3.1微分方程的几个简单实例 数学建模
数学建模微分方程的应用举例-推荐下载
dy y(k by), dt
y(t0 ) y0
(8.3)
其中 k, b 的称为生命系数.
我们不详细讨论这个模型, 只提应用它预测世界人口数的两个有趣的结果. 有生态学家估计 k 的自然值是 0.029. 利用本世纪 60 年代世界人口年平均增长率为 2%
以及 1965 年人口总数 33.4 亿这两个数据, 计算得 b 2, 从而估计得:
赖于该物质的初始量, 一克 226 Ra 衰变成半克所需要的时间与一吨 226 Ra 衰变成半吨所需要
的时间同样都是 1600 年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14 测验的基础.
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
微分方程方法建模概述及举例
微分方程方法建模概述及举例微分方程是数学中的一个重要分支,广泛应用于各个领域,特别是自然科学和工程学科中的建模问题。
本文将概述微分方程方法建模的基本思路,并通过举例说明其在实际问题中的应用。
1.问题抽象化:首先需要将实际问题抽象成一个或一组微分方程。
通过观察问题的物理过程和规律,了解问题中的变量、因果关系以及其演化过程。
将这些信息用数学语言表示出来,通常是通过建立数学模型来描述问题。
2.建立微分方程:基于问题的抽象化模型,我们可以建立相应的微分方程。
根据物理规律和描述问题演化的数学关系,确定方程中的变量、常数和系数。
对于复杂问题,可能需要引入附加的假设和近似,以简化问题求解。
3.求解微分方程:通过求解微分方程,可以得到问题的数学解。
求解方法包括解析解和数值解两种。
解析解通常是通过变量分离、常数变易、积分变换等方法,求得方程的具体解析形式。
数值解则是通过数值计算方法,如欧拉法、龙格-库塔法等,近似计算出微分方程的解。
4.模型验证和分析:将求得的数学解与实际问题进行比较和分析,验证模型的有效性和准确性。
通过对模型进行敏感性分析和参数优化,对模型进行改进和完善。
现在我们来通过两个实际问题的建模例子,进一步说明微分方程方法的应用。
1.指数增长模型问题:假设一个生物种群遵循指数增长规律,种群数量在一段时间内以固定比率增加。
已知在初始时刻,种群数量为100只,经过3个小时后,种群数量增加到了1000只。
求解该问题。
解答:我们可以建立如下的微分方程模型:dy/dt = k * y其中,y表示种群数量,t表示时间,k为增长率。
根据已知条件,当t=0时,y=100;当t=3时,y=1000。
将这些条件代入微分方程,就可以求解得到k的值。
然后再根据k的值,求解出种群数量y随时间t的变化。
2.弹簧振动模型问题:一个弹簧系统在无外力作用下,其振动满足以下微分方程:m* d^2y/dt^2 = -k * y,其中m为弹簧的质量,k为弹簧的劲度系数。
微分方程模型(数学建模)
3
2019年1月8日
开普勒三大定律:
《数学的实践与认识》 2005.12
• 太阳系每一颗行星的轨道皆以太阳为一 焦点的椭圆;
• 行星的向径在单位时间扫过的面积是一 个常数;
• 行星运动周期之平方与平均距离之立方 成正比。
4
2019年1月8日
动态 模型
• 描述对象特征随时间(空间)的演变过程 • 分析对象特征的变化规律 • 预报对象特征的未来性态 • 研究控制对象特征的手段 • 根据函数及其变化率之间的关系确定函数 • 根据建模目的和问题分析作出简化假设 • 按照内在规律或用类比法建立微分方程
5 2019年1月8日
微分 方程 建模
一、微分方程建模的思想和方法
当我们用微观的眼光观察实际问题时一般遵循如下的模式
净变化率=输入率-输出率
(1)根据已知规律:利用数学、物理、力学、化学等经 过实践检验的规律和定理; (2)利用微元法 (3)利用模拟近似法:在社会科学、生物学、医学、经 济学的学科中一些现象的规律性我们不太清楚,需要在不 同的假设下去模拟实际现象。如此建立的模型从数学上求 解或分析后再与实际对比,观察看这个模型是否能够模拟、 近似这些现象。
现代战争的特点是多兵种的协同作战,根据不 同兵种的特点,在不同的区域参加战斗,都对战争的 结果产生一定的影响.
20 2019年1月8日
战争的预测与评估问题
1.问题的提出 现在要求建立数学模型讨论的问题: (1) 分析研究引起军备竞赛的因素,并就诸多 因素之间的相互关系进行讨论; (2) 在多兵种的作战条件下,对作战双方的战 势进行评估分析. (3)分析研究作战双方的兵力消耗,并预测初 始总兵力和战斗力变化对作战结果的影响。
微分方程建模案例
微分方程建模案例微分方程是数学中的一种重要工具,它被广泛应用于各个领域的建模和问题求解中。
下面将以一个具体的案例来介绍微分方程建模的过程,并通过求解微分方程来解决实际问题。
案例:生物种群的增长模型在生态学中,研究生物种群的增长是一个重要的课题。
种群的增长速度与种群中的个体数量有关。
如果种群中个体数量增加的速度与当前个体数量成正比,可以建立如下的微分方程模型:$$\frac{dN}{dt} = rN$$其中,$N$表示种群的个体数量,$t$表示时间,$r$表示增长的速率。
这个微分方程描述了种群个体数量随时间变化的规律。
解:首先,我们需要求解上述微分方程,得到种群个体数量随时间的函数关系。
这是一个一阶线性常微分方程,我们可以使用分离变量的方法求解。
将微分方程变形为:$$\frac{dN}{N} = rdt$$将方程两边同时积分,得到:$$\int \frac{dN}{N} = \int rdt$$经过积分运算,得到:$$\ln N = rt + C$$其中,$C$为积分常数。
进一步求解,得到:$$N = e^{rt + C}$$根据初始条件,当$t=0$时,$N=N_0$,其中$N_0$为初始种群个体数量。
代入初始条件,解得$C=\ln N_0$,将其代入上述方程,得到最终的解:$$N = N_0e^{rt}$$这个解描述了种群个体数量随时间的增长情况。
接下来,我们来解决一个具体的问题,一个兔子种群的增长情况。
假设初始时刻兔子种群中有100只兔子,增长速率$r=0.02$,那么该种群在未来的10个月内,兔子的数量会如何变化?根据上面的微分方程解,代入初始条件$N_0=100$,$r=0.02$,$t=10$,得到:$$N=100e^{0.02t}$$将$t=10$代入上述方程,可以得到10个月后兔子种群的个体数量:所以,10个月后的兔子种群中大约有122只兔子。
通过这个模型,我们可以预测种群在未来的增长情况,并在实践中应用于生态学、环境保护等领域,为实际问题的决策提供参考。
微分方程与微分方程建模法
第三章 微分方程模型3.1微分方程与微分方程建模法一、 微分方程知识简介我们要掌握常微分方程的一些基础知识,对一些可以求解的微分方程及其方程组,要求掌握其解法,并了解一些方程的近似解法。
微分方程的体系:(1)初等积分法(一阶方程及几类可降阶为一阶的方程)→(2)一阶线性微分方程组(常系数线性微分方程组的解法)→(3)高阶线性微分方程(高阶线性常系数微分方程解法)。
其中还包括了常微分方程的基本定理。
0. 常数变易法:常数变易法在上面的(1)(2)(3)三部分中都出现过,它是由线性齐次方程(一阶或高阶)或方程组的解经常数变易后求相应的非齐次方程或方程组的解的一种方法。
1. 初等积分法:掌握变量可分离方程、齐次方程的解法,掌握线性方程的解法,掌握全微分方程(含积分因子)的解法,会一些一阶隐式微分方程的解法(参数法),会几类可以降阶的高阶方程的解法(恰当导数方程)。
分离变量法:(1)可分离变量方程: ;0)()()()();()(=+=dy y Q x P dx y N x M y g x f dx dy(2) 齐次方程:);();(wvy ux c by ax f dx dy x y f dx dy ++++== 常数变易法:(1) 线性方程,),()(x f y x p y =+'(2) 伯努里方程,,)()(n y x f y x p y =+'积分因子法:化为全微分方程,按全微分方程求解。
对于一阶隐式微分方程,0),,(='y y x F 有 参数法:(1) 不含x 或y 的方程:;0),(,0),(='='y y F y x F(2) 可解出x 或y 的方程:);,(),,(y y f x y x f y '='=对于高阶方程,有降阶法:;0),,(;0),,,,()()1()(='''=+y y y F y y y x F n k k 恰当导数方程一阶方程的应用问题(即建模问题)。
微分方程建模 个例
A1
C
C1
分析:1.追击开始后,大家将进入正方 A 形里面,距离将变小,由于追击的规则 及四个人速度和方向的假定,四人还是 在某个正方形的顶点上。 2.会不会出现四个人绕一个圆循环追? 不会!距离会不断缩小最后到一点,就 是正方形的中心。追击曲线是四条指向 D1 中心的螺旋线(可能绕中心几周) 3.坐标架怎么建? D O点在中心,直角坐标架。
2H g
2.二氧化碳的吸收
空气通过盛有CO2的吸收剂的圆柱形器皿,已知它吸收CO2的量与 CO2的浓度及吸收层的厚度成正比,今有含CO28%的空气通过厚度 为10cm的吸收层后浓度为2%,求: (1)若吸收层变为30cm厚,出口浓度是多少? (2)要使出口浓度为1%,应该设多厚的吸收层? 解: 记吸收层厚度为d,等分n份,每小层d/n厘米。入口浓 度为8%,在每小层看吸收量,第一层后被吸收量为: kd k8%d/n,含量变为: 8%(1)
v0t y x(0) 0 y , 就是曲线的切向量, 1 x y (0) 0
Q(1,v0t) 模型里y(t),x(t)都是t的函数,但是三个 变量不好处理,注意我们要求的是y(x)。 P(x,y) O 1 x
(1 x) y y v0t实现了变量t的分离
再建立一个y(t),x(t),t的关系:t时间里导弹已 飞行的距离是可求的。 x 1 y2 dx 5v0t (1 x) y y v0t , x0 0, y0 0
v r (0) 2 2 , (2r cos dx cos dr r sin d dx r sin cos d , , y r sin dy sin dr r cos d dy r cos sin dr d 1 sin cos dx dr r r cos r sin dy
常微分方程理论在数学建模中的简单应用
常微分方程理论在数学建模中的简单应用摘要:众所周知,自然界中一切物质都按照自身的规律在运动和演变,不同物质的运动规律总是在时间和空间中运动着的,虽然物质的运动形式千差万别,但我们总可以找到它们共性的一面,即具有共同的量的变化规律。
为了能够定性和定量的研究一些特定的运动和演变过程,就必须将物质运动和演变过程中相关的因素进行数学化。
这种数学化的过程就是数学建模的过程,即根据运动和演变规律找出不同变量之间互相制约、互相影响的关系式。
由于大量的实际问题中,稍微复杂一些的运动过程往往不能直接写出他们的函数,却容易建立变量及其导数(或微分)间的关系式,即微分方程。
微分方程描述的是物质运动的瞬时规律。
将常微分方程应用于数学建模是因为常微分方程理论是用数学方法解决实际问题的强有力的工具,是一门有着重要背景应用的学科,具有悠久的历史,系统理论日臻完善,而且继续保持着进一步发展的活力,其主要原因是它的根源深扎在各种实际问题中。
关键词:常微分方程,常微分方程模型,稳定性,数学建模正:1数学建模简介对复杂现象进行分析,用数学语言来描述其中的关系或规律,抽象出恰当的数学关系,并将其实际问题转化成为一个数学问题,同时运用数学系统的知识方法对数学问题进行求解,对现实问题作出解释的过程,这就是数学建模…。
与数学不同,构建数学模型的过程不仅要对复杂的问题进行提炼、归纳和总结而且还应进行演绎推理。
所以构建数学模型的过程也是一个演绎推理与归纳总结相结合的过程。
对现实问题的观察、假设、归纳,怎样将其化为一个数学问题是数学建模的关键。
但这仅仅是数学建模的开始,完整的数学建模过程还应求解数学问题并能得到所要求的解。
同时还应看到得出的解是否与数据或实际经验相吻合,是否能解释实际问题;否则,还应重新修正。
2常微分方程和数学建模结合的特点通常在建立对象的动态模型时,应对不同的实际对象建立不同的并与之相适合的数学模型。
首先要具体的问题具体分析对建模的目的应该做出简化的假设,而后还要依照对可以类比的其它对象的规律或者其对象内在的微分方程进行解题并求出这一方程的解,这样才能将其结果反馈回实际的对象,然后再进行预测或控制,描述与分析。
数学建模,第三章-微分方程模型
8小时20分-2小时57分=5小时23分
即死亡时间大约在下午5:23,因此张某不能被 排除在嫌疑犯之外。
理学院
3.2 目标跟踪模型
例1 饿狼追兔问题 黑 龙 现有一直兔子,一只狼,兔子位于狼的正西100米处,假 江 科 设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的 技 巢穴跑,而狼在追兔子,已知兔子、狼是匀速跑且狼的速度 学 是兔子的2倍。兔子能否安全回到巢穴? 整理得到下述模型: 院 解:设狼的行走轨迹为y=f(x),则有:
理பைடு நூலகம்院
本章将通过一些最简单的实例来说明微分方程建模的 一般方法。在连续变量问题的研究中,微分方程是十分常 用的数学工具之一。
在许多实际问题中,当直接导出变量之间的函数关系 较为困难,但导出包含未知函数的导数或微分的关系式较 为容易时,可用建立微分方程模型的方法来研究该问题,
黑 龙 江 科 技 学 院 数 学 建 模
数 学 建 模
B
60
2 2xf' ' x 1 f' x y' x 0 , y 0 100 x 100 解得狼的行走轨迹为: 100 0 100 (0,h) 0, f' f 假设在某一时刻,兔子跑到 处,而狼在 (x,y)处,则有:
理学院
y y0 g e
g
车间空气中CO2浓度y 与时间t的数学模型
黑 龙 江 科 技 学 院 数 学 建 模
3.4 学习模型
一般认为,对一项技术工作,开始学得较快,但随着学 得越来越多时,内容也越来越复杂,学员学得就会越来越慢。
员学习的速度,则随y的增长而下降。
dy 设y%表示已经掌握了这项工作的百分数, dt
常微分方程中的一些简单例子和方法
常微分方程中的一些简单例子和方法常微分方程是数学中的一个重要分支,它涉及到很多实际问题的数学模型解析和数值求解。
常微分方程可以用于描述很多自然现象,比如物理、生物、经济和工程学等领域。
它是应用数学中的一部分,也是数学中比较重要的一部分,今天我们就来介绍一下常微分方程中的一些简单例子和方法。
一、一阶常微分方程一阶常微分方程形如: $\frac{dy}{dx}=f(x,y)$,其中y是未知函数,x是自变量,f(x,y)是已知函数。
这种方程的解就是y(x)。
下面我们来看几个例子。
1. 求解方程$y'=3x^2$。
对方程两边求积分,得到$y=\int3x^2dx=x^3+C$。
其中C是常数,可以通过初始条件来确定。
比如,如果y(x)在x=0处等于2,则$y(0)=2$,代入求解得到$C=2$,所以完整的解为$y=x^3+2$。
2. 求解方程$y'=2xy$。
对方程两边分离变量,得到$\frac{dy}{y}=2xdx$,对两边求积分,得到$\ln|y|=x^2+C$。
移项得到$y=Ce^{x^2}$,其中C是常数。
3. 求解方程$y'+2xy=x$。
这是一个非齐次线性微分方程,首先求解它的齐次方程$y'+2xy=0$,这个方程的解是$y=Ce^{-x^2}$。
然后我们要找到一个特殊解,这个特殊解满足非齐次方程。
我们可以猜测特殊解为$y=A+Bx$,代入非齐次方程得到$B=1$,$A=-\frac{1}{2}$,因此特殊解为$y=-\frac{1}{2}+x$。
因为非齐次方程的通解等于它的齐次解加上特殊解,所以得到通解为$y=Ce^{-x^2}-\frac{1}{2}+x$。
二、二阶常微分方程二阶常微分方程形如:$y''+p(x)y'+q(x)y=f(x)$。
其中y是未知函数,x是自变量,f(x)、p(x)和q(x)都是已知函数。
这种方程的解是y(x)。
3:微分方程建模法 数学建模精品PPT课件
分析其因果关系, 找出反映内部机理的规律.
例5.1.4(独家广告模型) 广告是调整商品 销售的强有力的手段, 广告与销售量之间有什 么内在联系?如何评价不同时期的广告效果?
分析 广告的效果, 可做如下的条件假设: *1. 商品的销售速度会因广告而增大,当商品 在市场上趋于饱和时,销售速度将趋于一个极 限值;
f
kv k ds dt
可得圆桶的位移和速度分别满足下面的微分方程:
m
d 2s dt 2
mg
gv
k
ds dt
(2)
m dv mg gv kv
dt
(3)
目录(1)
2.由题设这时圆桶受到的阻力应改为 f kv2 k ( ds )2 dt
类似上面,可得这时圆桶的速度应满足如下的微分方程:
m dv mg gv kv2
目录(1)
因 s=90(米),所以解下列方程:
8 < 90 171511 429.744t 171511e0.00250564t
In[]:= FindRoot[90==-171511+429.744429.744t+171511/Exp[0.00250564t],{t,13}]
Out[]:= t ? 13.0001614589966019`
(4)
dt
初始条件为:
ds dt
|t 0
v
|t 0
0,
s
|t 0
0
题设:m=239.46kg,w=0.2058m3,g=9.8m/t2,ρ=1035.71kg/m3,k=0.6
通过Mathematica求圆桶的位移和速度:
In[]:= Chop[DSolve[{m*s’’[t]==m*g-p*g*w-k*s’[t],s[0]==0’
常微分方程在数学建模中的应用(免费版)
常微分方程在数学建模中的应用这里介绍几个典型的用微分方程建立数学模型的例子. 一、人口预测模型由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型.例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型.解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ∆+时间段内,人口的增长量为t t rN t N t t N ∆=-∆+)()()(,并设0t t =时刻的人口为0N ,于是|⎪⎩⎪⎨⎧==.,00)(d d N t N rN t N这就是马尔萨斯人口模型,用分离变量法易求出其解为)(00e )(t t r N t N -=,此式表明人口以指数规律随时间无限增长.模型检验:据估计1961年地球上的人口总数为91006.3⨯,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3⨯=N ,02.0=r ,于是)1961(02.09e1006.3)(-⨯=t t N .这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人口大约每35年翻一番,而上式断定年增加一倍(请读者证明这一点).但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改.;例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢这主要是地球上的各种资源只能供一定数量的人生活,随着人口的增加,自然资源环境条件等因素对人口增长的限制作用越来越显著,如果当人口较少时,人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随人口的增加而减小.因此,应对马尔萨斯模型中关于净增长率为常数的假设进行修改.1838年,荷兰生物数学家韦尔侯斯特(Verhulst)引入常数m N ,用来表示自然环境条件所能容许的最大人口数(一般说来,一个国家工业化程度越高,它的生活空间就越大,食物就越多,从而m N 就越大),并假设将增长率等于⎪⎪⎭⎫⎝⎛-m N t N r )(1,即净增长率随着)(t N 的增加而减小,当m N t N →)(时,净增长率趋于零,按此假定建立人口预测模型.解 由韦尔侯斯特假定,马尔萨斯模型应改为⎪⎩⎪⎨⎧=⎪⎪⎭⎫⎝⎛-=,,000)(1d d N t N N N N r t N 上式就是逻辑模型,该方程可分离变量,其解为,)(00e 11)(t t r m mN N N t N --⎪⎪⎭⎫ ⎝⎛-+=.下面,我们对模型作一简要分析.(1)当∞→t ,m N t N →)(,即无论人口的初值如何,人口总数趋向于极限值m N ;@(2)当m N N <<0时,01d d >⎪⎪⎭⎫ ⎝⎛-=N N N r t N m ,这说明)(t N 是时间t 的单调递增函数;(3)由于N N N N N r t N m m ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=211d d 222,所以当2m N N <时,0d d 22>t N ,t N d d 单增;当2m N N >时,0d d 22<tN ,t N d d 单减,即人口增长率t Nd d 由增变减,在2m N 处最大,也就是说在人口总数达到极限值一半以前是加速生长期,过这一点后,生长的速率逐渐变小,并且迟早会达到零,这是减速生长期;(4)用该模型检验美国从1790年到1950年的人口,发现模型计算的结果与实际人口在1930年以前都非常吻合,自从1930年以后,误差愈来愈大,一个明显的原因是在20世纪60年代美国的实际人口数已经突破了20世纪初所设的极限人口.由此可见该模型的缺点之一是m N 不易确定,事实上,随着一个国家经济的腾飞,它所拥有的食物就越丰富, m N 的值也就越大;(5)用逻辑模型来预测世界未来人口总数.某生物学家估计,029.0=r ,又当人口总数为91006.3⨯时,人口每年以2%的速率增长,由逻辑模型得⎪⎪⎭⎫⎝⎛-=m N N r t N N 1d d 1, 即 ⎪⎪⎭⎫ ⎝⎛⨯-=m N 91006.31029.002.0, 从而得 91086.9⨯=m N ,即世界人口总数极限值近100亿. )值得说明的是:人也是一种生物,因此,上面关于人口模型的讨论,原则上也可以用于在自然环境下单一物种生存着的其他生物,如森林中的树木、池塘中的鱼等,逻辑模型有着广泛的应用.二、市场价格模型对于纯粹的市场经济来说,商品市场价格取决于市场供需之间的关系,市场价格能促使商品的供给与需求相等(这样的价格称为(静态)均衡价格).也就是说,如果不考虑商品价格形成的动态过程,那么商品的市场价格应能保证市场的供需平衡,但是,实际的市场价格不会恰好等于均衡价格,而且价格也不会是静态的,应是随时间不断变化的动态过程.例3 试建立描述市场价格形成的动态过程的数学模型解 假设在某一时刻t ,商品的价格为)(t p ,它与该商品的均衡价格间有差别,此时,存在供需差,此供需差促使价格变动.对新的价格,又有新的供需差,如此不断调节,就构成市场价格形成的动态过程,假设价格)(t p 的变化率tpd d 与需求和供给之差成正比,并记),(r p f 为需求函数,)(p g 为供给函数(r 为参数),于是()()[]⎪⎩⎪⎨⎧=-=,,0)0(,d d p p p g r p f tpα 其中0p 为商品在0=t 时刻的价格,α为正常数.若设b ap r p f +-=),(,d cp p g +=)(,则上式变为—⎪⎩⎪⎨⎧=-++-=,,0)0()()(d d p p d b p c a t pαα ① 其中d c b a ,,,均为正常数,其解为ca db c a d b p t p t c a +-+⎪⎭⎫ ⎝⎛+--=+-)(0e)(α. 下面对所得结果进行讨论:(1)设p 为静态均衡价格 ,则其应满足0)(),(=-p g r p f ,即d p c b p a +=+-,于是得ca db p +-=,从而价格函数)(t p 可写为 。
数学建模中的微分方程求解
数学建模中的微分方程求解数学建模是将真实世界中的问题抽象成数学模型,利用数学方法求解并得出结论的过程。
微分方程作为数学建模中最常用的数学工具之一,广泛应用于物理、生物、工程等领域,成为数学建模不可或缺的一部分。
本文将着重介绍微分方程在数学建模中的求解方法以及常见的数学模型。
一、常见的微分方程求解方法(一) 分离变量法分离变量法是最基本的微分方程求解方法之一。
对于形如$ \frac{dy}{dx} = f(x)g(y) $的一阶微分方程,我们可以将其分离为$ \frac{dy}{g(y)} = f(x) dx $,进而求解出$ y $的解析解。
例如,对于简单的一阶线性微分方程$ \frac{dy}{dx} + p(x)y = q(x) $,我们可以将其写成$ \frac{dy}{dx} = -p(x)y + q(x) $,然后将$ y $和$ x $分隔开来,即$ \frac{dy}{-p(x)y+q(x)} = dx $,最后将分子和分母积分得到$ y $的解析解。
但是,在实际问题中的微分方程很难一步到位地完成分离变量,需要结合其他的方法。
(二) 特解法特解法是一种特殊的微分方程求解方法,它适用于某些特殊的微分方程。
特解法的思想是先猜出通解的一部分,然后再根据该猜测解答出剩余的部分,得到最终的通解。
例如,对于形如$ y'' + ay' + by = f(x) $的二阶非齐次微分方程,我们可以先猜测一个特解$ y_p $,然后再求出方程的通解$ y = y_c + y_p $,其中$ y_c $是齐次方程的通解。
特解法在实际问题中应用广泛,但对特定问题的适用性并不一定好。
(三) 变量代换法变量代换法是另一种常见的微分方程求解方法,它常用于解决高阶微分方程或无法通过分离变量法解决的微分方程。
变量代换法的思想是将微分方程通过变量代换转化为可分离变量或一阶线性微分方程的形式。
例如,对于形如$ y'' + py' + qy = 0 $的二阶齐次微分方程,我们可以通过变量代换$ z = y' $,将其转化为一阶线性微分方程。
微分方程数学模型应用举例
微分方程数学模型应用举例
1. 生物学模型:微分方程可以用于描述生物系统中的各种动态过程。
例如,Lotka-Volterra模型是一种描述捕食者和被捕食者之间相互作用的微分方程模型,可以用于研究食物链中物种的数量和相互关系。
2. 经济学模型:微分方程可以用于描述经济系统中的各种变化和趋势。
例如,Solow增长模型是一种描述经济增长和资本积累的微分方程模型,可以用于分析国家经济发展的长期趋势。
3. 物理学模型:微分方程可以用于描述物理系统中的各种动态过程。
例如,带有阻尼和驱动力的简谐振动可以用二阶线性常微分方程来描述,可以用于研究机械系统中的振动现象。
4. 化学反应动力学模型:微分方程可以用于描述化学反应中物质浓度随时间变化的关系。
例如,化学反应速率方程可以用一阶或二阶线性微分方程来描述,可以用于研究化学反应速率的变化规律。
5. 环境科学模型:微分方程可以用于描述环境系统中的各种变化和相互作用。
例如,Black-Scholes模型是一种描述金融市场中期权价格变化的微分方程模型,可以用于分析金融市场的波动和风险。
6. 工程科学模型:微分方程可以用于描述工程系统中的各种动态过程。
例如,控制系统中的传递函数可以用微分方程表示,可以用于研究系统的稳定性和响应特性。
这些只是微分方程在数学模型中的一些应用举例,实际上微分方程在各个学科领域中都有广泛的应用。
[整理]11第十一节数学建模—微分方程的应用举例
第十一节 数学建模—微分方程的应用举例微分方程在几何、力学和物理等实际问题中具有广泛的应用,本节我们将集中讨论微分方程在实际应用中的几个实例. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力.分布图示★ 衰变问题 ★ 追迹问题 ★ 自由落体问题 ★ 弹簧振动问题 ★ 串联电路问题 ★ 返回内容要点(1) 衰变问题 (2) 追迹问题 (3) 自由落体问题 (4) 弹簧振动问题 (5) 串联电路问题例题选讲衰变问题例1(E01)镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量,这种现象称为放射性物质的衰变. 根据实验得知,衰变速度与现存物质的质量成正比,求放射性元素在时刻t 的质量.解 用x 表示该放射性物质在时刻t 的质量,则dtdx表示x 在时刻t 的衰变速度,依题意得.kx dtdx-= (1) 它就是放射性元素衰变的数学模型,其中0>k 是比例常数,称为衰变常数,因元素的不同而异.方程右端的负号表示当时间t 增加时,质量x 减少.易求出方程(1)的通解为.ktCe x -=若已知当0t t =时,,0x x =代入通解kt Ce x -=中可得,00kt ex C =则可得到特解,)(00t t k e x x --=它反映了某种放射性元素衰变的规律.注:物理学中,我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期,不同物质的半衰期差别极大.如铀的普通同位素)(238U 的半衰期约为50亿年;通常的镭)(226Ra 的半衰期为1600年,而镭的另一同位素Ra 230的半衰期仅为1小时.半衰期是上述放射性物质的特征,然而半衰期却不依赖于该物质的初始质量,一克Ra 226衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年,正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.追迹问题例2(E02)设开始时甲、乙水平距离为1单位, 乙从A 点沿垂直于OA 的直线以等速0v 向正北行走;甲从乙的左侧O 点出发, 始终对准乙以)1(0>n nv 的速度追赶. 求追迹曲线方程, 并问乙行多远时, 被甲追到.解 设所求追迹曲线方程为).(x y y =经过时刻,t 甲在追迹曲线上的点为),,(y x P 乙在点).,1(0t v B 于是 .1tan 0xyt v y --='=θ (1) 由题设,曲线的弧长OP 为 ⎰='+xt nv dx y 002,1解出,0t v 代入(1),得⎰'+=+'-x dx y ny y x 02.11)1( 整理得.11)1(2y ny x '+=''- 追迹问题的数学模型 设,),(p y x p y '=''='则方程化为 211)1(p np x +='- 或 ,)1(12x n dxp dp -=+两边积分,得|,|ln |1|ln 1)1ln(12C x n p p +--=++ 即 .1112n xC p p -=++ 将初始条件000=='==x x p y 代入上式,得.11=C 于是 ,1112nxy y -='++' (2)两边同乘,12y y '+-'并化简得,112n x y y --='+-' (3)(2)式与(3)式相加得 ,11121⎪⎪⎭⎫ ⎝⎛---='nnx x y 两边积分得 .)1(1)1(121211C x n n x n ny nn nn +⎥⎦⎤⎢⎣⎡-++---=+- 代入初始条件00==x y 得,122-=n nC 故所求追迹曲线为 ),1(1)1(1)1(121211>-+⎥⎦⎤⎢⎣⎡-++---=+-n n n x n n x n n y nn nn 甲追到乙时,即点P 的横坐标,1=x 此时.)1(2-=n n y 即乙行走至离A 点)1(2-n n 个单位距离时被甲追到.自由落体问题例3(E03)一个离地面很高的物体, 受地球引力的作用由静止开始落向地面. 求它落到地面时的速度和所需的时间(不计空气阻力).解 取连结地球中心与该物体的直线为y 轴,其方向铅直向上,取地球的中心为原点O (如图).设地球的半径为,R 物体的质量为,m 物体开始下落时与地球中心的距离为),(R l l >在时刻t 物体所在位置为),(t y y =于是速度为.)(dtdyt v =由万有引力定律得微分方程 ,222y kmM dt y d m -= 即 ,222ykMdt y d -=其中M 为地球的质量,k 为引力常数. 因为当R y =时,g dtyd -=22 (取负号是因此时加速度的方向与y 轴的方向相反).,,22gR kM RkM g ==代入得到,2222ygR dt y d -=初始条件为 ,0l y t ==.00='=t y先求物体到达地面时的速度. 由,v dtdy=得 ,22dy dvv dt dy dy dv dt dv dty d =⋅== 代入并分离变量得dy ygR vdv 22-= .2122C y gR v +=把初始条件代入上式,得 ,221gR C -=于是⎪⎪⎭⎫⎝⎛-=l y gR v 11222.112⎪⎪⎭⎫ ⎝⎛--=l y g R v 式中令,R y =就得到物体到达地面时得速度为.)(2lR l gR v --= 再求物体落到地面所需的时间.,112⎪⎪⎭⎫ ⎝⎛--==l y g R v dt dy,0l y t == 分离变量得 .21dy yl yg l R dt --=由条件,0l y t ==得.02=C.a r c c o s 212⎪⎪⎭⎫ ⎝⎛+-=l y l y ly g l R t 在上式中令,R y =便得到物体到达地面所需得时间为.arccos 212⎪⎪⎭⎫ ⎝⎛+-=l R l R lR g l Rt弹簧振动问题例4(E04)设有一个弹簧, 它的一端固定, 另一端系有质量为m 的物体, 物体受力作用沿x 轴运动, 其平衡位置取为坐标原点(图12-11-3). 如果使物体具有一个初始速度,00≠v 那么物体便离开平衡位置, 并在平衡位置附近作上下振动. 在此过程中, 物体的位置x 随时 间t 变化. 要确定物体的振动规律, 就是要求出函数).(t x x =解 据胡克定律知, 弹簧的弹性恢复力f 与弹簧变形x 成正比:,kx f -=其中0>k (称为弹性系数), 负号表示弹性恢复力与物体位移方向相反. 在不考虑介质阻力的情况下, 由牛顿第二定律αm F =可得kx dt xd m -=22 或 .022=+kx dtx d m (11.9) 方程(11.9)称为无阻尼自由振动的微分方程. 它是一个二阶常系数齐次线性方程.如果物体在运动过程中还受到阻尼介质(如空气、油、水等)的阻力的作用, 设阻力与质点运动的速度成正比, 且阻力的方向与物体运动方向相反, 则有,2dtdx f μ-= 其中0>μ(阻尼系数). 从而物体运动满足方程dt dxkx dtx d m μ--=22 或 .022=++kx dt dxdtx d m μ (11.10)这个方程叫做有阻尼的自由振动微分方程, 它也是一个二阶常系数齐次线性方程.如果物体在振动过程中所受到的外力除了弹性恢复力与介质阻力之外, 还受到周期性的干扰力pt H t G sin )(=的作用, 那么物体的运动方程为,sin 22pt H dt dx kx dtx d m +--=μ即 ,sin 2222pt h x dt dxv dtx d =++ω (11.11) 其中.,,22mHh m k m v ===ωμ 这个方程称为强迫振动的微分方程, 它是一个二阶常系数非齐次线性微分方程.下面就三种情形分别讨论物体运动方程的解.串联电路问题如图12-11-7是由电阻R 、电感L 及电容C (其中R ,L ,C 是常数)串联而成的回路, 0=t 时合上开关, 接入电源电动势),(t E 求电路中任何时刻的电流).(t I根据克希霍夫回路电压定律, 有),(t E CQRI dt dI L=++ 其中RI 为电流在电阻上电降压, 而CQ(Q 为电容器两极板间的电量, 是时间t 的函数)为电容在电感上电压降, dt dI L则为电流在电感上电压降. 由电学知, ,dtdQ I =于是方程成为 )(122t E Q C dt dQ R dtQ d L =++ (11.13)这是一个二阶常系数非齐次线性微分方程. 若当0=t 时, 已知电量为0Q 和电流为,0I 则我们有初始条件:.)0()0(,)0(00I I Q Q Q =='=此时, 能求出方程(11.13)初vi 始问题的解.例5(E05)在图12-11-7的电路中, 设,1,40H L R =Ω= ,10164F C -⨯= t t E 10cos 100)(=且初始电量和电流均为0, 求电量)(t Q 和电流).(t I解 由已知条件知,可得到方程,10cos 1006254022t Q dt dQdt Q d =++其特征方程为 ,0625402=++r r 特征根,15202,1i r ±-=故对应齐次方程的通解为 ).15sin 15cos ()(2120t C t C et Q tc +=-而非齐次方程的特解可设为.10sin 10cos )(t B t A t Q p += 代入方程,并比较系数可得 .69764,69784==B A 所以 .10sin 6410cos 84(6971)()t t t Q p += 从而所求方程的通解为 .10sin 1610cos 21(6974)15sin 15cos ()(2120)t t t C t C e t Q t+++=-利用初始条件,0)0(=Q 得到,069784)0(1=+=C Q .697841-=C又 t C C t C C e dtdQt I t 15sin )2015(15cos )1520[()(212120--++-==-)],10cos 1610sin 21(69740t t +-+由,06976401520)0(21=++-=C C I 得.20914642-=C 于是 ⎥⎦⎤⎢⎣⎡++--=-)10sin 1610cos 21()15sin 11615cos 63(36974)(20t t t t e t Q t[].)10cos 1610sin 21(120)15sin 1306015cos 1920(20911)(20t t t t e t I t +-++-=- 解)(t Q 中含有两部分,其中第一部分[])(0.)15sin 11615cos 63(20911)(20∞→→--=-t t t e t Q t c即当t 充分大时,有).10sin 1610cos 21(6974)()(t t t Q t Q p +=≈ 因此,)(t Q p 称为稳态解.。
微分方程的应用解决实际问题
微分方程的应用解决实际问题微分方程(differential equation)是研究自变量与其导数之间关系的方程,它在物理、工程、经济等各个领域具有广泛的应用。
通过对微分方程的求解,我们可以获得关于变量的函数,并使用这些函数解决实际问题。
本文将探讨微分方程在实际问题中的应用,并介绍其中一些经典的例子。
一、人口增长模型人口增长模型是微分方程在生物学和人口统计学中的重要应用之一。
假设一个封闭的人口系统,不考虑人口迁移和死亡,仅考虑人口的出生与人口的自然增长,可以建立如下微分方程:dp/dt = rp其中,p表示人口数量,t表示时间,r表示人口的增长速率。
这个简单的微分方程描述了人口的变化率和人口数量之间的关系。
通过解这个微分方程,我们可以预测未来的人口数量,进行人口规划。
二、弹簧振动模型弹簧振动是物理学中经典的问题,通过微分方程可以精确描述。
考虑一个带质量的弹簧系统,弹簧的位移与时间的关系可以由如下的二阶微分方程表示:m(d^2x/dt^2) + kx = 0其中,m表示质量,k表示弹簧的劲度系数,x表示位移。
这个微分方程描述了弹簧振动的力学原理。
通过求解这个微分方程,我们可以得到弹簧的振动频率和振幅等信息,以及在真实的弹簧系统中进行振动控制和设计。
三、放射性衰变问题放射性衰变是核物理学中的重要研究内容,也可以通过微分方程来描述。
放射性核素的数量随时间的变化满足以下微分方程:dp/dt = -λp其中,p表示放射性核素的数量,t表示时间,λ表示衰变常数。
这个微分方程描述了放射性核素的衰变速率与剩余核素数量之间的关系。
通过求解这个微分方程,我们可以计算出放射性核素的衰变速率、半衰期等相关信息,为核能研究和核工业提供重要的理论支持。
四、热传导问题热传导是热力学和材料科学中的重要问题,在微分方程的框架下可以得到精确的解析解。
考虑一个一维热传导问题,热传导方程可以表示为:d^2u/dx^2 = α(du/dt)其中,u表示温度场,x表示空间坐标,t表示时间,α表示热传导系数。
微分方程建模的几个简单实例
(3)模拟近似法 在生物、经济等学科的实际问题中,许多现象 的规律性不很清楚,即使有所了解也是极其复 杂的,建模时在不同的假设下去模拟实际的现 象,建立能近似反映问题的微分方程,然后从 数学上求解或分析所建方程及其解的性质,再 去同实际情况对比,检验此模型能否刻画、模 拟某些实际现象。
理想单摆运动) 例1 (理想单摆运动)建立理想单摆运动满足的微 分方程,并得出理想单摆运动的周期公式。 分方程,并得出理想单摆运动的周期公式。 从图3-1中不难看出,小球所受的合力为 从图 g 中不难看出,小球所受的合力为mgsinθ, 中不难看出 , 根据牛顿第二定律可得: 牛顿第二定律可得 根据牛顿第二定律可得: θ + θ = 0 (3.2) ) 3.1) (3.1)的 l 近似方程 mlθ = mg sin θ 从而得出两阶微分方程: 从而得出两阶微分方程: (3.2)的解为: θ(t)= θ0cosωt 3.2)的解为: 这是理想单摆应 g θ + sin θ = 0 其中 ω = g 3.1) 满足的运动方程 ( ) l l T θ (0) 0, ,θ(t)=0 当t = =时θ (0) = θ 0 4 gT π = 故有 l 4 2 3.1)是一个两阶非线性方程, (3.1)是一个两阶非线性方程,不 由此即可得出 很小时, 易求解。 ,此时, 易求解。当θ很小时,sinθ≈θ,此时, g T = 2π 可考察(3.1)的近似线性方程: 可考察(3.1)的近似线性方程:
一个半径为Rcm的半球形容器内开始时盛满了 例3 一个半径为 的半球形容器内开始时盛满了 的小孔在t=0时刻 水,但由于其底部一个面积为Scm2的小孔在 时刻 但由于其底部一个面积为 被打开,水被不断放出。 被打开,水被不断放出。问:容器中的水被放完总共 需要多少时间? 需要多少时间? 以容器的底部O点为 原点,取坐标系如图3.3所示 所示。 解: 以容器的底部 点为 原点,取坐标系如图 所示。 时刻容器中水的高度, 令h(t)为t时刻容器中水的高度,现建立 为 时刻容器中水的高度 现建立h(t)满足的微分 满足的微分 方程。 方程。 设水从小孔流出的速度为v(t),由力学定律, 设水从小孔流出的速度为 ,由力学定律,在不计水 即: dh = 0.6 S 2hg 2 的内部磨擦力和表面张力的假定下, 的内部磨擦力和表面张力的假定下,有: dt π [ R 2 ( R h) ]
微分方程在数学建模中应用
思考分钟:如何解决?
解: 设曲线方程为y y(x) ,
则曲线上任意一点M (x, y)处 切线的斜率为 dy
dx
根据题意有 dy 3x dx y |x1 3
微分方程模型
➢人口增长模型 ➢传染病模型 ➢总结
人口增长模型 马尔萨斯(Malthus)模型 阻滞增长(Logistic)模型
从而有:dN(t) r(N )N (t)
dt
其中,r(N) r *( K N ) r *(1 N ) , 故
K
K
dN(t) r *(1 N )* N(t)
dt
K
注:设环境能供养的种群数量的上界为K(近似地将K看
成常数),N表示当前的种群数量,K-N为环境还能供养 的种群数量,则(K-N )/K为还能供养比例。
Malthus模型呈现的是J型增长,只适应 于短期内,并无外界因素影响。而Logistic 模型呈现S型,适应于中长期且有外界因素 影响。
Malthus模型和Logistic模型的推广
Malthus模型与Logistic模型虽然都是为 了研究种群数量的增长情况而建立的,但 它们也可用来研究其他实际问题,只要这 些实际问题的数学模型有相同的微分方程 即可。
Malthus模型实际上只有在群体总数不太大时才合理, 到总数增大时,生物群体的各成员之间由于有限的生 存空间,有限的自然资源及食物等原因,就可能发生 生存竞争等现象。
所以Malthus模型假设的人口净增长率不可能始终保 持常数,它应当与人口数量有关。
模型2:阻滞增长(Logistic)模型
人口净增长率应与人口数量有关,即反应了自然 因素对人口增长的影响,令r=r(N)
引例
一个地区有m个人,一名群众 不慎患传染病,t小时后有n人 发病,由于此地区不能及时隔 离,问经过t1小时、t2小时,患 此传染病的人数有多少?
数学建模微分方程的应用举例
数学建模——微分方程的应用举例分布图示★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题模型 ★追迹问题内容要点一、衰变问题例1 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量.解 用x 表示该放射性物质在时刻t 的质量, 则dtdx表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为.kx dtdx-= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少.解方程(8.1)得通解.ktCex -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得,00kt e x C -= 则可得到方程(8.1)特解,)(00t t k e x x --=它反映了某种放射性元素衰变的规律.注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素(U 238)的半衰期约为50亿年;通常的镭(Ra 226)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克Ra 226衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.二、 逻辑斯谛方程:逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型.一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型.如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度,又与最大高度与目前高度之差成正比.设树生长的最大高度为H (m), 在t (年)时的高度为h (t ), 则有)]()[()(t h H t kh dtt dh -= (8.2) 其中0>k 是比例常数. 这个方程为Logistic 方程. 它是可分离变量的一阶常数微分方程.下面来求解方程(8.2). 分离变量得,)(kdt h H h dh=-两边积分,)(⎰⎰=-kdt h H h dh得 ,)]ln([ln 11C kt h H h H+=-- 或,21kHt H C kHt e C e hH h ==-+故所求通解为,11)(22kHtkHt kHt CeH e C He C t h -+=+= 其中的⎪⎪⎭⎫ ⎝⎛>==-0112H C e C C C 是正常数. 函数)(t h 的图象称为Logistic 曲线. 图8-8-1所示的是一条典型的Logistic 曲线, 由于它的形状, 一般也称为S 曲线. 可以看到, 它基本符合我们描述的树的生长情形. 另外还可以算得.)(lim H t h t =+∞→这说明树的生长有一个限制, 因此也称为限制性增长模式.注: Logistic 的中文音译名是“逻辑斯谛”. “逻辑”在字典中的解释是“客观事物发展的规律性”, 因此许多现象本质上都符合这种S 规律. 除了生物种群的繁殖外, 还有信息的传播、新技术的推广、传染病的扩散以及某些商品的销售等. 例如流感的传染、在任其自然发展(例如初期未引起人们注意)的阶段, 可以设想它的速度既正比于得病的人数又正比于未传染到的人数. 开始时患病的人不多因而传染速度较慢; 但随着健康人与患者接触, 受传染的人越来越多, 传染的速度也越来越快; 最后, 传染速度自然而然地渐渐降低, 因为已经没有多少人可被传染了.下面举两个例子说明逻辑斯谛的应用.人口阻滞增长模型 1837年, 荷兰生物学家V erhulst 提出一个人口模型00)(),(y t y by k y dtdy=-= (8.3)其中b k ,的称为生命系数.我们不详细讨论这个模型, 只提应用它预测世界人口数的两个有趣的结果.有生态学家估计k 的自然值是0.029. 利用本世纪60年代世界人口年平均增长率为2%以及1965年人口总数33.4亿这两个数据, 计算得,2=b 从而估计得:(1)世界人口总数将趋于极限107.6亿. (2)到2000年时世界人口总数为59.6亿.后一个数字很接近2000年时的实际人口数, 世界人口在1999年刚进入60亿. 新产品的推广模型 设有某种新产品要推向市场, t 时刻的销量为),(t x 由于产品性能良好, 每个产品都是一个宣传品, 因此, t 时刻产品销售的增长率,dtdx与)(t x 成正比, 同时, 考虑到产品销售存在一定的市场容量N , 统计表明dtdx与尚未购买该产品的潜在顾客的数量)(t x N -也成正比, 于是有)(x N kx dtdx-= (8.4)其中k 为比例系数. 分离变量积分, 可以解得kNtCeNt x -+=1)( (8.5)由,)1()1(,)1(2322222kNt kNt kNt kNt kNt Ce Ce e N Ck dt x d Ce ke CN dt dx -----+-=+= 当N t x <)(*时, 则有,0>dt dx 即销量)(t x 单调增加. 当2)(*N t x =时, ;022=dt x d 当2)(*N t x >时, ;022<dt x d 当2)(*Nt x <时, 即当销量达到最大需求量N 的一半时, 产品最为畅销, 当销量不足N 一半时, 销售速度不断增大, 当销量超过一半时, 销售速度逐渐减少.国内外许多经济学家调查表明. 许多产品的销售曲线与公式(8.5)的曲线(逻辑斯谛曲线)十分接近. 根据对曲线性状的分析, 许多分析家认为, 在新产品推出的初期, 应采用小批量生产并加强广告宣传, 而在产品用户达到20%到80%期间, 产品应大批量生产; 在产品用户超过80%时, 应适时转产, 可以达到最大的经济效益.三、价格调整模型在本章第一节例3已经假设, 某种商品的价格变化主要服从市场供求关系. 一般情况下,商品供给量S 是价格P 的单调递增函数, 商品需求量Q 是价格P 的单调递减函数, 为简单起见, 分别设该商品的供给函数与需求函数分别为P P Q bP a P S βα-=+=)(,)( (8.6)其中βα,,,b a 均为常数, 且.0,0>>βb当供给量与需求量相等时, 由(8.6)可得供求平衡时的价格baP e +-=βα 并称e P 为均衡价格.一般地说, 当某种商品供不应求, 即Q S <时, 该商品价格要涨, 当供大于求, 即Q S >时, 该商品价格要落. 因此, 假设t 时刻的价格)(t P 的变化率与超额需求量S Q -成正比, 于是有方程)]()([P S P Q k dtdP-= 其中,0>k 用来反映价格的调整速度.将(8.6)代入方程, 可得)(P P dtdPe -=λ (8.7) 其中常数,0)(>+=k b βλ方程(8.7)的通解为t e Ce P t P λ-+=)(假设初始价格,)0(0P P =代入上式, 得,0e P P C -=于是上述价格调整模型的解为t e e e P P P t P λ--+=)()(0由于0>λ知, +∞→t 时, .)(e P t P →说明随着时间不断推延, 实际价格)(t P 将逐渐趋近均衡价格e P .四、人才分配问题模型每年大学毕业生中都要有一定比例的人员留在学校充实教师队伍, 其余人员将分配到国民经济其他部门从事经济和管理工作. 设t 年教师人数为),(1t x 科学技术和管理人员数目为),(2t x 又设1外教员每年平均培养α个毕业生, 每年人教育、科技和经济管理岗位退休、死亡或调出人员的比率为βδδ),10(<<表示每年大学生毕业生中从事教师职业所占比率),10(<<δ于是有方程111x x dt dx δαβ-= (8.8) 212)1(x x dtdx δβα--= (8.9) 方程(8.8)有通解t e C x )(11δαβ-=(8.10)若设,)0(101x x =则,101x C =于是得特解te x x )(101δαβ-= (8.11)将(8.11)代入(8.9)方程变为tex x dtdx )(1022)1(δαββαδ--=+ (8.12) 求解方程(8.12)得通解t te x eC x )(122)1(δαβδββ---+= (8.13)若设,)0(202x x =则,110202x x C ⎪⎪⎭⎫⎝⎛--=ββ于是得特解 tt ex e x x x )(101020211δαβδββββ--⎪⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--= (8.14) (8.11)式和(8.14)式分别表示在初始人数分别为)0(),0(21x x 情况, 对应于β的取值, 在t 年教师队伍的人数和科技经济管理人员人数. 从结果看出, 如果取,1=β即毕业生全部留在教育界, 则当∞→t 时, 由于,δα>必有+∞→)(1t x 而,0)(2→t x 说明教师队伍将迅速增加. 而科技和经济管理队伍不断萎缩, 势必要影响经济发展, 反过来也会影响教育的发展. 如果将β接近于零. 则,0)(1→t x 同时也导致,0)(2→t x 说明如果不保证适当比例的毕业生充实教师选择好比率β, 将关系到两支队伍的建设, 以及整个国民经济建设的大局.五、追迹问题设开始时甲、乙水平距离为1单位, 乙从A 点沿垂直于OA 的直线以等速0v 向正北行走; 甲从乙的左侧O 点出发, 始终对准乙以)1(0>n mv 的速度追赶. 求追迹曲线方程, 并问乙行多远时, 被甲追到.解 设所求追迹曲线方程为).(x y y =经过时刻t , 甲在追迹曲线上的点为),,(y x P 乙在点).,1(0t v B 于是有,1tan 0xyt v y --='=θ (8.15) 由题设, 曲线的弧长OP 为,1002t nv dx y x='+⎰解出t v 0代入(8.15), 得.11)1(02⎰'+=+'-x dx y ny y x 两边对x 求导, 整理得.11)1(2y ny x '+=''- 这就是追迹问题的数学模型.这是一个不显含y 的可降阶的方程, 设p y x p y ''=''='),(, 代入方程得211)1(p np x +='- 或 ,)1(12x n dxp dp -=+两边积分, 得|,|ln |1|ln 1)1ln(12C x np p +--=++即 .1112nxC p p -=++ 将初始条件00||==='x x p y 代入上式, 得.11=C 于是,1112nxy y -='++' (8.16) 两边同乘,12y y '+-'并化简得,112n x y y --='+-' (8.17)(8.16)与(8.17)式相加, 得,11121⎪⎭⎫ ⎝⎛---='n n x x y两边积分, 得.)1(1)1(121211C x n n x n ny nn nn +⎥⎦⎤⎢⎣⎡-++---=+-代入初始条件0|0==x y 得,122-=n nC 故所求追迹曲线方程为 ),1(11)1(1)1(2211>-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+-=-+n n n n x n x n y n n n n甲追到乙时, 即曲线上点P 的横坐标,1=x 此时.12-=n n y 即乙行走至离A 点12-n n个单位距离时被甲追到.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(ds)2 (dr )2 (rd )2 图3-2可看出,
B
θ 图3-2
A
故有: 3(dr )2 r 2 (d )2 即:
r dr d 3
(3.3) (3.4)
解为:r
Ae
3
追赶方法如下:
先使自己到极点的距离等于潜艇到极点的距离然后按(3.4) 对数螺线航行,即可追上潜艇。
例1 (理想单摆运动)建立理想单摆运动满足的微
分方程,并得出理想单摆运动的周期公式。 从图 g 中不难看出,小球所受的合力为mgsinθ, 3-1 根据牛顿第二定律可得: 0 (3.2)
(3.1)的 近似方程
从而得出两阶微分方程: ( 3.2)的解为: θ(t)= θ0cosωt 这是理想单摆应 g g sin 0 (3.1) 满足的运动方程 其中 l l T 时 当 ,θ(0) (t)=0 t (0) 0, 0 4 gT 故有 l 4 2 (3.1)是一个两阶非线性方程,不 由此即可得出 易求解。当 θ很小时,sinθ≈θ,此时, g T 2 可考察(3.1)的近似线性方程:
微分方程模 型
浙江大学数学建模实践基地
§3.1 微分方程的几个简单实例
在许多实际问题中,当直接导出变量之间的函数关系 较为困难,但导出包含未知函数的导数或微分的关系式较 为容易时,可用建立微分方程模型的方法来研究该问题,
本节将通过一些最简单的实例来说明微分方程建模的 一般方法。在连续变量问题的研究中,微分方程是十分常 用的数学工具之一。
T2 T1 Bdx AT ( x)dxdt [ T ( x ) T3 ]dt 系统处于热平衡状态,故有: l
所以金属杆各处温度T(x)满足的微分方程: o
这是一个两阶常系数线 性方程,很容易求解
T ( x)
B T3 (T T3 ) A
x
A讨论以下简单情形:
敌潜艇发现自己目标已暴露后,立即下潜,并沿着直 线方向全速逃逸,逃逸方向我方不知。 设巡逻艇在A处发现位于B处的潜水艇,取极坐标,以B 为极点,BA为极轴,设巡逻艇追赶路径在此极坐标下的方 程为r=r(θ),见图3-2。 A1 dr ds dr 由题意, 2 ,故ds=2dr ds dt dt
例3 一个半径为Rcm的半球形容器内开始时盛满了
水,但由于其底部一个面积为Scm2的小孔在t=0时刻 被打开,水被不断放出。问:容器中的水被放完总共 需要多少时间?
解: 以容器的底部O点为 原点,取坐标系如图3.3所示。 令h(t)为t时刻容器中水的高度,现建立h(t)满足的微分 方程。 设水从小孔流出的速度为 0.6S 2hgv(t),由力学定律,在不计水 dh 即: 的内部磨擦力和表面张力的假定下,有: dt [ R2 ( R h)2 ] (t ) 0.6 2gh 这是可分离变量的一阶微分方程,得 y 2 2 0 [ R ( R h) ] 因体积守衡,又可得: T dh 易见:
O
x
S
图3-3
例4 一根长度为l的金属杆被水平地夹在两端垂直的支架上,一
端的温度恒为T1,另一端温度恒为T2,(T1、T2为常数,T1> T2)。 金属杆横截面积为A,截面的边界长度为B,它完全暴露在空气中, 空气温度为T3,(T3< T2,T3为常数),导热系数为α,试求金属 杆上的温度分布T(x),(设金属杆的导热率为λ) dt时间内通过距离O点x处截面的热量为: AT '( x)dt 热传导现象机理:当温差在一定范围内时,单位时间里由温度高
一般情况下,在同一截面上 但由题意可以看出,因金属 的一侧向温度低的一侧通过单位面积的热量与两侧的温差成正比, dt时间内通过距离O点x+dx处截面的热量为: AT '( x dx)dt 的各点处温度也不尽相同, 杆较细且金属杆导热系数又 比例系数与介质有关。 AT '( x dx)dt A[T '( x) T ( x)dx]dt 由泰勒公式: 如果这样来考虑问题,本题 较大,为简便起见,不考虑 要建的数学模型当为一偏微 这方面的差异,而建模求单 金属杆的微元 [x,x+dx]在dt内由获得热量为: AT ( x)dxdt 变量函数 分方程。 T(x)。 Bdx[T ( x) T3 ]dt 同时,微元向空气散发出的热量为:
l
l ml mg sin (0) 0, (0) 0
l
M P Q
mg
图3-1
例2 我方巡逻艇发现敌方潜水艇。与此同时敌方潜水艇也发现了
我方巡逻艇,并迅速下潜逃逸。设两艇间距离为60哩,潜水艇最 大航速为30节而巡逻艇最大航速为60节,问巡逻艇应如何追赶潜 水艇。
(2R h h )dh 2 2 R r0.6 SR 2 g( R h)
3 2 5 2
S 2 dV 0.6 r 2 dh gh s dt 0
R
3 2
R r h
5 2
故有:
42 2 0 14 R [R (R Rh hS 2 h) ]dh 0.6 R ghdt 5 0.6S 2 g 3 9S 2 g