/22
固定相 / 气液色谱固定相
气液色谱固定相 [ 固定液 + 担体(支持体)]
•
•
固定液在常温下不一定为液体,但在使用温度下一定呈液体状态。 固定液的种类繁多,选择余地大,应用范围不断扩大。
担体:化学惰性的多孔性固体颗粒,具有较大的比表面积。
常见的几种色谱分析方法
由于环境分析的对象广泛、内容多样、样品易变、一般含量极微且分析要求十分严格,所以分析化学中各种先进的方法和技术,在环境分析中都得到了广泛的应用。
但从环境分析的实际应用来看,下面一些方法是更为常用的。
1、化学分析法这是一种以化学反应为基础的分析方法。
它的特点是具有很高的准确度,但灵敏度较低,因此只适于分析环境样品中的常量组分。
目前在测定化学耗氧量、生物耗氧量、溶解氧等例行监测项目中,仍很重要。
2、色谱分析法色谱分析法是一种重要的分离、分析技术,它是将待分析样品的各种组分一一加以分离,然后依次鉴定或测定各个组分。
色谱分析法按所用流动相的不同,主要分为气相色谱法与液相色谱法(包括离子色谱法)。
在环境分析中,他们承担着不多数有机污染物的分析任务,也是对未知污染物作结构分析和形态分析的强而有力的工具。
气相色谱法直到今天仍然是分析环境有机污染物的主要方法,它也是美国环保局于1979年底公布的水中114中污染物分析方法的基础。
但它仅适于分析易挥发性组分,对于70%以上低挥发性、大分子量、热不稳定或离子型化合物,如果不进行适当的衍生化就不能直接测定。
在这方面,液相色谱法恰好可以弥补其不液相色谱法的流动相是液体,它的粘度和密度都比气体大得多,为了使流动相有较快的流速,必须使用高压泵来加速流动相的输送,所以通常又将这类液相色谱法称为高效液相色谱法。
它对于相对分子质量为300-2000的化合物、热不稳定化合物或离子型化合物都能进行分析,因此它的分析对象范围要宽得多。
用它进行环境样品的常规分析,完成一次测定仪需一分钟,其柱后检测器的灵敏度可达皮克级,因此是目前迅速发展的一个领域。
色层分析法是一种经典的分离、分析方法,包括柱层析法和纸层析法,以及在两者基础上发展起来的薄层层析法,它们在环境分析中都有应用,而尤以后者应用更多。
光学分析法包括许多具体的分析方法,它们都是建立在物质发射的电磁辐射或电磁辐射与物质相互作用的基础之上。
第十七章 色谱分析法概论-分析化学
I X 100 [Z n
' ' lg t R lg t ( x) R( z )
lg t
' R( z n)
lg t
' R( z )
]
Ix为待测组分的保留指数,z 与 z+n 为
正构烷烃对的碳原子数。
P
16
乙酸正丁酯的保留指数测定
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
第十七章 色谱分析法概论
P
1
第一节 色谱法的分类和发展
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
色谱分析法是一种物理或物理化学分离分 析方法。 始于20世纪初; 30与40年代相继出现了薄层色谱与纸色谱; 50年代气相色谱兴起、色谱理论、毛细管色 谱; 60年代气相色谱-质谱联用; 70年代高效液相色谱; 80年代末超临界流体色谱、高效毛细管电泳 色谱。
• R=1 4σ分离 • R=1.5 6σ分离 95.4% 99.7%
w1
w1
tR2-tR1
P
21
三、分配系数与色谱分离
xie 仪 器 分 析
第 十 七 章 色 谱 分 析 法 概 论
1、分配系数 在一定温度和压力下,达到分配平衡 时,组分在固定相和流动相中的浓度之比 CS K Cm 2、容量因子
m
X+
H+
SO3-R
S
X+ SO -R 3 H+
P
30
阳离子交换树脂
xie 仪 器 分 析
化学分析方法
化学分析方法化学分析方法是指通过一系列的实验技术和仪器设备来分析样品中的化学成分和性质的方法。
化学分析方法广泛应用于科学研究、环境监测、工业生产等领域。
下面将介绍几种常见的化学分析方法。
一、光谱分析方法光谱分析方法是利用物质吸收、发射或散射光的特性来分析样品的方法。
其中,紫外可见光谱和红外光谱是常用的光谱分析方法。
紫外可见光谱通过测量物质在紫外可见光范围内的吸收现象,可以得到物质的吸收光谱图,进而分析物质的成分和浓度。
红外光谱则通过测量物质在红外光范围内的吸收和散射现象,可以得到物质的红外光谱图,从而分析物质的结构和性质。
二、色谱分析方法色谱分析方法是通过利用物质在固定相和流动相之间分配不同的速度来分析样品的方法。
常见的色谱分析方法包括气相色谱、液相色谱和高效液相色谱。
气相色谱利用气体作为流动相,通过物质在固定相上的分配行为来分析样品的成分和浓度。
液相色谱和高效液相色谱则利用液体作为流动相,通过物质在固定相上的分配行为来分析样品的成分和浓度。
三种方法在不同的分析对象和需求下有各自的优势和应用范围。
三、电化学分析方法电化学分析方法是利用电流和电势的变化来分析样品的方法。
常见的电化学分析方法包括电导法、电位滴定法和极谱法。
电导法通过测量溶液的电导率来分析样品中的离子浓度和电解质性质。
电位滴定法则通过测量滴定电位的变化来分析样品中的物质浓度。
极谱法则通过测量样品溶液中的电流-电势关系来分析样品中的金属离子和有机分子。
四、质谱分析方法质谱分析方法是利用物质在质谱仪中的质量-电荷比和相对丰度的变化来分析样品的方法。
质谱分析方法可以鉴定物质的结构和分子量,并测定样品中化合物的含量。
常见的质谱分析方法包括质谱质谱、气相质谱和液相质谱等。
化学分析方法的选择取决于样品的性质、研究对象和分析需求。
不同的分析方法有不同的特点和适用范围,在实际应用中需要根据具体情况选用合适的方法进行分析。
同时,化学分析方法的发展也是一个不断创新和完善的过程,新的技术和方法的出现将为化学分析提供更多的可能性和应用前景。
色谱分析法分理原理
色谱分析法分理原理背景色谱分析法是一种重要的分析化学技术,广泛应用于食品、医药、环保、化工等领域。
色谱分析法是将样品分离成不同的成分,然后通过检测这些成分的特定物理化学特性来确定样品的成分组成。
在色谱分析法中,常用的分离方法包括气相色谱和液相色谱。
本文将重点介绍这两种色谱分析法的分离原理。
气相色谱气相色谱(Gas Chromatography,GC)是一种常用的分离和分析技术,广泛应用于石油化工、医药、食品、环保等领域。
气相色谱是通过气相流动相与固定相之间的相互作用,将混合物中的各种成分进行分离和分析的一种分离技术。
气相色谱分析技术主要由气相流动系统、进样器、色谱柱、检测器和数据处理系统构成。
气相流动系统通过压缩气体使气体可以在色谱柱中不断流动,进样器将试样注入色谱柱,色谱柱是一种具有固定相的管状物,通过气相流动相与固定相之间的相互作用将混合物中的各种成分进行分离,检测器通过检测某种物理化学特性来确定各种成分的存在和含量,数据处理系统则将检测结果进行分析和处理。
在气相色谱中,不同的分子和化合物之间存在不同的相互作用,例如静电作用、范德华作用力、离子作用力等。
这些相互作用会把分子和化合物分为不同的区域,并使其在色谱柱中以不同的速度移动。
通过调整色谱柱中固定相的成分和结构,可以控制不同成分的移动速度和分离程度,从而实现分离和分析。
液相色谱液相色谱(Liquid Chromatography,LC)是一种利用液态流动相与固定相之间的相互作用来进行分离的化学分析技术,在药物、化学、环保、食品检测等领域广泛应用。
液相色谱分析技术主要由流动相、进样器、色谱柱、检测器和数据处理系统构成。
流动相可以是液态或气态,进样器将样品注入色谱柱,色谱柱通常是一种具有固定相的长管状物,检测器通过检测试样物理、化学或光学性质来确定各种成分的存在和含量,数据处理系统则将检测结果进行分析和处理。
液相色谱中,样品分子或离子与液相和固定相之间的相互作用导致分子或离子分为不同的区域,并以不同的速度移动。
《分析化学》课件——10 色谱分析法
“相似相溶”原则选择适当固定液。
常用固定液
相对极性:
麦氏常数: 5个值代表 各种作用力。
固定液 名称
1、 角鲨烷 (异三十烷)
2、阿皮松 L
商品牌号 SQ
使用温度 (最高)
℃
150
溶剂 乙醚
APL
300
苯
3、硅油
OV-101 350
丙酮
4、 苯基 10%
OV-3
350
甲基聚硅氧烷
5、 苯基(20%)
载气流速的选择
作图求最佳流速。 实际流速稍大于最佳流速,缩短时间。
三、气相色谱检测器
浓度型检测器:热导池检测器
电子俘获检测器
测量的是载气中通过检测器组分浓度瞬间 变化,检测信号值与组分的浓度成正比。
质量型检测器:氢火焰离子化检测器
火焰光度检测器
测量的是载气中某组分进入检测器的速度 变化,即检测信号值与单位时间内进入检 测器组分的质量成正比。
检测器性能评价指标
在一定范围内,信号E与进入检测器的 物质质量m成正比:
保留时间 tR(retention time)
时间 死时间 t0 (dead time)
tR'= tR - t0
调整保留时间 tR'(adjusted retention time)
保留体积VR(retention volume) 体积 死体积 V0 (dead volume) VR'= VR - V0
Sample
D A
C
B
Sample
HEWLETT PACKARD
5890
Gas Chromatograph (GC)
B A CD
分析化学(第四版_高职高专第十二章 色谱分析法
(第四版)
高职高专化学教材编写组 编
第十二章 色谱分析法
“十二五”职业教育国家规划教材
主要内容
第一节 概述 第二节 气相色谱仪 第三节 气相色谱理论基础 第四节 气相色谱分离条件的选择 第五节 气相色谱分析方法 第六节 高效液相色谱法简介 第七节 色谱法应用实例
知识目标:
学习目标
理解色谱分析基本术语。
(2)按分离原理分类
① 吸附色谱法 在气-固色谱和液-固色谱中,组分与固定相间的作用是吸
附和脱附作用,故该固定相被称为固体吸附剂,对应的色谱则 称为吸附色谱。组分在固体吸附剂上的吸附能力越强,在色谱 柱内停留的时间越长,流过色谱柱需要的时间越长,反之则越 短。不同的组分在同种固体吸附剂上吸附能力不同,流过色谱 柱需要的时间也不同,因此分先后流出色谱柱而得到分离。
气相色谱仪基本结构-温控系统
一般地,气化室温度比柱温高30℃~70℃,以保证试样能瞬 间气化而不分解。
检测器温度与柱温相同或略高于柱温,以防止样品在检测器 冷凝。检测器的温度控制精度要求在±0.1C以内,色谱柱的温度 也要求能精确控制。
气相色谱仪基本结构 5.检测、记录系统
检测记录系统包括:检测器、放大器和记录仪。 目前许多气相色谱仪采用了色谱工作站的计算机系统,不仅可 对色谱仪进行实时控制,还可自动采集数据和完成数据处理。 气相色谱检测器的种类很多,常用的有热导检测器、火焰离子 化检测器、电子捕获检测器和火焰光度检测器等。
② 分配色谱法 在气-液色谱和液-液色谱中,固定相是由一种惰性固体(即 载体或担体)和表面涂渍的高沸点有机化合物液体(称为固定 液)组成,而能与被分离的组分起作用的是固定液。组分随流 动相进入色谱柱后,会溶解在固定液中,然后又从固定液中挥 发出来,再进入流动相。即组分在固定液中反复地进行溶解、 挥发、再溶解、再挥发的过程,不断在流动相和固定相两相间 进行分配并达到平衡。故气-液色谱和液-液色谱被分别称为气液分配色谱和液-液分配色谱。
分析化学中的色谱与质谱分析方法
分析化学中的色谱与质谱分析方法色谱和质谱是分析化学中常用的两种分析技术方法。
它们通过对样品的分离和检测,可以从复杂的混合物中确定和识别化合物的成分,广泛应用于食品、环境、药物等领域。
本文将对色谱和质谱的原理以及常用的分析方法进行详细介绍。
一、色谱分析方法色谱是一种用于分离混合物中组分的方法,根据组分在固体或液体固定相和流动相之间的分配差异来实现分离。
常用的色谱方法包括气相色谱(GC)和液相色谱(LC)。
1. 气相色谱(GC)气相色谱是利用气体作为流动相,通过气相色谱柱中的固定相来进行分离的方法。
在气相色谱中,样品通过流动相的推动下被蒸发,并在固定相上发生分配,不同成分在固定相上停留的时间不同,从而实现分离。
随后,通过检测器检测各组分的信号,并通过峰的高度或面积确定各组分的含量。
2. 液相色谱(LC)液相色谱是利用液体作为流动相,通过液相色谱柱中的固定相来进行分离的方法。
在液相色谱中,样品溶解在流动相中,通过与固定相的相互作用进行分配和分离。
与气相色谱相比,液相色谱更适用于分析极性物质和高沸点化合物。
二、质谱分析方法质谱是一种用于分析物质的方法,通过测量物质的离子质量来获得其分子结构、分子量等信息。
常用的质谱方法包括质谱仪和质谱联用技术。
1. 质谱仪质谱仪是一种用于测量物质质谱图的仪器,其主要组成部分包括离子源、质量分析器和检测器。
在质谱仪中,样品经过离子源产生离子,然后通过质量分析器进行质量筛选,最后由检测器检测并得到质谱图。
质谱图可以用于确定物质的结构、分子量、碎片等信息。
2. 质谱联用技术质谱联用技术是将质谱与色谱或电泳等分离技术相结合的分析方法。
常见的质谱联用技术包括气相色谱-质谱联用(GC-MS)和液相色谱-质谱联用(LC-MS)。
质谱联用技术具有分离能力强、鉴定准确性高、灵敏度高等优点,广泛应用于复杂样品的分析。
三、色谱与质谱在分析化学中的应用色谱和质谱作为分析化学中的重要技术手段,广泛应用于食品、环境、药物等领域。
色谱分析法分析化学PPT课件
2020/11/22
3.保留指数
又称Kovats指数(Ⅰ),是一种重现性较好的定性参数。
测定方法: 将正构烷烃作为标准,规定其保留指数为分子中碳原子 个数乘以100(如正己烷的保留指数为600)。
2020/11/22
内标法
操作方法 • 准确称取一定量试样,加人一定量的选
定的标准物(称内标物),根据内标物 和试样的质量以及色谱图上相应的峰面 积,计算待测组分的含量
2020/11/22
内标法
对内标物的要求
(1)试样中不存在的纯物质;
(2)与被测组分性质比较接近;
(3)不与试样发生化学反应;
(4)出峰位置应位于被测组分附近,且无组分峰影响,
2020/11/22
归一化法
• 当测量参数为峰高时,也可用峰高归一 化计算组分含量。f ”为峰高校正因子, 必须自行测定。测定方法与峰面积校正 因子相同。
2020/11/22
几种常用定量方法 内标法
适用条件 当试样中所有组分不能全部出峰,或者 试样中各组分含量悬殊,或仅需测定其 中某个或某几个组分时,可用此法
定量校正因子与检测器响应值成倒数关系:
f i = 1 / Si 相对校正因子f ’i :即组分的绝对校正因子与标准物质的绝 对校正因子之比。
fi'
fi fs
mi/Ai mi ms/As ms
As Ai
• 当mi、mS以摩尔为单位时,所得相对校正因子称为相对 摩尔校正因子(f ’M),用表示;当mi、mS用质量单位时, 以 (f ’W),表示。应用时常将“相对”二字省去
分析化学—色谱分析法第三节色谱理论基础
为最佳流速。
5. 速率理论的要点
(1)组分分子在柱内运行的多路径与涡流扩散、浓度梯度所 造成的分子扩散及传质阻力使气液两相间的分配平衡不能瞬 间达到等因素是造成色谱峰扩展柱效下降的主要原因。
(2)通过选择适当的固定相粒度、载气种类、液膜厚度及载 气流速可提高柱效。
Y1/ 2
Wb
n有效
5.54(
t
' R
)2
Y1/ 2
16( tR' Wb
)2
H 有效
L n有效
塔板理论的特点和不足:
(1)当色谱柱长度一定时,塔板数 n 越大(塔板高度 H 越小),被测组分在柱内被分配的次数越多,柱效能则越高 ,所得色谱峰越窄。
(2)不同物质在同一色谱柱上的分配系数不同,用有效 塔板数和有效塔板高度作为衡量柱效能的指标时,应指明 测定物质。
n=L/H 理论塔板数与色谱参数之间的关系为:
n 5.54( tR )2 16( tR )2
Y1/ 2
Wb
有效塔板数和有效塔板高度
• 单位柱长的塔板数越多,表明柱效越高。 • 用不同物质计算可得到不同的理论塔板数。
• 组分在tM时间内不参与柱内分配。需引入有效塔
板数和有效塔板高度:
n 5.54( tR )2 16( tR )2
塔板理论和速率理论都难以描述难分离物质对的实际分 离程度。即柱效为多大时,相邻两组份能够被完全分离。
难分离物质对的分离度大小受色谱过程中两种因素的综 合影响:保留值之差──色谱过程的热力学因素;
区域宽度──色谱过程的动力学因素。 色谱分离中的四种情况如图所示:
① 柱效较高,△K (分配系数)
化学中的色谱分析方法
化学中的色谱分析方法色谱分析是一种在化学领域中广泛应用的分析技术,通过分离混合物中的成分并对其进行定量或定性分析。
色谱分析方法主要包括气相色谱(Gas Chromatography, GC)、液相色谱(Liquid Chromatography, LC)和超高效液相色谱(Ultra-high Performance Liquid Chromatography, UHPLC)等。
本文将重点介绍这几种色谱分析方法的原理、应用及特点。
一、气相色谱(Gas Chromatography, GC)气相色谱是一种在气相流动条件下进行分离的色谱技术。
其原理是利用气相载气将样品混合物分离成单独的组分,然后通过检测器进行检测和定量分析。
气相色谱广泛应用于食品、环境、药物、石油化工等领域。
气相色谱的主要特点包括分离效果好、分析速度快、灵敏度高、分辨率高等。
在实际应用中,气相色谱常用于分析挥发性有机物、气体成分、药物、食品添加剂等。
二、液相色谱(Liquid Chromatography, LC)液相色谱是一种在液相流动条件下进行分离的色谱技术。
其原理是利用固定相和流动相之间的相互作用将样品混合物分离成单独的组分,然后通过检测器进行检测和定量分析。
液相色谱广泛应用于生物、药物、环境、食品等领域。
液相色谱的主要特点包括适用性广、分离效果好、灵敏度高、分辨率高等。
在实际应用中,液相色谱常用于分析生物样品、药物、天然产物、环境污染物等。
三、超高效液相色谱(Ultra-high Performance Liquid Chromatography, UHPLC)超高效液相色谱是一种高效、快速的液相色谱技术。
其原理是利用超高压力将样品混合物快速分离成单独的组分,然后通过检测器进行检测和定量分析。
超高效液相色谱广泛应用于生物、药物、环境、食品等领域。
超高效液相色谱的主要特点包括分离效果好、分析速度快、灵敏度高、分辨率高等。
在实际应用中,超高效液相色谱常用于分析生物样品、药物、天然产物、环境污染物等。
分析化学课件-色谱分析法
返回
柱效参数
标准差(standard deviation;σ):正态色谱流
出曲线上两拐点间距离之半,即0.607倍峰高处
的峰宽之半。σ的大小表示组分被带出色谱柱的 分散程度。σ越大,组分越分散;反之越集中。 半峰宽(W1/2):峰高一半处的峰宽 W1/2=2.355σ 峰宽 (peak width;W):色谱峰两侧拐点作切线
应用的科学领域:生命科学、材料科学、 环 境科学等。(科学的科学)
药学(药物分析):各国药典收载了许多 色 谱分析方法。中国药典二部,700多,纯 度检查、定性鉴别或含量测定,一部, 600多鉴别或含量测定。
第一节 色谱法的分类和发展
一、色谱法的分类
按流动相的分子聚集状态分类: GC、LC、SFC 等。
附力越强。 ④分子中取代基的空间排列
三、离子交换色谱法
分离原理 利用被分离组分离子交换能力的 差别而实现分离。
分为阳离子交换色谱法和阴离子交换色谱法。
阳离子交换:
阴离子交换:
交换
RSO 3 H+ + Na+ 再生
RSO 3 Na+ + H +
离子交换通式: RNR+3 OH- + Cl
交换
分配系数与色谱分离
容量因子(capacity factor;k):在一定温
度和压力下,达到分配平衡时,组分在固定
相和流动相中的质量(m)之比。(摩尔数?)
又称为质量分配系数或分配比。
还与固定相和流动相的体积有关。
容量因子与 分配系数的关系
k
m s
CV ss
V K s
m CV
V
m
mm
大专本科分析化学第十七章色谱分析法概论
s
)
m
Vs ) = t ( 1+ K B tRB 0 Vm
Vs tR= t0 (KA-KB) Vm
tR≠0
KA≠KB kA≠kB
二、基本类型色谱法的分离机制
• 分配色谱法
• 吸附色谱法
• 离子交换色谱法 • 分子排阻色谱法
(一)分配色谱法
分离原理
•
利用被分离组分在固定相或流动相中的溶解度差别而实 现分离。
也称为空间排阻色谱法、凝胶色谱法。 • 分为凝胶渗透色谱法(gel permeation chromatography;
GPC)和凝胶过滤色谱法(gel filtration chrom源自tography;GFC)
分子排阻色谱法
• 根据空间排阻(理论,孔内外同等大小的溶质分子处于
扩散平衡状态。
渗透系数
• 高效液相色谱发:球型或无定型全多孔硅胶 和堆积硅珠。 • 气相色谱法:高分子多孔微球等
吸附色谱法 • 流动相 气-固吸附色谱法:气体,常为氢气或氮气。 液-固吸附色谱法:有机溶剂。
• 洗脱能力主要由流动相极性决定。强极性流动相占据吸附
中心的能力强,洗脱能力强。 • Snyder溶剂强度0:吸附自由能,表示洗脱能力。0值越
• 色谱法与光谱法的主要不同点:
色谱法具有分离和分析两种功能 光谱法不具备分离功能
• 色谱法创始于20世纪初,俄国植物学家M.S.Tswett 在研 究植物叶子中的色素组成时做了一个著名的实验: 将碳酸钙粉末放在竖立的玻璃管中,从顶端注入植物
色素的提取液,然后不断加入石油醚冲洗。
植物色素慢慢地向下移动并逐渐分散成数条不同颜色 的色带。
(0<Kp<1 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
留强,后被洗脱,Ka小的组分在吸附剂上保
留弱,先被洗脱。
Ka与组分的性质(极性、取代基的类型和数
目、构型有关)。
36
以硅胶为吸附剂:极性强的组分吸附力强。
①饱和碳氢化合物为非极性化合物,不被吸附。
②基本母核相同,引入的取代基极性越强,则 分子的极性越强,吸附能力越强;极性基团越 多,分子极性越强 (但要考虑其他因素的影 响) 。
③不饱和化合物的吸附力强,双键数越多,吸
附力越强。 ④分子中取代基的空间排列
37
三、离子交换色谱法
分离原理 利用被分离组分离子交换能力的 差别而实现分离。 分为阳离子交换色谱法和阴离子交换色谱法。 阳离子交换: 阴离子交换: 离子交换通式:
RSO3 H+ + Na+
+OH- + Cl RNR3
28
分配色谱法
洗脱顺序 由组分在固定相或流动相中溶解
度的相对大小而决定。
正相液液分配色谱:极性强的组分后被洗脱。
(库仑力和氢键力)
反相液液分配色谱:极性强的组分先出柱。
29
二、吸附色谱法
分离原理 利用被分离组分对固定相 表面吸附中心吸附能力的差别而实现 分离。
吸附过程是试样中组分的分子(X)与流
t =t R t0
' R
14
定性参数2
保留体积(VR):从进样开始到某个组分在柱后出 现浓度极大时,所需通过色谱柱的流动相体积。
VR t R Fc
死体积(V0):由进样器至检测器的流路中未被 固定相占有的空间。
固定相颗粒间间隙、导管的容积、检测器内腔 容积的总和。
V0=t 0 Fc
V tR=t0(1+K ) V
s m
t t t k t t
R 0 0
'
R 0
23
分配系数与色谱分离
(三)色谱分离的前提
KA≠KB 或kA≠kB 是色谱分离的前提。
推导过程:
V tR = t0(1+KA V )
s
A
m
t R B= t0(1+KB
Vs ) Vm
Vs tR= t0 (KA-KB) Vm
8
9
色谱过程
组分的结构和性质微小差异 定相作用差 等
与固
随流动相移动的速度不 色谱分离。
差速迁移
10
二、色谱流出曲线和有关概念
色谱流出曲线 是由检测器输出的电信 号强度对时间作图所绘制的曲线,又称 为色谱图。 基线 是在操作条件下,没有组分流出 时的流出曲线。基线反映仪器 (主要是 检测器) 的噪音随时间的变化。 色谱峰 是流出曲线上的突起部分。 正常色谱峰、拖尾峰和前延峰
34
表 17-1 一些溶剂在硅胶上的o值
溶剂 正戊烷 溶剂强度 (o) 0.00 溶剂 溶剂强度 (o) 0.48
甲基特丁基醚
正己烷
氯仿 二氯甲烷
0.00
0.26 0.40
醋酸乙酯
乙腈 异丙醇
0.48
0.52 0.60
乙醚
0.43
35
甲醇
0.70
吸附色谱法
洗脱顺序 ka=KaSa/Vm
4
第一节 色谱法的分类和发展
一、色谱法的分类
按流动相的分子聚集状态分类: GC、LC、SFC 等 按固定相的分子聚集状态分类: GSC、GLC、LSC、LLC等 按操作形式分类: 柱色谱法、平面色谱法、毛细管电泳法等 按色谱过程的分离机制分类: 分配色谱法、吸附色谱法、离子交换色谱法、 空间排阻色谱法、毛细管电泳法等
32
吸附色谱法
固定相 多为吸附剂,如硅胶、氧化铝。 硅胶表面硅醇基为吸附中心。 经典液相柱色谱和薄层色谱:一般硅胶 高效液相色谱:球型或无定型全多孔硅 胶和堆积硅珠。 气相色谱:高分子多孔微球等
33
吸附色谱法
流动相 有机溶剂(硅胶为吸附剂) 洗脱能力:主要由其极性决定。 强极性流动相占据吸附中心的能力强,洗 脱能力强,使k值小,保留时间短。 Snyder溶剂强度o:吸附自由能,表示洗脱 能力。o值越大,固定相对溶剂的吸附能力 越强,即洗脱能力越强。
(一) 分配系数和保留因子
分配系数 (distribution coefficient;K) 是在一 定温度和压力下,达到分配平衡时,组分在 固定相 (s) 与流动相 (m) 中的浓度 (C) 之比。
Cs K = Cm
分配系数仅与组分、固定相和流动相的性质 及温度(和压力)有关。是组分的特征常数。
半峰宽 (W1/2):峰高一半处的峰宽。
峰宽 (peak width;W):色谱峰两侧拐点作切线 在基线上所截得的距离。
W1/2=2.355σ
W=4σ
或W=1.699W1/2
返回
18
Biblioteka 总分离效能指标分离度(resolution;Rs ):又称分辨率。是相邻两色 谱峰保留时间之差与两色谱峰峰宽均值之比。
43
空间排阻色谱法
保留体积与渗透系数的关系
Vs VR Vm (1 K P ) Vm
Vm≈V0
VR V0 K pVs
分子线团尺寸(分子量)大的组分, 其渗透系数小,保留体积也小, 因而先被洗脱出柱。
44
小结
色谱过程方程式:
Vs t R t 0 (1 K ) Vm
15
定性参数3
调整保留体积(adjusted retention volume; V ):由保留体积扣除死体积 后的体积
' R
' VR' VR V0 t R Fc
•相对保留值(r) :两组分的调整保留值之比
r2,1
' tR 2
t
' R1
VR' 2 VR' 1
16
定量参数
VR V0 KVs 分配系数大的组分保留时间长(保留体积 大),晚流出色谱柱。 K在分配色谱、吸附色谱、离子交换色谱和凝 胶色谱中,分别为狭义分配系数K、吸附系数 Ka、选择性系数KA/B和渗透系数Kp, Vs分别为色谱柱(或薄层板)内固定液体积、 吸附剂表面积、离子交换剂总交换容量和凝 胶孔内总容积。
27
分配色谱法
固定相 又称固定液(涂渍在惰性载体颗粒上的一薄层 液体;化学键合相(通过化学反应将各种有机 基团键合到载体上形成的固定相)。 流动相 气液分配色谱法:气体,常为氢气或氮气。 液液分配色谱法:与固定相不相溶的液体。
正相液液分配色谱:流动相的极性弱于固定相的极性。
反相液液分配色谱:流动相的极性强于固定相的极性。
11
•对称因子fs •(symmetry factor) : •衡量色谱峰的对称性
fs W 0.05h / 2 A ( A B) / 2 A
12
到19页 到20页
13
定性参数1
保留时间(retention time;tR):从进样到某组分 在柱后出现浓度极大时的时间间隔。 死时间 (t0):分配系数为零的组分,即不被固 定相吸附或溶解的组分的保留时间。 ' 调整保留时间 ( t R ):某组分由于溶解(或被吸附) 于固定相,比不溶解(或不被吸附) 的组分 ' tR 在柱中多停留的时间。
峰高(peak height;h):组分在柱后出现浓度
极大时的检测信号,即色谱峰顶至基线的
距离。
峰面积(peak area;A):色谱曲线与基线间
包围的面积。
返回
17
柱效参数
标准差(standard deviation;σ):正态色谱流出 曲线上两拐点间距离之半,即0.607倍峰高处的 峰宽之半。 σ的大小表示组分被带出色谱柱的 分散程度。σ越大,组分越分散;反之越集中。
1.新型固定相和检测器的研制 2.色谱新方法的研究 3.色谱联用技术 4.色谱专家系统
7
第二节 色谱过程和基本原理
一、色谱过程
实现色谱操作的基本条件是必须具备相对
运动的两相,固定相(stationary phase)和流
动相(mobile phase)。 色谱过程是组分的分子在流动相和固定相间 多次“分配”的过程。
tR≠0
24
KA≠KB
kA≠kB
第三节 基本类型色谱方法及其分离 机制
分配色谱法
吸附色谱法
离子交换色谱法
空间排阻色谱法
25
一、分配色谱法
26
分配色谱法
分离原理 利用被分离组分在固定相或 流动相中的溶解度差别而实现分离。
Cs X s Vs K= Cm X m Vm
•溶质分子在固定相中溶解度越大,或在流动相 中溶解度越小,则K越大。在LLC中K主要与流 动相的性质 (种类与极性) 有关;在GLC中K与 固定相极性和柱温有关。
42
空间排阻色谱法
流动相
要求:能溶解试样、润湿凝胶,粘度要低 水溶性试样选择水溶液为流动相(称为凝胶过滤色 谱gel filtration chromatography; GFC); 非水溶性试样选择四氢呋喃、氯仿、甲苯和二甲 基甲酰胺等有机溶剂为流动相 (凝胶渗透色谱gel permeation chromatography;GPC)。
色谱分析法概论
chromatography