第七章机器人的轨迹规划
第七章工业机器人的轨迹规划
7
轨迹规划的目的是——将操作人员输入的 简单的任务描述变为详细的运动轨迹描述。
例如,对一般的工业机器人来说,操作员可能只 输入机械手末端的目标位置和方位,而规划的任务便 是要确定出达到目标的关节轨迹的形状、运动的时间 和速度等。这里所说的轨迹是指随时间变化的位置、 速度和加速度。
19
线性函数插值图
利用抛物线过渡的线性函 数插值图
20
7.3 直角坐标空间法
前面介绍的在关节空间内的规划,可以保证运动 轨迹经过给定的路径点。但是在直角坐标空间,路径 点之间的轨迹形状往往是十分复杂的,它取决于机械 手的运动学机构特性。在有些情况下,对机械手末端 的轨迹形状也有一定要求,如要求它在两点之间走一 条直线,或者沿着一个圆弧运动以绕过障碍物等。这 时便需要在直角坐标空间内规划机械手的运动轨迹.
在一些老龄化比较严重的国家,开发了各种各样 的机器人专门用于伺候老人,这些机器人有不少是采 用声控的方式.比如主人用声音命令机器人“给我倒 一杯开水”,我们先不考虑机器人是如何识别人的自 然语言,而是着重分析一下机器人在得到这样一个命 今后,如何来完成主人交给的任务。
4
首先,机器人应该把任务进行分解,把主人交代的任务 分解成为“取一个杯子”、“找到水壶”、“打开瓶塞”、 “把水倒人杯中”、“把水送给主人”等一系列子任务。这 一层次的规划称为任务规划(Task planning),它完成总体任务 的分解。
5
上述例子可以看出,机器人的规划是分层次的, 从高层的任务规划,动作规划到手部轨迹规划和关节 轨迹规划,最后才是底层的控制(见图)。在上述例子 中,我们没有讨论力的问题,实际上,对有些机器人 来说,力的大小也是要控制的,这时,除了手部或关 节的轨迹规划,还要进行手部和关节输出力的规划。
机器人学_第七讲 轨迹规划
c0 30 c1 0 c2 2.5 c3 1.6 c4 0.58 c5 0.0464
(t) 30 2.5t 2 1.6t3 0.58t 4 0.0464t5 (t) 5t 4.8t 2 2.32t3 0.232t 4 (t) 5 9.6t 6.96t 2 0.928t3
策略 3
θ1 θ2 20 30
14 55
时
16 69
间
21 77
29 81
40 80
第七讲 3 轨迹规划的基本原理
平面两关节机器人的简单例子:
策略 1
策略 3
策略 2 策略 4
第七讲 3 轨迹规划的基本原理
平面两关节机器人的简单例子,要求经过中间点的情况:
C y
B B’
A
C y
B B’
注意:这里讨论的是
A 末端的轨迹规划
x O1
直接走折线会有冲击,或者 造成机器人运动产生停顿。
O1 C
y
D B
x
E A
x O1
第七讲 4 关节空间的轨迹规划
三次多项式规划
以某一关节角为例
初始位姿 i
期望末端位姿 f
三次多项式: (t) c0 c1t c2t 2 c3t 3
边界条件:
ti 0
(ti ) i
角度 速度 加速度
3
4
5
6
秒
c0 30 c1 0 c2 5.4 c3 0.72
第七讲 4 关节空间的轨迹规划
讨论1: 三次多项式规划里能否指定起始点和终点的加速度?
例7.1
120
100
(ti ) 30 (ti ) c0 i
80
(t f ) 75 (t f ) c0 c1t f c2t f 2 c3t f 3
第7章 机器人轨迹规划(2)
Robot planning
8.2机器人轨迹的插值计算
(1)三次多项式插值 例1:要求一个六轴机器人的第一个关节在5秒内从初 始角30º运动到终端角75º,同三次多项式计算在第 1,2,3秒和第4秒时关节的速度。
Robot planning
8.2机器人轨迹的插值计算 (1)三次多项式插值 例2:假设例1中的机械手臂在前面运动的基 础上继续运动,要求在其后的3秒内关节角 到达105º ,画出该运动的位置、速度和加 速度曲线。
(t ) c 2
(t 0) i c 0 (t 0) 0 c1 (t ) c 2
c 0 i c1 0 c 2
1 2 (t ) i c2 t 2
(t ) c2 t (t ) c 2
Robot planning
7.2 关节轨迹的插值 • 关节空间法计算简单、容易。再者,不会 发生机构的奇异性问题。 • 轨迹规划方法一般是在机器人的初始位置 和目标位置之间用多项式函数来“内插” 或“逼近”给定的路径,并产生一系列的 控制点。
Robot planning
7.2.1 三次多项式插值
Robot planning
8.2机器人轨迹的插值计算
(4)用抛物线过渡的线性插值
过渡时间
i f t f tb
终点的抛物线段与起点的抛物线段是对称的,只是其加速度为 负。因此可表示为
(t ) f (t f t ) 2 2t b (t ) (t f t ) tb (t ) tb
Robot planning
8.2机器人轨迹的插值计算 (4)用抛物线过渡的线性插值
机器人的轨迹规划
3
目标状态
机器人能得到的一个解答是由下面的算符序列组成的:
机器人规划是机器人学的一个重要研究领域,也是人工智能 与机器人学一个令人感兴趣的结合点。
机器人轨迹规划属于机器人低层规划,基本上不涉及人工
智能问题,而是在机械手运动学和动力学的基础上,讨论机
器人运动的规划及其方法。所谓轨迹,就是指机器人在运动
过程中的位移、速度和加速度。
轨迹规划问题通常是将轨迹规划器看成“黑箱”,接受表示
路径约束的输入变量,输出为起点和终点之间按时间排列的操
作机中间形态(位姿, 速度和加速度)序列。
在关节轨迹的典型约束条件之下,我们所要研究的是选择 一种 n 次(或小于 n 次)的多项式函数,使得在各结点(初始点, 提升点,下放点和终止点)上满足对位置、速度和加速度的要 求,并使关节位置、速度和加速度在整个时间间隔 [ t0, tf ] 中 保持连续。
15
➢ 规划关节插值轨迹的约束条件:
1. 位置(给定)
9
在关节变量空间的规划有三个优点: (1) 直接用运动时的受控变量规划轨迹; (2) 轨迹规划可接近实时地进行; (3) 关节轨迹易于规划。
伴随的缺点是难于确定运动中各杆件和手的位置,但是,为 了避开轨迹上的障碍.常常又要求知道一些杆件和手位置。
由于面向笛卡尔空间的方法有前述钟种缺点,使得面向关节 空间的方法被广泛采用。它把笛卡尔结点变换为相应的关节坐 标,并用低次多项式内插这些关节结点。这种方法的优点是计 算较快,而且易于处理操作机的动力学约束。但当取样点落在 拟合的光滑多项式曲线上时,面向关节空间的方法沿笛卡尔路 径的准确性会有损失。
机器人路径规划分解
12
q qf
具有抛物线拟合的线性插值
连接相邻两个路径点的最简单曲线是 直线,因此希望采用线性插值,但线性插 值在连接点处速度不连续。
qm
q0
t0 tb tm tf-tb tf
t
获得速度连续光滑曲线的方法是在直线段两端采用抛物线拟合段。因为 抛物线是二次函数,所以在拟合段内加速度为常数。 假设两端抛物线拟合段的加速度数值相等(符号相反),如图所示,满足 条件的解不唯一,但每个解都是关于时间中点tm和位置中点qm对称的。 抛物线和直线的连接点处的速度相同,而整个直线段内速度是常值,所以 其中qb是tb时刻的角度值, q 是拟合段加速度值,q q m - qb q tb q 是直线段速度值。 7-18 tm - tb 将7-19式代入到7-18式,并且注意到tm=t/2, qm=(q0+qf)/2可以得到以下关系式 t是期望运行时间。 q q 1 q t 2 7-19 b 0 b 2 通常先选择加速度,在计 2 q 4( q q ) / t q t 算时间 tb f 0 b - q ttb q f - q0 0
q (t f ) q f 75
关节角轨迹: 关节角速度和加速度轨迹为:
q (t f ) -10
q (t ) 15 50t 2 -17.5t 3
q (t ) 100t - 52.5t 2 q (t ) 100 -105t 2 3 中间点到终止点的关节角轨迹: q (t ) 75 -10t -12.5t 5t 2 q ( t ) 10 25 t 15 t q (t ) -25 30t 关节角速度和加速度轨迹为:
3 2 1 ( q q ) q qf f 0 0 2 例7-2假设一个具有单旋转关节单自由度机器人, tf tf tf 起始点和终止点速度为零,且位置满足 q0 =15o, 2 1 a ( q q ) (q f q 0 ) 3 f 0 3 2 qf =45o。设置一个中间点,位置和速度分别为 tf tf o qm =75 和 qm -10deg/ s。 a2
第七章机器人规划-PPT
目标状态:ON(B,C)∧ON(A,B)
Robot 用F规则求解规划序列 (1)先决条件 (2)删除表 (3)添加表
例 move(x,y,z) 先决条件 CLEAR(x),CLEAR(z),ON(x,y) 删除表 ON(x,y),CLEAR(z) 添加表 ON(x,z),CLEAR(y)
作用: 缺乏规划可能导致不是最佳得问题求解。
规划可用来监控求解过程。如发射火箭。
Robot planning
7、1 机器人规划得作用和任务
1、规划得作用与问题分解途径 (2)问题分解得途径:
途径一:只考虑状态中可能变化了得那些部分。 途径二:把单一得问题分割成为几个子问题。
Robot planning
◆建立模型。 对物体和机器人得几何,运动,物理描述。
◆任务说明。 说明各物体所期望得空间关系。
◆程序综合。
Robot planning
7、5 基于专家系统得机器人规划
2、ROPES机器人规划系统。 Robot Planning Expert Systems (1)系统简化框图。
Robot planning
Robot planning
7、3 STRIPS规划系统
2、STRIPS系统规划过程 例7、1,要求机器人到邻室去取回一个箱子。
Robot planning
7、3 STRIPS规划系统
提供两个操作符: gothru(d,r1,r2) pushthru(b,d,r1,r2)
这个问题得差别表:
Robot planning
Robot planning
7、5 基于专家系统得机器人规划
机器人运动学与动力学的轨迹规划
机器人运动学与动力学的轨迹规划近年来,机器人技术越来越受到关注,被广泛应用于各个领域,如工业制造、医疗保健、农业等。
机器人的运动学和动力学是其中非常重要的两个方面。
在机器人的路径规划中,运动学和动力学的特性对于实现精确且高效的轨迹规划至关重要。
在机器人运动学中,研究的是机器人的位置和位姿的数学描述,包括了关节坐标和笛卡尔坐标系两种描述方法。
关节坐标系通过机器人的关节角度来描述机器人的位置和姿态,而笛卡尔坐标系则通过机器人的位姿参数来描述。
在进行轨迹规划时,机器人的运动学模型可以用来计算机器人在关节空间和笛卡尔空间中的运动路径。
运动学模型的好处在于能够将机器人的轨迹规划问题转化为几何学问题,从而简化了路径规划的计算过程。
与运动学不同,机器人的动力学研究的是机器人的运动与力之间的关系。
动力学模型可以描述机器人在进行运动时所受到的力和力矩。
动力学模型的建立需要考虑到机器人的质量、惯性、摩擦等因素,从而能够更精确地预测机器人的运动特性。
在轨迹规划中,动力学模型可以用来优化机器人的运动轨迹,以实现更加平稳、高效的运动。
轨迹规划是机器人运动控制中的一个重要问题,在实际应用中需要考虑到多种因素。
其中,避障是轨迹规划中常见的挑战之一。
通过运动学和动力学的分析,可以根据机器人的运动特性预测其可能的运动轨迹,并在规划路径时避开障碍物,以确保机器人的安全运行。
此外,路径规划还需要考虑到机器人的速度、加速度限制等因素,以保证机器人在运动过程中的动力学特性不会过于剧烈,从而降低机器人运动的顺滑性和精度。
机器人的轨迹规划可以使用多种方法,常见的包括解析法、优化法和仿真法等。
解析法是利用运动学和动力学方程直接求解轨迹规划问题,以得到机器人的运动方程和运动控制模型。
优化法则是通过设定优化目标和约束条件,利用优化算法求解最优的机器人路径规划问题。
仿真法则是通过建立机器人运动学和动力学模型,并在计算机中进行仿真,模拟机器人在不同环境下的运动情况,以寻找最佳的轨迹规划方案。
矿产
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
智能机器人的运动轨迹规划研究
智能机器人的运动轨迹规划研究引言智能机器人是现代制造业、服务业等行业的重要代表,广泛应用于生产流水线、无人驾驶、家庭服务、医疗护理等领域。
为满足机器人在不同场景下执行复杂任务的需求,运动规划技术成为了研究的热点之一。
本文将从机器人运动轨迹规划的基本原理、现有算法及其特点、未来发展趋势等几个方面进行探讨,旨在为机器人研究工作者和技术应用人员提供一些参考。
一、机器人运动轨迹规划的基本原理机器人在执行某个任务时需要遵守一些规则,比如去除碰撞、避开障碍、达到目标点等。
此时,机器人就需要根据目标点、起始点、环境信息以及任务要求等进行运动轨迹规划。
运动轨迹规划的基本原理包括两个方面:路径生成和时间参数化。
1.路径生成路径生成可以分为全局路径规划和局部路径规划两个层次。
全局路径规划是将机器人从起点移动到目标点的路径规划,通过求解机器人从起点到目标点的最短路径或最优路径来实现。
局部路径规划是机器人在执行任务过程中,遇到障碍物等情况需要调整路径的过程,需要对机器人当前所在位置周围的环境进行感知和分析,从而生成能够满足限制条件的路径。
2.时间参数化时间参数化是将轨迹分为若干个相邻时间区间,通过对每个时间区间内的姿态进行规划,使机器人能够在规定时间内到达目标点。
最常用的时间参数化方法是基于加减速段的时间规划方法,即从静止状态开始,先加速到最大速度,再减速到静止状态。
二、现有算法及其特点1.RRT算法随机区域树(RRT)算法是目前被广泛应用的一种方法。
该算法的思路是通过随机化地建立树来解决问题,无法保证生成全局最优解,但具有良好的收敛性、高效性和可扩展性,被广泛应用于路径规划、人工智能、机器人控制等领域。
2.A*算法A*算法是一种基于图论的搜索算法,可以求解最短路径问题。
该算法主要用于解决运动规划中的全局路径规划问题,具有计算效率高、性能稳定等优点,同时可以应用于建图、定位、导航等领域。
3.D* Lite算法D* Lite算法是一种修正版的D*算法,主要用于局部路径规划问题。
机器人路径与轨迹规划.
3
二、路径规划
路径规划:按照某一性能指标搜索一条从起始状态到目标 状态的最优或近似最优的无碰路径
可视图法
主要方法 自由空间法 栅格法
全局路径规划 路径规划
(环境信息完全已知)
拓扑法
人工势场法 模糊算法
局部路径规划
主要方法
(环境信息完全未 知或局部未知)
神经网络法
遗传算法
4
三、轨迹
• 轨迹 = 路径 + 对路径上的每个点赋予时间
10
六、轨迹规划基本原理
• 多点轨迹规划(直角坐标空间):
11
七、关节空间的轨迹规划
1、三次多项式轨迹规划(单关节) 某一个关节,从时刻ti的θ i角度,运到tf时 刻的θ f角度,起止速度为零。
12
七、关节空间的轨迹规划
1、三次多项式轨迹规划
优点:位置、速度连续; 缺点:加速度不连续,始末端点存在突变
13
七、关节空间的轨迹规划
2、五次多项式轨迹规划 指定始末点位置、速度和加速度;可根据 关节电机性能限制始末点加速度。
14
七、关节空间的轨迹规划
3、抛物线过渡的线 性轨迹规划
若希望关节在始末点之 间以恒定速度运行, 则始末点加速度无穷 大,难以实现 -> 采用抛物线过渡。
15
七、关节空间的轨迹规划
-0.5
:S''/S''max
-1 0
0.2
0.4 time
0.6
0.8
1
17
八、直角坐标空间轨迹规划
步骤: 1. 时间递增ti+1=ti+∆t 2. 根据轨迹函数计算末端的位姿; 3. 根据逆运动学方程计算对应的关节变量; 4. 将关节变量送入控制器; 5. 返回1,直至到达目的位姿。
机器人运动轨迹规划
机器人运动轨迹规划在当今科技飞速发展的时代,机器人已经成为了我们生活和生产中不可或缺的一部分。
从工业生产线上的机械臂,到家庭服务中的智能机器人,它们的高效运作都离不开精准的运动轨迹规划。
那么,什么是机器人运动轨迹规划呢?简单来说,它就是为机器人确定从起始位置到目标位置的最优路径,同时要满足一系列的约束条件,比如速度限制、加速度限制、避障要求等等。
这就像是我们出门旅行,需要规划一条既快速又安全,还能避开各种拥堵和障碍的路线。
要实现良好的机器人运动轨迹规划,首先得明确机器人的工作任务和环境。
比如说,一个在仓库里搬运货物的机器人,它需要知道货物的位置、仓库的布局、通道的宽窄,以及可能存在的其他障碍物。
只有对这些情况了如指掌,才能为它规划出合理的运动轨迹。
在规划运动轨迹时,有几种常见的方法。
一种是基于几何模型的方法。
这种方法把机器人和环境都简化成几何形状,通过计算几何关系来确定运动路径。
就像在一张地图上,用线条和图形来表示道路和建筑物,然后找出从起点到终点的最佳路线。
另一种是基于运动学和动力学的方法。
运动学主要研究机器人的位置、速度和加速度之间的关系,而动力学则考虑了力和力矩对机器人运动的影响。
通过建立机器人的运动学和动力学模型,可以更精确地预测机器人的运动轨迹,同时也能更好地控制机器人的运动。
还有一种是基于智能算法的方法,比如遗传算法、蚁群算法等。
这些算法模拟了自然界中的生物进化或者群体行为,通过不断地迭代和优化,找到最优的运动轨迹。
除了方法的选择,还需要考虑机器人的运动约束。
速度和加速度的限制是很重要的,如果机器人运动速度过快或者加速度过大,可能会导致不稳定甚至损坏。
此外,机器人的关节角度限制、扭矩限制等也需要在规划中考虑进去,以确保机器人能够正常、安全地运动。
避障也是机器人运动轨迹规划中的一个关键问题。
在复杂的环境中,机器人可能会遇到各种各样的障碍物。
为了避免碰撞,需要实时检测障碍物的位置和形状,并根据这些信息调整运动轨迹。
《机器人技术基础》第七章机器人轨迹规划
7.2.3 用抛物线过渡的线性插值
f
f a
h
a 0
0 ta
th
a
0
1 2
ta2
t tf-ta tf
7.2.3 用抛物线过渡的线性插值
h
1 2
f —0
f
f a
综合上述式子,可得:
ta2 t f ta f 0 0
(7.7) h
a 0
0 ta
th
t tf-ta tf
(7.8) (7.9)
关节空间描述与直角坐标描述
关节空间描述:采用关节量来描述机器人的运动。 优点:描述方法简单 缺点:机器人在两点之间的运动不可预知
直角坐标描述:机器人的运动序列首先在直角
坐标空间中进行描述,然后转化为关节空间描
述。
优点:机器人在两点之间的运动可预知
θ
缺点:计算量大
关节空间轨迹 t
P0 P1 P3
P2
三次多项式插值的关节运动轨迹曲线如图所示。由图
可知,其速度曲线为抛物线,相应的加速度曲线为直线。
图 三次多项式插值的关节运动轨迹
7.2.1 三次多项式插值
过路径点的三次多项式
方法:把所有路径点都看成是“起点”或“终点”,求解逆运动 学,得到相应的关节矢量值。然后确定所要求的三次多项式插值 函数,把路径点平滑的连接起来。不同的是,这些“起点”和 “终点”的关节速度不再是零。
t a0 a1t a2t2 a3t3 a4t4 a5t5 (7-6)
23
7.2.2 高级多项式插值
24
7.2.2 高级多项式插值
将约束条件带入,可得:
可画出它们随时间的变化曲线如图所示,(a)、(b)、(c)分别表示该机器人手臂 关节的位移、速度、加速度运动轨迹曲线。可以看出,角速度曲线为一抛物线。
机器人轨迹规划
04
基于动力学的方法
牛顿-欧拉方程
描述机器人运动和动态特性的 重要方程之一。
通过分析机器人各部分的加速 度、速度和位置之间的关系, 来预测机器人的运动轨迹。
可以用于实时控制机器人的运 动状态,确保机器人运动的稳 定性和准确性。
拉格朗日方程
另一种描述机器人运动和动态特 性的方程。
基于能量的概念,通过分析机器 人各部分的动能和势能之间的关 系,来预测机器人的运动轨迹。
服务机器人轨迹规划
总结词
服务机器人轨迹规划技术主要用于公共服务、餐饮、旅 游等领域。通过自主导航、避障和路径规划,实现自主 行走和任务执行。
详细描述
服务机器人通常采用轮式结构,具有较好的稳定性和移 动能力。通过对机器人的轮子进行精确控制,可以使其 按照预定的路径进行运动,同时通过避障和路径规划算 法,实现自主导航和任务执行。
具有简洁、易于理解和计算的优 点,适用于复杂机器人的运动规
划。
卡尔曼滤波器
一种用于估计和预测机器人状态的方法。
基于一系列传感器数据,通过建立数学模型对数据进行处理和分析,得到机器人位 置、速度等运动状态的估计值。
具有实时性、精确性和鲁棒性等优点,广泛应用于机器人导航、定位和跟踪等领域 。
05
基于机器学习的方法
医疗机器人轨迹规划
总结词
医疗机器人轨迹规划技术主要用于手术、康复、护理 等领域。通过精确的轨迹规划和运动控制,实现高精 度、高效率的医疗操作。
详细描述
医疗机器人通常采用医用高精度机械臂或手术器械, 具有高精度、高稳定性和高度可控性等特点。通过对 机器人的运动进行精确控制,可以使其按照预定的路 径进行运动,实现高精度、高效率的医疗操作。同时 ,医疗机器人还可以实现远程手术和康复治疗等功能 ,为医疗行业的发展提供了重要的技术支持。
工业机器人的轨迹规划和控制
工业机器人的轨迹规划和控制在现代制造业中,工业机器人扮演着至关重要的角色。
它们能够高效、精确地完成各种复杂的任务,大大提高了生产效率和产品质量。
而要实现工业机器人的精准动作和高效作业,轨迹规划和控制则是其中的关键环节。
工业机器人的轨迹规划,简单来说,就是为机器人确定一条从起始点到目标点的最优路径。
这可不是一件简单的事情,需要考虑众多因素。
首先是工作空间的限制,机器人的运动范围是有限的,必须确保规划的轨迹在这个范围内。
其次,要考虑机器人的运动学和动力学特性。
不同类型的机器人,关节结构和运动方式都有所不同,这会影响轨迹的规划。
此外,还需要考虑任务的要求,比如速度、精度、加速度等。
为了实现有效的轨迹规划,工程师们通常采用多种方法。
一种常见的方法是基于关节空间的规划。
在这种方法中,直接对机器人的关节角度进行规划。
通过给定起始和终止的关节角度,以及中间的一些关键点,然后使用插值算法来生成连续的关节角度轨迹。
这样可以保证机器人的运动平稳,避免出现突变。
另一种方法是基于笛卡尔空间的规划。
在这种情况下,直接在三维空间中对机器人的末端执行器的位置、姿态进行规划。
这种方法更直观,更容易与任务需求相结合,但计算量相对较大。
在轨迹规划中,还需要考虑一些约束条件。
比如,速度约束,以防止机器人运动过快导致不稳定;加速度约束,避免过大的冲击;还有关节角度限制、力矩限制等,以确保机器人的运动在安全范围内。
有了规划好的轨迹,接下来就是控制机器人按照这个轨迹运动。
工业机器人的控制主要分为位置控制和力控制两种方式。
位置控制是最常见的控制方式。
通过不断测量机器人的实际位置,并与规划的位置进行比较,然后计算出控制量,驱动机器人向目标位置运动。
这种控制方式适用于大多数对位置精度要求较高的任务,比如装配、焊接等。
力控制则主要用于需要与环境进行交互、施加特定力的任务,比如打磨、抛光等。
在力控制中,通过安装力传感器来测量机器人与环境之间的接触力,然后根据力的大小和方向来调整机器人的运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。