LNG储罐泄漏事故后果分析

LNG储罐泄漏事故后果分析
LNG储罐泄漏事故后果分析

液化气储罐泄漏后果分析(2020版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 液化气储罐泄漏后果分析(2020 版) Safety management is an important part of production management. Safety and production are in the implementation process

液化气储罐泄漏后果分析(2020版) 液化石油气是从油气田或石油炼制过程中得到的一部分碳氢化合物,主要成分为C3、C4烷烃。液化石油气(LPG)是重要的燃料及化工原料,同时也是一种易燃、易爆的危险物质,在生产运输、储存和使用过程中极易发生事故。随着液化石油气在工业与民用方面的广泛应用,国内外因操作和管理不慎而发生的液化石油气火灾爆炸事故屡见不鲜。1984年11月19日,墨西哥市郊外国家石油公司液化石储运站发生泄漏并引发爆炸,造成650人死亡,6000人受伤。1998年3月5日,西安市煤气公司液化石油气管理所发生严重泄漏爆炸事故,共造成12人死亡,32人受伤,10万居民疏散。这些事故造成的人身伤亡及财产损失等都极为严重。因此,对液化石油气储罐及其管路的事故后果进行分析,提出相应的对策措施,对预防重大事故的发生具有重要意义。 液化石油气主要危险性分析

1.易燃、易爆性 液化石与空气混合后,一旦遇到火种,甚至是石头与金属撞击或摩擦的静电火花,都能迅速引起燃烧。液化石油气的爆炸极限为1.5%~9.5%,爆炸范围宽且爆炸下限低,泄漏扩散后很容易发生爆炸。液化石油气燃烧热值高,燃烧速度快。其燃烧热值是焦炉煤气的5倍,烟煤发热量的2倍,爆炸时燃烧速度为每秒数百米到数千米,火焰温度高于2000℃,着火时热辐射很强,极易引燃引爆周围易燃易爆物质,使火势扩大。 2.挥发生 液化石油气常压沸点低(例如丙烷为-42.1℃),一旦从容器或管道中泄漏出来,由于压力的降低,便可急剧气化,体积将会骤然膨胀250倍左右,并能迅速扩散蔓延。液化石油气气态比重是空气的1.5~2.5倍,一旦泄漏,易在低洼或通风不良处窝存,在平地上能沿地面迅速扩散至远处,而不是扩散到空气中去,更易酿成爆炸事故。 3.受热易膨胀性

加油站危险及有害因素分析

汽油、柴油物质具有易燃性、易爆性、易挥发性、易扩散流淌性、静电荷积聚性、有毒性等危险、危害特性,由于加油站经营过程中大量存储和销售汽油和柴油物质,决定了加油站具有较大的火灾爆炸危险和中毒危害。 特别对火灾爆炸事故,一旦发生,不仅造成加油站内人员伤亡和设备设施的毁坏,而且会严重威胁加油站周围的居民和环境,带来较大的人员伤亡、财产损失和社会影响。 加油站火灾爆炸事故发生的主要原因: 1、加油、卸油、量油过程中违章作业。 2、设备或管道腐蚀破裂、安全保障设施不完善等因素造成汽油 等易燃物质泄漏蔓延。 3、有点火源而引发燃烧。 4、油蒸气比空气重,泄漏后易积聚在油罐观测口周围、地下管沟、低洼等地,遇空气混合达到爆炸极限,形成爆炸性气体,一旦存在火源,即可发生爆炸事故。 加油站内点火源可能存在的主要形式有: 1、打火机或火柴等明火。 2、非防爆设备、电火花、汽车发动机、手机火花等。 3、静电放电、雷电放电、金属磨擦火花。 4、防雷、防静电接地失效等。 加油站作业中潜在的事故可能性分析 储油罐、加油机、卸油点等三大危险区主要的潜在事故:

造成火灾、爆炸可能的条件: 1、汽油泄露 2、油蒸汽积聚 3、防雷接地系统失效 4、加油车辆未熄火 5、加油机无静电接地或接地失效 6、使用非防爆设备 7、电气设备漏电 8、设备、管线腐蚀、老化 9、存在明火源 10、违章作业 造成泄漏事故可能的条件: 1、设备、管线腐蚀、老化 2、操作违章 3、控制失灵 电气伤害 加油站各类用电设备,可因电气设备、线路、连接、开关缺陷、保护接地装置失效或操作失误和维护时的违章操作等可能造成电气伤害,并有可能引发火灾爆炸事故。 采光照明不良 加油站的采光照明如不符合有关具体要求,采光不足可能引起操作人员的误操作,而引发各类事故。

论文-天津港爆炸事故后果分析

化学品爆炸后果分 析 —以天津港爆炸为例

前言 本报告通过对天津港爆炸事故现场数据以及现场爆炸情况、范围的收集,应用事故调查分析的方法,通过模拟计算来分析天津港爆炸事故的后果。本报告说明了了事故经过、原因、人员伤亡和直接经济损失,认定了事故性质,提出了对有关责任人员和责任单位的处理建议,分析了事故暴露出的突出问题和教训,提出了加强和改进工作的意见建议。

2015年8月12日,位于天津市滨海新区天津港的瑞海国际物流有限公司(以下简称瑞海公司)危险品仓库发生特别重大火灾爆炸事故。通过反复的现场勘验、检测鉴定、调查取证、模拟实验、专家论证,查明了事故经过、原因、人员伤亡和直接经济损失,认定了事故性质和责任,提出了对有关责任人员和责任单位的处理建议,分析了事故暴露出的突出问题和教训,提出了加强和改进工作的意见建议。 调查认定,天津港“8·12”瑞海公司危险品仓库火灾爆炸事故是一起特别重大生产安全责任事故。 一、事故基本情况 (一)事故发生的时间和地点。 2015年8月12日22时51分46秒,位于天津市滨海新区吉运二道95号的瑞海公司危险品仓库(北纬39°02′22.98″,东经117 °44′11.64″。地理方位示意图见图1)运抵区(“待申报装船出口货物运抵区”的简称,属于海关监管场所,用金属栅栏与外界隔离。由经营企业申请设立,海关批准,主要用于出口集装箱货物的运抵和报关监管)最先起火,23时34分06秒发生第一次爆炸,23时34分37秒发生第二次更剧烈的爆炸。事故现场形成6处大火点及数十个小火点,8 月14日16时40分,现场明火被扑灭。 (二)事故现场情况。 事故现场按受损程度,分为事故中心区(航拍图见图2)、爆炸冲击波波及区。事故中心区为此次事故中受损最严重区域,该区域东至跃进路、西至海滨高速、南至顺安仓储有限公司、北至吉运三道,面积约为54万平方米。两次爆炸分别形成一个直径15米、深1.1米的月牙形小爆坑和一个直径97米、深2.7米的圆形大爆坑。以大爆坑为爆炸中心,150米范围内的建筑被摧毁。

蒸汽云爆炸事故后果模拟分析法

蒸汽云爆炸事故后果模拟分析法 超压: 1)TNT 当量 通常,以TNT 当量法来预测蒸气云爆炸的威力。如某次事故造成的破坏状况与kgTNT 炸药爆炸所造成的破坏相当,则称此次爆炸的威力为kgTNT 当量。 蒸气云爆炸的TNT 当量W TNT 计算式如下: W TNT =×α×W f ×Q f /Q TNT 式中,W TNT —蒸气云的TNT 当量(kg) α—蒸气云的TNT 当量系数,正己烷取α=; W f —蒸气云爆炸中烧掉的总质量(kg) Q f —物质的燃烧热值(kJ/kg), 正己烷的燃烧热值按×106J/kg ,参与爆炸的正己烷按最大使用量792kg 计算,则爆炸能量为×109J 将爆炸能量换算成TNT 当量q ,一般取平均爆破能量为×106J/kg ,因此 W TNT = ×α×W f ×Q f /q TNT + =××792××106/×106 =609kg 2)危害半径 为了估计爆炸所造成的人员伤亡情况,一种简单但较为合理的预测程序是将危险源周围划分为死亡区、重伤区、轻伤区和安全区。 死亡区内的人员如缺少防护,则被认为将无例外的蒙受重伤或死亡,其内径为0,外径为R ,表示外周围处人员因冲击波作用导致肺出血而死亡的概率为,它与爆炸量之间的关系为: = m 重伤区的人员如缺少防护,则绝大多数将遭受严重伤害,极少数人可能死亡或受伤。其内径就是死亡半径R 1,外径记为R 2,代表该处 0.37 0.37 1420.4313.613.610001000TNT W R ?? ??== ? ??? ??

人员因冲击波作用耳膜破损的概率为,它要求的冲击波峰值超压为44000Pa 。冲击波超压P ?按下式计算: P ?=++式中: P ?——冲击波超压,Pa ; Z ——中间因子,等于; E ——蒸气云爆炸能量值,J ; P0——大气压,Pa ,取101325 得R 2= 轻伤区的人员如缺少防护,则绝大多数将遭受轻微伤害,少数人将受重伤或者平安无事。轻伤区的内径为重伤区的外径R 2,外径R 3,表示外边界处耳膜因冲击波作用破裂的概率为,它要求的冲击波峰值 超压为17000Pa 。冲击波超压P ?按下式计算: P ?=++P ?——冲击波超压,Pa ; Z ——中间因子,等于; E ——蒸气云爆炸能量值,J ; P0——大气压,Pa ,取101325 得R 3= m 安全区内人员即使无防护,绝大多数也不会受伤,安全区内径为轻伤区的外径R 3,外径无穷大。 财产损失半径,指在冲击波的作用下建筑物发生三级破坏的半径,单位为m 。按照英国建筑物破坏等级的划分标准规定,建筑物的三级破坏是指房屋不能居住、屋基部分或全部破坏、外墙1 ~ 2面部分破损,承重墙破损严重。财产损失半径可由下式确定。 式中: K ——取值为5. 6 6 /121/3TNT 431751??? ???? ?? ?????+= TNT W KW R 0440********.434 101325P P ?===2 1 3 0R Z E P =?? ? ?? 01700017000 0.168101325P P ?===313 0R Z E P =?? ???

氯气泄漏重大事故后果模拟分析经典

氯气泄漏重大事故后果模拟分析(经典)

————————————————————————————————作者: ————————————————————————————————日期: ?

国内外统计资料显示,因防爆装置不作用而造成焊缝爆裂或大裂纹泄漏的重大事故概率仅约为6.9×10-7~6.9×10-8/年左右,一般发生的泄漏事故多为进出料管道连接处的泄漏。据我国不完全统计,设备容器一般破裂泄漏的事故概率在1×10-5/年。此外,据储罐事故分析报道,储存系统发生火灾爆炸等重大事故概率小于1×10-6,随着近年来防灾技术水平的提高,呈下降趋势。 第七章氯气泄漏重大事故后果模拟分析 7.1危险区域的确定 概述: 泄漏类型分为连续泄漏(小量泄漏)和瞬间泄漏(大量泄漏),前者是指容器或管道破裂、阀门损坏、单个包装的单处泄漏,特点是连续释放但流速不变,使连续少量泄漏形成有毒气体呈扇形向下风扩散;后者是指化学容器爆炸解体瞬间、大包装容器的泄漏、许多小包装的多处泄漏,使大量泄漏物形成一定高度的毒气云团呈扇形向下风扩散。 氯泄漏后虽不燃烧,但是会造成大面积的毒害区域,会在较大范围內对环境造成破坏,致人中毒,甚至死亡。根据不同的事故类型、氯气泄漏扩散模型,危害区域会有所不同。氯设备泄漏、爆炸事故概率低,一旦发生可造成严重的后果。 以下液氯钢瓶中的液氯泄漏作为事故模型进行危险区域分析。 毒害区域的计算方法: (1)设液氯重量为W(kg),破裂前液氯温度为t(℃),液氯比热为C(kj/kg .℃),当钢瓶破裂时瓶内压力降至大气压,处于过热状态的液氯迅速降至标准沸点t0(℃),此时全部液氯放出的热量为:

池火灾模型对汽油罐区火灾事故危险性的分析

池火灾模型对汽油罐区火灾事故危险性的分析 摘要:运用“池火灾伤害模型”分析汽油罐区发生火灾事故的危险性,计算其火灾事故影响范围和程度,预测火灾事故严重度,并得出结论。分析结果可评价罐区火灾事故后果的影响,达到重视罐区安全生产的目的,也可为汽油罐区的安全管理和应急管理提供可靠的依据。 关键词:池火灾伤害模型;汽油罐区;危险性分析;火灾事故 从石油化工企业的事故类型分析来看,泄漏和火灾爆炸事故是石化企业安全防范的重点[1]。汽油罐区发生池火灾,是由于可燃液体( 汽油) 泄漏到地面,遇到点火源形成的火灾。由于其氧气供应充足,所以燃烧比较完全。池火灾产生的火焰能够向周围发出热辐射,使附近的人员受到伤害,附近的建筑物遭受到破坏,并且可引燃周围的可燃物。运用“池火灾伤害模型”分析热辐射对人员的伤害、财产破坏程度来估算汽油罐区火灾事故后果的严重度,达到减轻罐区火灾事故影响程度和提高罐区火灾事故应急反应能力的目的。通过分析,可为已知汽油罐区确定安全距离和确定储罐的额定储量提供依据,也可为罐区的安全管理和应急管理提供可靠的依据。 1 汽油罐区基本情况 该罐区位于辽阳市某厂区,是公司9个重点油罐区中生产要害部位之一。车间共分六大属地管理责任区,即燃料油装置区、轻油装置区、石脑油装置区、轻烃装置区、液化石油气站台区、办公区。汽油罐区由 4 座汽油储罐组成,其规格为每座5000 m3,直径22.8 m。选定汽油罐区中汽油储罐为分析对象,4个储罐总容量为2万m3。有效容积= 20 000 m3 × 85% =17 000 m3,有效储存量W = 0. 725 t/m3 × 17000 =12325 t。根据危险化学品重大危险源辨识标准[2](GB 18218—2009),临界量为200 t,已超过临界值,属于重大危险源。 2 汽油罐区火灾事故危险性分析 2. 1 池火灾模型[3] 池火是指可燃液体( 如汽油、柴油等) 泄漏后流到地面形成液池或流到水面并覆盖水面,遇到火源燃烧而形成的火灾。汽油罐区火灾的常见原因是油罐过载和雷电。汽油属中闪点液体,其罐区发生池火灾一般可用泡沫、二氧化碳、干粉、砂土灭火。影响池火灾事故严重度预测结果的关键参数[4-6]有:池面积、燃料燃烧速度、燃烧热、燃烧效率、池火火焰高度、人员伤害和财产破坏的临界热通量、池火周围人员密度和财产密度等,其关键参数、影响范围和危害程度计算

CNG储气瓶泄漏事故后果模拟分析评价

CNG储气瓶泄漏事故后果模拟分析评价 摘要:CNG储气瓶由于高压和介质可燃爆两大事故因素,无论发生何种事故,都可能引发泄漏,火灾,化学爆炸和物理爆炸。本文即对CNG储气瓶泄漏后导致爆炸事故进行事故后果模拟分析,计算其爆炸冲击波的伤害范围。 关键词:CNG储气瓶泄漏事故后果 一、引言 随着天然气在汽车能源中所占比重的增大,越来越多的加气站被建立,压缩天然气(CompressedNaturalGas,简称CNG)加气站是常见的一类,在各种CNG 加气站里,通过压缩机加压压缩,强行将天然气储存在特制容器内,专供汽车加气的备用装置或系统,称为储气装置或储气技术[1]。CNG储气瓶是加气站常用的储气装置,该装置一般具有25~30MPa的高压,其储存的压缩天然气的主要成分是甲烷,属一级可燃气体,甲类火灾危险性,爆炸极限为5%~15%,最小点火能量仅为0.28mJ,燃烧速度快,燃烧热值高,对空气的比重为0.55,扩散系数为0.196,极易燃烧,爆炸,并且扩散能力强,火势蔓延迅速,一旦发生事故,难以控制[2]。 CNG储气瓶由于高压和介质可燃爆两大事故因素,无论发生何种事故,都可能引发泄漏,火灾,化学爆炸和物理爆炸,如果事故得不到有效控制,还可相互作用,相互影响,促使事故扩大蔓延及至产生巨大的冲击波危害,因此,对其危害后果做出合理评价具有重大意义[1]。 二、泄漏事故后果模拟分析 假设某一加气子站内有3支4m3大容积储气瓶,其中一支储气瓶的瓶口处发生天然气泄漏,模拟分析如下: 1.泄漏量计算 1.1 泄漏类型判断 P-储气瓶组内介质压力,取25MPa P0 -环境压力,取0.1 MPa,则P0 / P = 0.004 k-介质的绝热指数,取1.316 ,则介质流动属音速流动。 1.2泄漏孔面积和喷射孔等价直径

事故后果模拟计算

事故后果模拟 中毒 有毒物质泄漏后生成有毒蒸气云,它在空气中飘移、扩散,直接影响现场人员,并可能波及居民区。大量剧毒物质泄漏可能带来严重的人员伤亡和环境污染。 毒物对人员的危害程度取决于毒物的性质、毒物的浓度和人员与毒物接触时间等因素。有毒物质泄漏初期,其毒气形成气团密集在泄漏源周围,随后由于环境温度、地形、风力和湍流等影响气团飘移、扩散,扩散范围变大,浓度减小。在后果分析中,往往不考虑毒物泄漏的初期情况,即工厂范围内的现场情况,主要计算毒气气团在空气中飘移、扩散的范围、浓度、接触毒物的人数等。 有毒液化气体容器破裂时的毒害区估算 液化介质在容器破裂时会发生蒸气爆炸。当液化介质为有毒物质,如液氯、液氨、二氧化硫、硫化氢、氢氰酸等,爆炸后若不燃烧,会造成大面积的毒害区域。 设有毒液化气体质量为W(单位:kg),容器破裂前器内介质温度为t(单位:℃),液体介质比热为C[单位:kJ/(kg·℃)。当容器破裂时,器内压力降至大气压,处于过热状态的液化气温度迅速降至标准沸点t0(单位:℃),此时全部液体所放出的热量为:Q=W·C(t—t0) 设这些热量全部用于器内液体的蒸发,如它的气化热为g(单位:kJ/kg),则其蒸发量:

q t t C W q Q W )(0-?==' 如介质的分子量为M ,则在沸点下蒸发蒸气的体积Vg(单位:m 3)为: 273273)(4.222732734.22000t M t t C W t M W V q g +?-?=+?= 为便于计算,现将压力容器最常用的液氨、液氯、氢氰酸等的有关物理化学性能列于表2-3中。关于一些有毒气体的危险浓度见表2-4。 若已知某种有毒物质的危险浓度,则可求出其危险浓度下的有毒空气体积。如二氧化硫在空气中的浓度达到0.05%时,人吸入5~10min 即致死,则Vg 的二氧化硫可以产生令人致死的有毒空气体积为: V=Vg ×100/0.05=2000 Vg 。 假设这些有毒空气以半球形向地面扩散,则可求出该有毒气体扩散半径为: R=33 421/π?c Vg =30944.2/c Vg 式中 R ——有毒气体的半径,m ; Vg ——有毒介质的蒸气体积,m 3; C ——有毒介质在空气中的危险浓度值,%。 表2-3 一些有毒物质的有关物化性能

储罐事故分析(通用版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 储罐事故分析(通用版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

储罐事故分析(通用版) 储油罐是原油长输管道的主要设备之一,一旦发生事故,轻者造成经济损失,重者会使人员伤亡。除静电、雷击引起的火灾爆炸事故外,根据储油罐的特点来划分事故类别,可分为:冒顶跑油事故、瘪罐事故、沉船事故、破裂事故、腐蚀破坏事故和基础下沉事故等。 因储油罐收油量超过本罐最大极限容量,导致油品从储油罐顶部溢出罐外的事故称为冒顶跑油事故。发生储油罐冒顶跑油事故的主要原因是操作人员责任心不强、不按规定时间检尺,在储油罐已处于满罐的情况下,还盲目向罐内进油,造成储油罐冒顶跑油。此外,倒错流程、储油罐液位计失灵或本站输油泵发生故障、上站来油不能及时排出等,都会造成储油罐冒顶跑油,这类事故除造成经济损失外,由于原油流散面积较大,极易引起火灾,扩大事故范围。

为防止储油罐冒顶跑油,向储油罐进油时,要严格掌握罐内液面上升情况。当距储油极限高度l米时,要缩短检尺时间和严密监视罐内液位高度。倒流程时,严格执行操作票制度,一人操作,一人监护,防止倒错流程。储油罐发生冒顶跑油事故时,应停止向事故罐进油,应立即倒罐,或要求上站降低输量,本站增量外输,或倒越站流程。事故现场要采取应急防火措施,杜绝一切明火,抓紧时间回收落地原油。 [事故案例]①1973年东北地区某输油站,在进油倒罐过程中,近两小时不巡检,造成两台储油罐同时冒顶跑油共370吨。 ②1985年华北地区某输油站,没按时上罐检尺,造成储油罐冒顶跑油90吨。 储油罐内负压过大,超过了它的临界负压力,在外界大气压的作用下,罐顶或罐壁发生大面积塌陷,这种事故叫瘪罐事故。反之,若储油罐因受到强烈憋压而破裂称为胀罐事故。呼吸阀、安全阀同时被凝结、锈死或阻火器堵塞,储油罐不能正常进行呼吸,是发生瘪罐、胀罐事故的主要原因。此外,输油量过大,超过了呼吸阀、

事故后果分析安评教材

4 事故后果分析 对一种可能发生的事故只有知道其后果时,对其危险性分析才算是完整的。后果分析是危险源危险性分析的一个主要组成部分,其目的在于定量地描述一个可能发生的重大事故对工厂、对厂内职工、对厂外居民甚至对环境造成危害的严重程度。后果分析为企业或企业主管部门提供关于重大事故后果的信息,为企业决策者和设计者提供采取何种防护措施的信息。由于事故的发生是一个概率事件,完全杜绝生产过程中的事故是不可能的,因此对事故后果的控制就成为安全工作者必须关注的一个重要课题。 泄漏事故、火灾事故、爆炸事故、中毒事故是可能造成重大恶果的生产事故,也是我们进行后果分析的重点。 4.1 泄漏事故后果分析 火灾和因有毒气体引起的中毒事故都与物质的泄漏有着直接的联系。确定重大事故,尤其是泄漏和火灾事故时的危险区域是在确定有毒物质泄漏后的扩散范围的基础上进行的。因此,要首先从有毒、有害物质泄漏分析开始。 4.1.1 泄漏的主要设备 根据泄漏情况,可以把化工生产中容易发生泄漏的设备归纳为10类,即管道、挠性连接器、过滤器、阀门、压力容器或反应罐、泵、压缩机、储罐、加压或冷冻气体容器和火炬燃烧器或放散管。 (1)管道 包括直管、弯管、法兰管、接头几部分,其典型泄漏情况和裂口尺寸为: ?管道泄漏,裂口尺寸取管径的20-100%; ?法兰泄漏,裂口尺寸取管径的20%; ?接头泄漏,裂口尺寸取管径的20-100%; (2)挠性连接器 包括软管、波纹管、铰接臂等生产挠性变形的连接部件,其典型泄漏情况和裂口尺寸为:?连接器本体破裂泄漏,裂口尺寸取管径的20-100%; ?接头泄漏,裂口尺寸取管径的20%; ?连接装置损坏而泄漏,裂口尺寸取管径的100%; (3)过滤器 由过滤器本体、管道、滤网等组成,其典型泄漏情况和裂口尺寸为: ?过滤器本体泄漏,裂口尺寸取管径的20-100%; ?管道泄漏,与过滤器连接的管道发生的泄漏,裂口尺寸取管径20%; (4)阀 包括化工生产中应用的各种阀门,其典型泄漏情况和裂口尺寸为: ?阀壳体泄漏裂口尺寸取与阀连接管道管径的20-100%; ?阀盖泄漏,裂口尺寸取管径的20%; ?阀杆损坏而泄漏,裂口尺寸取管径的20%; (5)压力容器 包括化工生产中常用的分离、气体洗涤器、反应釜、热交换器、各种罐和容器等,其常见泄漏情况和裂口尺寸为:

(生产管理知识)生产装置重大泄漏事故原因分析及灾害后果模拟计算

生产装置重大泄漏事故原因分析及灾害后果模拟计算 1、泄漏事故原因统计分析 根据建国以来化工系统所发生的59起重大及典型泄漏事故的实际情况,从五方面对事故原因进行了分类,见表1。 表1 重大及典型泄漏事故原因分类 (1)工艺技术 工艺路线设计不合理,操作中关键参数控制要求不严格。 (2)设备、材料本身原因 设备本身缺陷,材料及安装质量未达到标准要求;生产、制造过程中不按照有关规定进行;材料选择不符合标准。 (3)人为因素 违章操作、误操作、缺少必要的安全生产和岗位技能知识;工作责任心不强。 (4)外来因素 外来物体的打击、碰撞。 (5)其他因素 不属于以上四种原因之一。 从以上统计可以看出,泄漏事故的发生主要是因为设备等产品的质量不过关,职工不按操作规程进行操作和安全生产意识不强等主要原因造成的。针对这些原因,企业应加强产品质量的检查和验收,积极开展安全生产及岗位操作技能教育,真正做到岗前培训,持证上岗。 2、典型事故案例分析

本节通过列举案例,分析类似事故,找出可能造成系统故障、物质损失和人员伤害的危险因素,防患于未然。 【案例一】1000m3气柜爆炸 发生日期:1979年7月9日 发生单元:河北省大城化肥厂 经济损失:14万元 (1)事故经过: 7月9日中午12时许,全厂断电,造气停车。当时造气工段1号炉正作吹风,2号炉作下吹,气柜存半水煤气400m3。停车前作最后一次半水煤气分析成分合格。此时发现1号煤气炉有倒气现象,为防止发生炉口爆炸,于下午2时左右,将气柜出口水封放空阀打开,将气柜内半水煤气放掉,下午4时气柜钟罩已落底。这时操作工又将1号洗气塔放空阀打开,作进一步系统卸压,各工段均处于停车状态,各工段只留下1~2名工人值班,到下午6时55分气柜突然发生爆炸。气柜周边撕裂,顶盖升至高空约40m,落至距气柜中心14m远处,将围墙砸塌10m多长。气柜爆炸的同时,造气工段2号洗气塔顶盖亦被炸坏,打出33m。没有造成人身伤亡。 (2)原因分析:①可燃性气体存在:虽然气柜已放空,气柜钟罩已落底,但钟罩球形顶部尚残存60多M3水煤气,洗气塔及煤气管道中也残存40多M3的 可燃性气体;②空气的混半水煤气,在这100M3半水煤气中含有大量的CO与H 2 入:由于气柜出口水封放空阀与洗气塔放空阀均已打开,使系统与空气连通,当系统内有压力时,半水煤气自系统排向大气,但自9日中午起就连续下大雨,气温下降很快,容器管道内残存的半水煤气温度也明显下降,致使气柜形成负压,由放空阀将空气吸入气柜,酿成爆炸条件。③火源引入:因1号洗气塔排污闸阀密封不严,较长时间的停车使水泄漏较多,水封失去作用,使造气炉与洗气塔、管道、气柜成为连通体,炉体火源引入气柜,引起爆炸。 (3)教训:①停车时必须由造气工段长负责检查设备(包括各种阀门)、工艺情况;②放空阀卸压后要及时关闭,避免空气混入;③防止停车后气柜煤气倒回、炉口爆炸,可使气柜进口水封加水和洗气塔、洗气箱水保持溢流。

爆炸后果分析(DOC)

重大事故后果分析方法:爆炸 爆炸是物质的一种非常急剧的物理、化学变化,也是大量能量在短时间内迅速释放或急剧转化成机械功的现象。它通常借助于气体的膨胀来实现。 从物质运动的表现形式来看,爆炸就是物质剧烈运动的一种表现。物质运动急剧增速,由一种状态迅速地转变成另一种状态,并在瞬间内释放出大量的能。 一般说来,爆炸现象具有以下特征: (1)爆炸过程进行得很快; (2)爆炸点附近压力急剧升高,产生冲击波; (3)发出或大或小的响声; (4)周围介质发生震动或邻近物质遭受破坏。 一般将爆炸过程分为两个阶段:第一阶段是物质的能量以一定的形式(定容、绝热)转变为强压缩能;第二阶段强压缩能急剧绝热膨胀对外做功,引起作用介质变形、移动和破坏。

按爆炸性质可分为物理爆炸和化学爆炸。物理爆炸就是物质状态参数(温度、压力、体积)迅速发生变化,在瞬间放出大量能量并对外做功的现象。物理爆炸的特点是:在爆炸现象发生过程中,造成爆炸发生的介质的化学性质不发生变化,发生变化的仅是介质的状态参数。例如锅炉、压力容器和各种气体或液化气体钢瓶的超压爆炸。化学爆炸就是物质由一种化学结构迅速转变为另一种化学结构,在瞬间放出大量能量并对外做功的现象。例如可燃气体、蒸气或粉尘与空气混合形成爆炸性混合物的爆炸。化学爆炸的特点是:爆炸发生过程中介质的化学性质发生了变化,形成爆炸的能源来自物质迅速发生化学变化时所释放的能量。化学爆炸有3个要素:反应的放热性、反应的快速性和生成气体产物。 从工厂爆炸事故来看,有以下几种化学爆炸类型: (1)蒸气云团的可燃混合气体遇火源突然燃烧,是在无限空间中的气体爆炸; (2)受限空间内可燃混合气体的爆炸; (3)化学反应失控或工艺异常造成压力容器爆炸; (4)不稳定的固体或液体爆炸。 总之,发生化学爆炸时会释放出大量的化学能,爆炸影响范围较大,而物理爆炸仅释放出机械能,其影

氯气泄漏重大事故后果模拟分汇总

国内外统计资料显示,因防爆装置不作用而造成焊缝爆裂或大裂纹泄漏的重大事故概率仅约为6.9×10-7~6.9×10-8/年左右,一般发生的泄漏事故多为进出料管道连接处的泄漏。据我国不完全统计,设备容器一般破裂泄漏的事故概率在1×10-5/年。此外,据储罐事故分析报道,储存系统发生火灾爆炸等重大事故概率小于1×10-6,随着近年来防灾技术水平的提高,呈下降趋势。 第七章氯气泄漏重大事故后果模拟分析 7.1危险区域的确定 概述: 泄漏类型分为连续泄漏(小量泄漏)和瞬间泄漏(大量泄漏),前者是指容器或管道破裂、阀门损坏、单个包装的单处泄漏,特点是连续释放但流速不变,使连续少量泄漏形成有毒气体呈扇形向下风扩散;后者是指化学容器爆炸解体瞬间、大包装容器的泄漏、许多小包装的多处泄漏,使大量泄漏物形成一定高度的毒气云团呈扇形向下风扩散。 氯泄漏后虽不燃烧,但是会造成大面积的毒害区域,会在较大范围內对环境造成破坏,致人中毒,甚至死亡。根据不同的事故类型、氯气泄漏扩散模型,危害区域会有所不同。氯设备泄漏、爆炸事故概率低,一旦发生可造成严重的后果。 以下液氯钢瓶中的液氯泄漏作为事故模型进行危险区域分析。 毒害区域的计算方法: (1)设液氯重量为W(kg),破裂前液氯温度为t(℃),液氯比热为C(kj/kg .℃),当钢瓶破裂时瓶内压力降至大气压,处于过热状态的液氯迅速降至标准沸点t0(℃),此时全部液氯放出的热量为:

Q=WC(t-t0) 设这些热量全部用于液氯蒸发,如汽化热为q(kj/kg),则其蒸发量W为: W=Q/q=WC(t-t0)/q 氯的相对分子质量为M r,则在沸点下蒸发的液氯体积V g(m3)为: V g =22.4W/M r273+t0/273 V g =22.4WC(t-t0)/ M r q273+t0 /273 氯的有关理化数据和有毒气体的危险浓度如下: 相对分子质量:71 沸点: -34℃ 液体平均此热:0.98kj/kg.℃ 汽化热: 2.89×102kj/kg 吸入5-10mim致死浓度:0.09% 吸入0.5-1h致死浓度: 0.0035-0.005% 吸入0.5-1h致重病浓度:0.0014-0.0021% 已知氯的危险浓度,则可求出其危险浓度下的有毒空气体积: 氯在空气中的浓度达到0.09%时,人吸入5~10min即致死。则V g(m3)的液氯可以产生令人致死的有毒空气体积为: V1 = V g×100/0.09 = 1111V g(m3) 氯在空气中的浓度达到0.00425(0.0035~0.005)%时,人吸入0.5~1h,则V g(m3)的液氯可以产生令人致死的有毒空气体积为: V2=V g×100/0.00425=23529V g(m3) 氯在空气中的浓度达到0.00175(0.0014~0.0021)%时,人吸入0.5~1 h,则

甲醇储罐爆炸事故后果分析-公司管理范文.doc

甲醇储罐爆炸事故后果分析-企业管理范文2)爆炸的能量 甲醇的容积为200m3,假设罐内充满最高爆炸上限44.0%的混合气体,则其中甲醇含量为200m3×0.44=88m3(气态);按标准状态下1mol=22.4×10-3m3计。 甲醇的燃烧热为727.0kJ/mol; 能量释放Q=88m3×727.0kJ/mol÷(22.4×10-3m3/mol)=2.86×106kJ; 冲击波的能量约占爆炸时介质释放能量的75%。 则冲击波的能量E=2.86×106kJ×75%=2.14×106kJ。 3)爆炸冲击波的伤害、破坏作用 冲击波是由压缩波迭加形成的,是波面以突进形式在介质中传播的压缩波。开始时产生的最大正压力即是冲击波波阵面上的超压△ρ。多数情况下,冲击波的伤害、破坏作用是由超压引起的。 冲击波伤害、破坏的超压准则认为,只要冲击波超压达到一定值时,便会对目标造成一定的伤害或破坏。超压波对人体的伤害和对建筑物的破坏作用见附表4-20和附表4-21。 附表4-20 冲击波超压对人体的伤害作用 1000kgTNT爆炸时的冲击波超压。

附表4-22中列出了超压△ρ时的1000kgTNT爆炸试验中的相当距离R。 附表4-22 1000kgTNT爆炸时的冲击波超压分别情况 4)后果模拟 ①爆破能量E换算成TNT当量。因为1kgTNT爆炸所放出的爆破能量为4230~4836kJ/kg,一般取平均爆破能量为4500kJ/kg,故200m3甲醇罐爆炸时,其TNT当量为: q=E/QTNT=E/4500=2.14×106/4500=476kg; ②爆炸的模拟比α: α=(q/q0)1/3=(q/1000)1/3=0.4761/3=0.781 ③根据附表4-20、附表4-21中列出的对人员和建筑物的伤害、破坏作用的超压△ρ,从附表4-22中找出对应的超压△ρ(中间值用插入法)时的1000 kgTNT爆炸式样中的相当距离R0,列于附表4-23、附表4-24中。 ④根据R0=R/α,算出实际危害距离(距爆炸中心距离): R=R0×α=R0×0.781 式中:R0——相当距离,m;R——实际距离,m。 ⑤计算结果如附表4-23、附表4-24所示。 附表4-23甲醇储罐爆炸冲击波超压对人体的伤害作用

爆炸及火灾事故后果模拟分析方法

事故后果模拟分析方法 1 简述 火灾、爆炸、中毒是常见的重大事故,经常造成严重的人员伤亡和巨大的财产损失,影响社会安定。这里重点介绍有关火灾、爆炸和中毒事故(热辐射、爆炸波、中毒)后果分析,在分析过程中运用了数学模型。通常一个复杂的问题或现象用数学模型来描述,往往是在一个系列的假设前提下按理想的情况建立的,有些模型经过小型试验的验证,有的则可能与实际情况有较大出入,但对辨识危险性来说是可参考的。 2 泄漏 由于设备损坏或操作失误引起泄漏,大量易燃、易爆、有毒有害物质的释放,将会导致火灾、爆炸、中毒等重大事故发生。因此,事故后果分析由泄漏分析开始。 2.1 泄漏情况分析 1)泄漏的主要设备 根据各种设备泄漏情况分析,可将工厂(特别是化工厂)中易发生泄漏的设备归纳为以下10类:管道、挠性连接器、过滤器、阀门、压力容器或反应器、泵、压缩机、储罐、加压或冷冻气体容器及火炬燃烧装置或放散管等。 (1)管道。它包括管道、法兰和接头,其典型泄漏情况和裂口尺寸分别取管径的20%~100%、20%和20%~100%。 (2)挠性连接器。它包括软管、波纹管和铰接器,其典型泄漏情况和裂口尺寸为: ①连接器本体破裂泄漏,裂口尺寸取管径的20%~100%; ②接头处的泄漏,裂口尺寸取管径的20%; ③连接装置损坏泄漏,裂口尺寸取管径的100%。 (3)过滤器。它由过滤器本体、管道、滤网等组成,其典型泄漏情况和裂口尺寸分别取管径的20%~100%和20%。 (4)阀。其典型泄漏情况和裂口尺寸为: ①阀壳体泄漏,裂口尺寸取管径的20%~100%; ②阀盖泄漏,裂口尺寸取管径的20%;

③阀杆损坏泄漏,裂口尺寸取管径的20%。 (10)火炬燃烧器或放散管。它们包括燃烧装置、放散管、多通接头、气体洗涤器和分离罐等,泄漏主要发生在简体和多通接头部位。裂口尺寸取管径的20%~100%。 2)造成泄漏的原因 从人-机系统来考虑造成各种泄漏事故的原因主要有4类。 (1)设计失误。 ①基础设计错误,如地基下沉,造成容器底部产生裂缝,或设备变形、错位等; ②选材不当,如强度不够,耐腐蚀性差、规格不符等; ③布置不合理,如压缩机和输出管没有弹性连接,因振动而使管道破裂; ④选用机械不合适,如转速过高、耐温、耐压性能差等; ⑤选用计测仪器不合适; ⑥储罐、贮槽未加液位计,反应器(炉)未加溢流管或放散管等。 (2)设备原因。 ①加工不符合要求,或未经检验擅自采用代用材料; ②加工质量差,特别是不具有操作证的焊工焊接质量差; ③施工和安装精度不高,如泵和电机不同轴、机械设备不平衡、管道连接不严密等; ④选用的标准定型产品质量不合格; ⑤对安装的设备没有按<机械设备安装工程及验收规范)进行验收; ⑥设备长期使用后未按规定检修期进行检修,或检修质量差造成泄漏; ⑦计测仪表未定期校验,造成计量不准; ⑧阀门损坏或开关泄漏,又未及时更换; ⑨设备附件质量差,或长期使用后材料变质、腐蚀或破裂等。

蒸汽云爆炸事故后果模拟分析法

蒸汽云爆炸事故后果模 拟分析法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

蒸汽云爆炸事故后果模拟分析法 超压: 1)TNT当量 通常,以TNT当量法来预测蒸气云爆炸的威力。如某次事故造成的破坏状况与kgTNT炸药爆炸所造成的破坏相当,则称此次爆炸的威力为kgTNT当量。 蒸气云爆炸的TNT当量W TNT计算式如下: W TNT=×α×W f×Q f/Q TNT 式中,W TNT—蒸气云的TNT当量(kg) α—蒸气云的TNT当量系数,正己烷取α=; W f—蒸气云爆炸中烧掉的总质量(kg) Q f—物质的燃烧热值(kJ/kg), 正己烷的燃烧热值按×106J/kg,参与爆炸的正己烷按最大使用量 792kg计算,则爆炸能量为×109J 将爆炸能量换算成TNT当量q,一般取平均爆破能量为×106J/kg,因此 W TNT= ×α×W f×Q f /q TNT+ =××792××106/×106 =609kg 2)危害半径 为了估计爆炸所造成的人员伤亡情况,一种简单但较为合理的预测程序是将危险源周围划分为死亡区、重伤区、轻伤区和安全区。 死亡区内的人员如缺少防护,则被认为将无例外的蒙受重伤或死亡,其内径为0,外径为R ,表示外周围处人员因冲击波作用导致肺出血而死亡的概率为,它与爆炸量之间的关系为: = m 重伤区的人员如缺少防护,则绝大多数将遭受严重伤害,极少数人可能死亡或受伤。其内径就是死亡半径R1,外径记为R2,代表该处人员

因冲击波作用耳膜破损的概率为,它要求的冲击波峰值超压为44000Pa。 ?按下式计算: 冲击波超压P ?=++式中: P ?——冲击波超压,Pa; P Z——中间因子,等于; E——蒸气云爆炸能量值,J; P0——大气压,Pa,取101325 得R2= 轻伤区的人员如缺少防护,则绝大多数将遭受轻微伤害,少数人将受重伤或者平安无事。轻伤区的内径为重伤区的外径R2,外径R3,表示外边界处耳膜因冲击波作用破裂的概率为,它要求的冲击波峰值超压为17000Pa。冲击波超压P?按下式计算: ?=++P?——冲击波超压,Pa; P Z——中间因子,等于; E——蒸气云爆炸能量值,J; P0——大气压,Pa,取101325 得R3= m 安全区内人员即使无防护,绝大多数也不会受伤,安全区内径为轻伤区的外径R3,外径无穷大。 财产损失半径,指在冲击波的作用下建筑物发生三级破坏的半径,单位为m。按照英国建筑物破坏等级的划分标准规定,建筑物的三级破坏是指房屋不能居住、屋基部分或全部破坏、外墙1 ~ 2面部分破损,承重墙破损严重。财产损失半径可由下式确定。 式中: K——取值为5. 6 正常泄露: 从原料危险性及最大储存使用量两方面综合考虑,选取甲醇的存储为研究对象进行蒸汽云爆炸事故后果模拟分析。

丙、丁烷储罐事故后果分析

丙、丁烷储罐事故后果分析 摘要:分析了丙、丁烷的危险特性及丙、丁烷储罐潜在的泄漏、火灾爆炸危险性及发生火灾爆炸事故的原因;比较了丙、丁烷储罐区池火、喷射火和沸腾液体扩展蒸气爆炸 事故后果分析方法;提出了预防丙、丁烷储罐区火灾爆炸事故的技术措施。 关键字:丙、丁烷储罐、火灾、爆炸、事故后果分析 1前言 事故后果分析是一种对危险源预测和控制的有效方法。它通过估计重大事故发生后会有哪些不良的影响,以及这些不良影响所造成的伤亡、损害的严重性,来为人们制定防范措施提供依据。丙、丁烷常用于有机物合成和乙烯制造,用作燃料和制冷剂,具有易燃易爆性,如果泄漏至空气中,可能产生火灾爆炸事故。丙、丁烷储罐储量大,潜在危险性高,蕴含巨。大能量的储罐一旦发生重大事故将波及周围环境,甚至引起严重的连锁反应,后果不堪设想。因此,通过分析可能发生事故的原因,对其发生池火灾、喷射火、沸腾液体扩展蒸气爆炸和蒸气云爆炸事故后果进行模拟分析并提出相应的建议和对策,可为同类储罐使用企业的安全管理提供科学依据和参考,有利于帮助企业制定防范措施以及事故应急救援预案,减少人员伤亡和财产损失,对预防重特大事故发生具有重要意义。 2丙、丁烷主要危险性分析 表1为丙、丁烷的燃烧爆炸特性。丙、丁烷火灾危险性类别为甲A类,闪点低(丙烷为-104℃,丁烷为-82℃),爆炸下限低(2.25%)且爆炸范围大。丙、丁烷常温下极易气化,气化后气体体积迅速扩大250~300倍,而且气态比重是空气的1.5~2.0倍,易向低洼处积聚或沿表面扩散,欲遇火极易发生燃烧爆炸。丙、丁烷热膨胀系数高,受热极易膨胀,当容器内满液时,温度每升高1℃,体积膨胀0.3~0.4%,气压增大19.6~29.4千帕,密闭容器内极易发生物理性爆炸。此外,丙、丁烷的电阻率高达1011~1014Ω/㎝,据测定,从容器、设备、管道中喷出时产生的静电位可达9000伏,极易引起爆炸事故。 表1 丙、丁烷的燃烧爆炸特性 主要成分丙烷丁烷 闪点/℃-104 -82 自然点/℃493 408 最小引燃能量/mJ 0.31 0.25 爆炸下限/%(体积分数) 2.37 1.86 爆炸上限/%(体积分数)9.50 8.41 高热值/103kJ/m3101.2 133.8 低热值/103kJ/m393.1 123.5 火灾危险类别甲A 甲A 3丙、丁烷储罐发生火灾爆炸事故原因分析 根据《世界石油化工企业近30年100起特大型火灾爆炸事故汇编》的统计,引起储罐区火灾爆炸事故事故的原因分布情况见表2

事故后果模拟分析

事故后果模拟分析 (1)物理爆炸能量计算 液化气体和高温饱和水一般在容器内以气液两态存在,当容器破裂发生爆炸时,除了气体的急剧膨胀做功外,还有过热液体激烈的蒸发过程。在大多数情况下,这类容器内的饱和液体占有容器介质重量的绝大部分,它的爆破能量比饱和气体大得多,一般计算时考虑气体膨胀做的功。过热状态下液体在容器破裂时释放出爆破能量可按下式计算: [] W T )S S ()H H (E 12121---= 式中,E ——过热状态液体的爆破能量,kJ ; H 1——爆炸前饱和液体的焓,kJ/kg ; H 2——在大气压力下饱和液体的焓,kJ/kg ; S 1——爆炸前饱和液体的熵,kJ/(kg ·℃); S 2——在大气压力下饱和液体的熵,KJ/(kg ·℃); T 1——介质在大气压力下的沸点,℃; W ——饱和液体的质量,kg 。 (2)物理爆炸冲击波的伤害范围(危险性区域)估算 冲击波对人体造成的伤害是由于其超压引起的,显然,超压越大,伤害作用就越大。对爆炸的冲击波超压,采用比

例法则模拟标准TNT炸药爆炸之冲击波超压进行估算,即两个爆炸源若在某一地点形成同样的冲击波超压,则此超压点与两爆炸源距离之比,等于两爆炸源爆炸药量之比的三次方根。也就是说,当 R/ R0= ( Q /Q 0 )1/ 3= α 时,有 ΔP= ΔP0 式中:R ——实际爆炸源至超压点的距离,m; R0——标准炸药爆炸源至超压点的距离,m; q ——实际爆炸物的TNT当量,TNT,kg; q0——标准TNT炸药量,TNT,kg; α——爆炸模拟比; ΔP ——实际爆炸源至超压点的超压,MPa; ΔP0——标准炸药爆炸源至超压点的超压,MPa。

相关文档
最新文档