高考数学集合、常用逻辑用语、算法、复数、推理与证明、不等式第二讲算法、复数、推理与证明学案理
集合与常用逻辑用语知识点梳理
![集合与常用逻辑用语知识点梳理](https://img.taocdn.com/s3/m/d8a0bd3a10a6f524ccbf8568.png)
集合与常用逻辑用语,推理与证明,算法,复数,坐标系与参数方程知识点梳理一.集合的概念与运算1.集合与元素(1)集合中元素的三个特征:____________、________、__________.(2)元素与集合的关系是_____或_______两种,用符号____或_____表示.(3)集合的表示法:列举法、描述法.(4)常见数集的记法2.A∪B={_________}A∩B={_____________}∁A={_________}(1)若有限集A中有n个元素,则A的子集个数为____个,非空子集个数为______个,真子集有_________个.(2)A⊆B⇔A∩B=A⇔A∪B=B.[方法与技巧]1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检¬验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现.[失误与防范]1.解题中要明确集合中元素的特征,关注集合的代表元素(集合是点集、数集还是图形集).对可以化简的集合要先化简再研究其关系运算.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.二.命题及其关系。
充分条件与必要条件1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们______的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的_____条件,同时q是p的________条件;(2)如果p⇒q,但q⇏p,则p是q________________条件;(3)如果p⇒q,且q⇒p,则p是q的____________条件;(4)如果q⇒p,且p⇏q,则p是q的______________条件;(5)如果p⇏q,且q⇏p,则p是q的既不充分又不必要条件.[方法与技巧]1.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.充要条件的几种判断方法(1)定义法:直接判断若p则q、若q则p的真假.(2)等价法:即利用A⇒B与¬B⇒¬A;B⇒A与¬A⇒¬B;A⇔B与B⇔A的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3)利用集合间的包含关系判断:设A={x|p(x)},B={x|q(x)}:若A⊆B,则p是q的充分条件或q是p的必要条件;若A真包含于B,则p是q的充分不必要条件,若A=B,则p是q的充要条件.[失误与防范]1.当一个命题有大前提而要写出其他三种命题时,必须保留大前提.2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p,则q”的形式.3.判断条件之间的关系要注意条件之间关系的方向,正确理解“p的一个充分而不必要条件是q”等语言.三简单的逻辑联结词.全称量词与存在量词1.全称量词与存在量词(1)常见的全称量词有“所有”“每一个”“任何”“任意一条”“一切”等.(2)常见的存在量词有“有些”“至少有一个”“有一个”“存在”等.2.全称命题与特称命题(1)含有全称量词的命题叫全称命题.(2)含有存在量词的命题叫特称命题.3.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定:非p且非q;p且q的否定:非p或非q.4.简单的逻辑联结词(1)命题中的“且”、“或”、“非”叫作逻辑联结词.(2)简单复合命题的真值表:[方法与技巧]1.把握含逻辑联结词的命题的形式,特别是字面上未出现“或”、“且”时,要结合语句的含义理解.2.要写一个命题的否定,需先分清其是全称命题还是特称命题,再对照否定结构去写,并注意与否命题区别;否定的规律是“改量词,否结论”.[失误与防范]1.p或q为真命题,只需p、q有一个为真即可;p且q为真命题,必须p、q同时为真.2.两种形式命题的否定p或q的否定:非p且非q;p且q的否定:非p或非q.3.命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.四.归纳与类比1.归纳推理根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性.我们将这种推理方式称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理.归纳推理的基本模式:a、b、c∈M且a、b、c具有某属性,结论:任意d∈M,d也具有某属性.2.类比推理由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.简言之,类比推理是两类事物特征之间的推理.类比推理的基本模式:A:具有属性a,b,c,d;B:具有属性a′,b′,c′;结论:B具有属性d′.(a,b,c,d与a′,b′,c′,d′相似或相同)3.归纳推理和类比推理是最常见的合情推理,合情推理的结果不一定正确.4.演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程.[方法与技巧]1.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想2.演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理方法,是由一般到特殊的推理.数学问题的证明主要通过演绎推理来进行.[失误与防范]1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.2.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.五.综合法与分析法。
高考数学二轮复习专题一集合逻辑用语不等式向量复数算法推理1.4算法与推理课件理
![高考数学二轮复习专题一集合逻辑用语不等式向量复数算法推理1.4算法与推理课件理](https://img.taocdn.com/s3/m/9dc2953190c69ec3d5bb75b6.png)
当i=2时,S=2×2+1=5,不满足条件;
当i=A3时.S>,S=82?×3+2B=8.S,不>9满? 足条件; 当i=C4时.S>,S1=20×? 4+1D=9.S,此>1时1?输出i=4,
No
关闭
D.(A2≤)因1为00要0?求和An=大n+于2 1 000 时输出,且程序框图中在“否”时输出,
所以“
Image ”中不能填入 A>1 000,排除 A,B.又要求 n 为偶数,且 n
初始值为 0,所以“
”中 n 依次加 2 可保证其为偶数,故选 D.
关闭
D
解析 答案
命题热点一 命题热点二 命题热点三
的判断? 例3(1) 定义“规范01数列”{an}如下:{an}共有2m项,其中m项为
复习策略
复习备考 时应抓住 考查的主 要题目类 型进行训 练,重点是: 程序框图 的执行问 题;程序框 图的补全 问题;
试题统计
(2016 全国Ⅱ,理 8) (2016 全国Ⅱ,理 15) (2016 全国Ⅲ,理 7) (2016 全国Ⅲ,理 12) (2017 全国Ⅰ,理 8) (2017 全国Ⅱ,理 7) (2017 全国Ⅱ,理 8) (2017 全国Ⅲ,理 7)
故选A. A
关闭
关闭
解析 答案
命题热点一 命题热点二 命题热点三
(2)(2017 全国Ⅰ,理 8)下面程序框图是为了求出满足 3n-2n>1
000 的最小偶数 n,那么在 别填入( )
高考数学二轮复习第1部分专题一集合常用逻辑用语平面向量复数算法合情推理1_1_1集合常用逻辑用语课件文
![高考数学二轮复习第1部分专题一集合常用逻辑用语平面向量复数算法合情推理1_1_1集合常用逻辑用语课件文](https://img.taocdn.com/s3/m/a1784be1ad51f01dc281f152.png)
由图可得 A∩B={x|32<x<3},选 D.
优解:(排除法)观察选项可知 A,B 两项对应集合中含有负数, C,D 两项对应集合中的元素均为正数.
当 x=-1 时,2x-3=2×(-1)-3=-5<0,故-1∉B,所以 -1∉A∩B,故排除 A,B 两项;
类型一 集合的概念及运算
[典例 1] (2016·高考全国卷Ⅰ)设集合 A={x|x2-4x+3<0},
B={x|2x-3>0},则 A∩B=( D )
A.-3,-32 C.1,32
B.-3,32 D.32,3
解析:通解:(直接法)解 x2-4x+3<0,即(x-1)(x-3)<0, 得 1<x<3,故 A={x|1<x<3};
2.(1)(∁RA)∩B=B⇔B⊆∁RA; (2)A∪B=B⇔A⊆B⇔A∩B=A; (3)∁U(A∪B)=(∁UA)∩(∁UB); (4)∁U(A∩B)=(∁UA)∪(∁UB). 3.若 p 以集合 A 的形式出现,q 以集合 B 的形式出现,即 A ={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可叙述为: (1)若 A⊆B,则 p 是 q 的充分条件; (2)若 A⊇B,则 p 是 q 的必要条件; (3)若 A=B,则 p 是 q 的充要条件.
1.集合的交、并、补运算多与解不等式问题相结合,解决此 类问题的思路主要有两个:一是直接法,即先化简后运算,然后利 用数轴表示,从而求得集合运算的结果;二是排除法,对于选择题 的考查,可根据选项的差异性选取特殊元素进行验证,排除干扰项 从而得到正确选项.
2.(1)若给定的集合是不等式的解集,用数轴求解. (2)若给定的集合是点集,用图象法求解. (3)若给定的集合是抽象集合,常用 Venn 图求解. 3.(1)正确理解各个集合的含义,弄清集合元素的属性. (2)注意“∅”的出现.
精品高中数学专题:集合与常用逻辑用语、不等式、函数
![精品高中数学专题:集合与常用逻辑用语、不等式、函数](https://img.taocdn.com/s3/m/784d4987e009581b6bd9eb7d.png)
专题二集合与常用逻辑用语、不等式、函数与导数第一讲集合与常用逻辑用语1.集合的概念、运算(1)集合元素的三个特性:确定性、互异性、无序性,是判断某些对象能否构成一个集合或判断两集合是否相等的依据.(2)集合的表示方法:列举法、描述法、图示法.(3)集合间的关系:子集、真子集、空集、集合相等,在集合间的运算中要注意空集的情形.(4)重要结论A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.2.命题(1)两个命题互为逆否命题,它们有相同的真假性;(2)含有量词的命题的否定:∀x∈M,p(x)的否定是∃x∈M,綈p(x);∃x∈M,p(x)的否定是∀x∈M,綈p(x).3.充要条件从逻辑观点看从集合观点看p是q的充分不必要条件(p⇒q,q⇒p)A Bp是q的必要不充分条件(q⇒p,p⇒q)B Ap是q的充要条件(p⇔q)A=Bp是q的既不充分也不必要条件(p⇒q,q⇒p)A与B互不包含1.(2013·辽宁)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B等于() A.(0,1) B.(0,2] C.(1,2) D.(1,2]答案 D解析A={x|1<x<4},B={x|x≤2},∴A∩B={x|1<x≤2}.2.(2013·北京)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 当φ=π时,y =sin(2x +φ)=-sin 2x 过原点.当曲线过原点时,φ=k π,k ∈Z ,不一定有φ=π.∴“φ=π”是“曲线y =sin(2x +φ)过原点”的充分不必要条件.3. (2013·四川)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∈B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B答案 D解析 命题p :∀x ∈A,2x ∈B 是一个全称命题,其命题的否定綈p 应为∃x ∈A,2x ∉B ,选D. 4. (2013·天津)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( )A .①②③B .①②C .①③D .②③答案 C解析 对于命题①,设球的半径为R ,则43π⎝⎛⎭⎫R 23=18·43πR 3,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题③,圆x 2+y 2=12的圆心(0,0)到直线x +y +1=0的距离d =12=22,等于圆的半径,所以直线与圆相切,命题正确.5. (2013·四川)设P 1,P 2,…,P n 为平面α内的n 个点,在平面α内的所有点中,若点P 到点P 1,P 2,…,P n 的距离之和最小,则称点P 为点P 1,P 2,…,P n 的一个“中位点”.例如,线段AB 上的任意点都是端点A 、B 的中位点.现有下列命题: ①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点; ③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点. 其中的真命题是________.(写出所有真命题的序号)答案①④解析∵|CA|+|CB|≥|AB|,当且仅当点C在线段AB上等号成立,即三个点A,B,C,∴点C在线段AB上,∴点C是A,B,C的中位点,故①是真命题.如图(1),在Rt△ABC中,∠C=90°,P是AB的中点,CH⊥AB,点P,H不重合,则|PC|>|HC|.又|HA|+|HB|=|P A|+|PB|=|AB|,∴|HA|+|HB|+|HC|<|P A|+|PB|+|PC|,∴点P不是点A,B,C的中位点,故②是假命题.如图(2),A,B,C,D是数轴上的四个点,若P点在线段BC上,则|P A|+|PB|+|PC|+|PD|=|AD|+|BC|,由中位点的定义及①可知,点P是点A,B,C,D的中位点.显然点P 有无数个,故③是假命题.如图(3),由①可知,若点P是点A,C的中位点,则点P在线段AC上,若点P是点B,D的中位点,则点P在线段BD上,∴若点P是点A,B,C,D的中位点,则P是AC,BD的交点,∴梯形对角线的交点是梯形四个顶点的唯一中位点,故④是真命题.题型一集合的概念与运算问题例1(1)(2012·湖北)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为() A.1 B.2 C.3 D.4(2)定义A-B={x|x∈A且x∉B},若M={1,2,3,4,5},N={2,3,6},则N-M等于()A.M B.N C.{1,4,5} D.{6}审题破题(1)先对集合A、B进行化简,注意B中元素的性质,然后根据子集的定义列举全部适合条件的集合C即可.(2)透彻理解A-B的定义是解答本题的关键,要和补集区别开来.答案(1)D(2)D解析(1)由x2-3x+2=0得x=1或x=2,∴A={1,2}.由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.(2)N -M ={x |x ∈N 且x ∉M }. ∵2∈N 且2∈M ,∴2∉N -M ; 3∈N 且3∈M ,∴3∉N -M ; 6∈N 且6∉M ,∴6∈N -M . ∴故N -M ={6}.反思归纳 (1)解答集合间关系与运算问题的一般步骤:先正确理解各个集合的含义,认清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解. (2)两点提醒:①要注意集合中元素的互异性;②当B ⊆A 时,应注意讨论B 是否为∅.变式训练1 (2013·玉溪毕业班复习检测)若集合S ={x |log 2(x +1)>0},T =⎩⎨⎧⎭⎬⎫x |2-x 2+x <0,则S ∩T 等于( )A .(-1,2)B .(0,2)C .(-1,+∞)D .(2,+∞)答案 D解析 S ={x |x +1>1}={x |x >0}, T ={x |x >2或x <-2}. ∴S ∩T ={x |x >2}. 题型二 命题的真假与否定问题 例2 下列叙述正确的个数是( )①l 为直线,α、β为两个不重合的平面,若l ⊥β,α⊥β,则l ∥α;②若命题p :∃x 0∈R ,x 20-x 0+1≤0,则綈p :∀x ∈R ,x 2-x +1>0;③在△ABC 中,“∠A =60°”是“cos A =12”的充要条件;④若向量a ,b 满足a ·b <0,则a 与b 的夹角为钝角. A .1 B .2 C .3 D .4审题破题 判定叙述是否正确,对命题首先要分清命题的条件与结论,再结合涉及知识进行判定;对含量词的命题的否定,要改变其中的量词和判断词. 答案 B解析 对于①,直线l 不一定在平面α外,错误;对于②,命题p 是特称命题,否定时要写成全称命题并改变判断词,正确;③注意到△ABC 中条件,正确;④a ·b <0可能〈a ,b 〉=π,错误.故叙述正确的个数为2. 反思归纳 (1)命题真假的判定方法:①一般命题p 的真假由涉及到的相关知识辨别;②四种命题的真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律;③形如p ∨q ,p ∧q ,綈p 命题的真假根据真值表判定.(2)区分命题的否定和否命题;含一个量词的命题的否定一定要改变量词. 变式训练2 给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >cb”的逆否命题;④若命题p :∀x ∈R ,x 2+1≥1,命题q :∃x ∈R ,x 2-x -1≤0,则命题p ∧綈q 是真命题.其中真命题只有( )A .①②③B .①②④C .①③④D .②③④答案 A解析 ①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④中綈q :∀x ∈R ,x 2-x -1>0,由于x 2-x -1=⎝⎛⎭⎫x -122-54,则存在x 值使x 2-x -1≤0,故綈q 为假命题,则p ∧綈q 为假命题. 题型三 充要条件的判断问题例3 (1)甲:x ≠2或y ≠3;乙:x +y ≠5,则( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件(2)设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A.⎣⎡⎦⎤0,12 B.⎝⎛⎭⎫0,12 C .(-∞,0)∪⎣⎡⎭⎫12,+∞ D .(-∞,0)∪⎝⎛⎭⎫12,+∞ 审题破题 (1)利用逆否命题判别甲、乙的关系;(2)转化为两个集合间的包含关系,利用数轴解决. 答案 (1)B (2)A解析 (1)“甲⇒乙”,即“x ≠2或y ≠3”⇒“x +y ≠5”,其逆否命题为:“x +y =5”⇒“x =2且y =3”显然不正确.同理,可判断命题“乙⇒甲”为真命题.所以甲是乙的必要不充分条件.(2)綈p :|4x -3|>1;綈q :x 2-(2a +1)x +a (a +1)>0,解得綈p :x >1或x <12;綈q :x >a +1或x <a .若綈p ⇐綈q ,则⎩⎪⎨⎪⎧ a ≤12a +1>1或⎩⎪⎨⎪⎧a <12a +1≥1,即0≤a ≤12.反思归纳 (1)充要条件判断的三种方法:定义法、集合法、等价命题法;(2)判断充分、必要条件时应注意的问题:①要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A ;②要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明.变式训练3 (1)(2012·山东)设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 由题意知函数f (x )=a x 在R 上是减函数等价于0<a <1,函数g (x )=(2-a )x 3在R 上是增函数等价于0<a <1或1<a <2,∴“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件. (2)设A ={x |xx -1<0},B ={x |0<x <m },若B 是A 成立的必要不充分条件,则m 的取值范围是( )A .m <1B .m ≤1C .m ≥1D .m >1答案 D解析 xx -1<0⇔0<x <1.由已知得,0<x <m ⇒0<x <1, 但0<x <1⇒0<x <m 成立. ∴m >1.典例 设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1;③若l =12,则-22≤m ≤0.其中正确命题的个数是( )A .0B .1C .2D .3解析 ①m =1时,l ≥m =1且x 2≥1, ∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确.③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确. 答案 D得分技巧 创新性试题中最常见的是以新定义的方式给出试题,这类试题要求在新的情境中使用已知的数学知识分析解决问题,解决这类试题的关键是透彻理解新定义,抓住新定义的本质,判断给出的各个结论,适当的时候可以通过反例推翻其中的结论. 阅卷老师提醒 在给出的几个命题中要求找出其中正确命题类的试题实际上就是一个多项选择题,解答这类试题时要对各个命题反复进行推敲,确定可能正确的要进行严格的证明,确定可能错误的要举出反例,这样才能有效避免答错试题.1. 已知集合A ={x |x 2+x -2=0},B ={x |ax =1},若A ∩B =B ,则a 等于( )A .-12或1 B .2或-1C .-2或1或0D .-12或1或0答案 D解析 依题意可得A ∩B =B ⇔B ⊆A . 因为集合A ={x |x 2+x -2=0}={-2,1},当x =-2时,-2a =1,解得a =-12;当x =1时,a =1;又因为B 是空集时也符合题意,这时a =0,故选D.2. (2013·浙江)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ= π2”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 φ=π2⇒f (x )=A cos ⎝⎛⎭⎫ωx +π2=-A sin ωx 为奇函数,∴“f (x )是奇函数”是“φ=π2”的必要条件.又f (x )=A cos(ωx +φ)是奇函数⇒f (0)=0⇒φ=π2+k π(k ∈Z )⇒φ=π2.∴“f (x )是奇函数”不是“φ=π2”的充分条件.3. (2012·辽宁)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))·(x 2-x 1)≥0,则綈p 是( )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 答案 C解析 根据全称命题的否定是特称命题知. 綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0.4. 已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围为( ) A .(-∞,-1] B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)答案 C解析 由P ={x |x 2≤1}得P ={x |-1≤x ≤1}. 由P ∪M =P 得M ⊆P .又M ={a },∴-1≤a ≤1. 5. 下列命题中错误的是( )A .命题“若x 2-5x +6=0,则x =2”的逆否命题是“若x ≠2,则x 2-5x +6≠0”B .若x ,y ∈R ,则“x =y ”是“xy ≤⎝⎛⎭⎫x +y 22中等号成立”的充要条件 C .已知命题p 和q ,若p ∨q 为假命题,则命题p 与q 中必一真一假 D .对命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,x 2+x +1≥0 答案 C解析 易知选项A ,B ,D 都正确;选项C 中,若p ∨q 为假命题,根据真值表,可知p ,q 必都为假,故C 错.专题限时规范训练一、选择题1. (2013·陕西)设全集为R ,函数f (x )=1-x 2的定义域为M ,则∁R M 为( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞) 答案 D解析 由题意得M =[-1,1],则∁R M =(-∞,-1)∪(1,+∞).2. (2013·山东)给定两个命题p ,q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由题意知:綈p ⇐q ⇔(逆否命题)p ⇒綈q .3. (2012·湖南)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α ≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4答案 C解析 由命题与其逆否命题之间的关系可知,原命题的逆否命题是:若tan α≠1,则α≠π4.4. (2012·湖北)命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( )A .∃x 0D ∈∁R Q ,x 30∈QB .∃x 0∈∁R Q ,x 30D ∈C .∀xD ∈∁R Q ,x 3∈Q D .∀x ∈∁R Q ,x 3D ∈Q 答案 D解析 “∃”的否定是“∀”,x 3∈Q 的否定是x 3D ∈Q .命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是“∀x ∈∁R Q ,x 3D ∈Q ”.5. 设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 C解析 A ={x |x -2>0}={x |x >2}=(2,+∞),B ={x |x <0}=(-∞,0),∴A ∪B =(-∞,0)∪(2,+∞),C ={x |x (x -2)>0}={x |x <0或x >2}=(-∞,0)∪(2,+∞).A ∪B =C .∴“x ∈A ∪B ”是“x ∈C ”的充要条件. 6. 下列关于命题的说法中错误的是( )A .对于命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”D .若p ∧q 为假命题,则p ,q 均为假命题 答案 D解析 对于A ,命题綈p :∀x ∈R ,均有x 2+x +1≥0,因此选项A 正确.对于B ,由x =1可得x 2-3x +2=0;反过来,由x 2-3x +2=0不能得知x =1,此时x 的值可能是2,因此“x =1”是“x 2-3x +2=0”的充分不必要条件,选项B 正确.对于C ,原命题的逆否命题是:“若x ≠1,则x 2-3x +2≠0”,因此选项C 正确.7. 已知p :2xx -1<1,q :(x -a )(x -3)>0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A .(-∞,1)B .[1,3]C .[1,+∞)D .[3,+∞)答案 C解析 2xx -1-1<0⇒x +1x -1<0⇒(x -1)(x +1)<0⇒p :-1<x <1.当a ≥3时,q :x <3或x >a ;当a <3时,q :x <a 或x >3.綈p 是綈q 的必要不充分条件,即p 是q 的充分不必要条件,即p ⇒q 且q ⇒,从而可推出a 的取值范围是a ≥1. 8. 下列命题中是假命题的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .对任意x >0,有lg 2x +lg x +1>0C .△ABC 中,A >B 的充要条件是sin A >sin BD .对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数 答案 D解析 对于A ,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项A 是真命题;对于B ,注意到lg 2x +lg x +1=⎝⎛⎭⎫lg x +122+34≥34>0,因此选项B 是真命题;对于C ,在△ABC 中,由A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项C 是真命题;对于D ,注意到当φ=π2时,y =sin(2x +φ)=cos 2x 是偶函数,因此选项D 是假命题.综上所述,选D. 二、填空题9. 已知集合A ={x ∈R ||x -1|<2},Z 为整数集,则集合A ∩Z 中所有元素的和等于________.答案 3解析 A ={x ∈R ||x -1|<2}={x ∈R |-1<x <3}, 集合A 中包含的整数有0,1,2,故A ∩Z ={0,1,2}. 故A ∩Z 中所有元素之和为0+1+2=3.10.设集合M ={y |y -m ≤0},N ={y |y =2x -1,x ∈R },若M ∩N ≠∅,则实数m 的取值范围是________.答案 (-1,+∞)解析 M ={y |y ≤m },N ={y |y >-1},结合数轴易知m >-1.11. 已知命题p :“∀x ∈[1,2],12x 2-ln x -a ≥0”是真命题,则实数a 的取值范围是________. 答案 ⎝⎛⎦⎤-∞,12 解析 命题p :a ≤12x 2-ln x 在[1,2]上恒成立,令f (x )=12x 2-ln x ,f ′(x )=x -1x=(x -1)(x +1)x ,当1<x <2时,f ′(x )>0,∴f (x )min =f (1)=12,∴a ≤12. 12.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件; ④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.(写出所有真命题的序号)答案 ①④解析 对于①,当数列{a n }是等比数列时,易知数列{a n a n +1}是等比数列;但当数列 {a n a n +1}是等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确.对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确.对于③,当m =3时,相应的两条直线垂直;反过来,当这两条直线垂直时,不一定能得出m =3,也可能得出m =0,因此③不正确.对于④,由题意,得b a =sin B sin A =3,当B =60°时,有sin A =12,注意到b >a ,故A =30°;但当A =30°时,有sin B =32,B =60°或B =120°,因此④正确. 三、解答题13.已知函数f (x )= 6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解 A ={x |-1<x ≤5},(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},故4是方程-x 2+2x +m =0的一个根,∴有-42+2×4+m =0,解得m =8.此时B ={x |-2<x <4},符合题意.因此实数m 的值为8.14.设集合A ={x |-2-a <x <a ,a >0},命题p :1∈A ,命题q :2∈A .若p ∨q 为真命题,p ∧q为假命题,求a 的取值范围.解 由命题p :1∈A ,得⎩⎨⎧ -2-a <1,a >1.解得a >1. 由命题q :2∈A ,得⎩⎨⎧-2-a <2,a >2.解得a >2. 又∵p ∨q 为真命题,p ∧q 为假命题,即p 真q 假或p 假q 真, 当p 真q 假时,⎩⎪⎨⎪⎧ a >1,a ≤2,即1<a ≤2, 当p 假q 真时,⎩⎪⎨⎪⎧ a ≤1,a >2,无解. 故所求a 的取值范围为(1,2].。
01 集合、复数、常用逻辑用语与不等式(教师版)
![01 集合、复数、常用逻辑用语与不等式(教师版)](https://img.taocdn.com/s3/m/75709963ac02de80d4d8d15abe23482fb4da023c.png)
查补易混易错点01 集合、复数、常用逻辑用语与不等式1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如{x |y =lg x }——函数的定义域;{y |y =lg x }——函数的值域;{(x ,y )|y =lg x }——函数图象上的点集.2.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性.3.空集是任何集合的子集.解题时勿漏∅的情况.4.判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以从集合的角度来思考,将问题转化为集合间的运算.5.解形如ax 2+bx +c >0(a ≠0)的一元二次不等式时,易忽视对系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.6.求解分式不等式时应正确进行同解变形,不能把()0()f x g x 直接转化为f (x )·g (x )≤0,而忽视g (x )≠0.7.容易忽视使用基本不等式求最值的条件,即“一正、二定、三相等”导致错解,如求函数f (x )x 2+2+1x 2+2的最值,就不能利用基本不等式求最值;求解函数y =x +3x (x <0)的最值时应先转化为正数再求解.8.复数z 为纯虚数的充要条件是a =0且b ≠0(z =a +b i ,a ,b ∈R ).还要注意巧妙运用参数问题和合理消参的技巧.9.复数的运算与多项式运算类似,要注意利用i 2=-1化简合并同类项.10.由目标函数z =ax +by (b ≠0),得y =-a b x +z b .直线y =-a b x +z b 在y 轴上的截距为z b.当b >0时,目标函数值与直线在y 轴上的截距同步达到最大值和最小值;当b <0时,情形正好相反。
求最优整数解时,要结合可行域,对所有可能的整数解逐一检验,不要漏掉解.8.(山东省聊城市2023届高三第三次学业质量联合检测数学试题)已知实数,则“2abb a +≥”是“0a >,b A .充分不必要条件C .充要条件。
高考数学专题一集合、常用逻辑用语、算法、复数、推理与证明、不等式第一讲集合、常用逻辑用语学案理
![高考数学专题一集合、常用逻辑用语、算法、复数、推理与证明、不等式第一讲集合、常用逻辑用语学案理](https://img.taocdn.com/s3/m/e78dc69d1a37f111f0855b03.png)
第一讲集合、常用逻辑用语考点一集合的概念及运算1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.2.集合运算中的常用方法(1)数轴法:若已知的集合是不等式的解集,用数轴法求解.(2)图象法:若已知的集合是点集,用图象法求解.(3)Venn图法:若已知的集合是抽象集合,用Venn图法求解.[对点训练]1.(2018·全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9 B.8C.5 D.4[解析]由题意可知A={(-1,0),(0,0),(1,0),(0,-1),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)},故集合A中共有9个元素,故选A.[答案] A2.(2018·江西南昌二中第四次模拟)设全集U=R,集合A={x|log2x≤2},B={x|(x -3)(x+1)≥0},则(∁U B)∩A=( )A.(-∞,-1] B.(-∞,-1]∪(0,3)C.[0,3) D.(0,3)[解析]集合A={x|log2x≤2}={x|0<x≤4},集合B={x|(x-3)(x+1)≥0}={x|x≥3或x≤-1}.因为全集U=R,所以∁U B={x|-1<x<3},所以(∁U B)∩A=(0,3),故选D.[答案] D3.(2018·河南开封模拟)设集合U=R,A={x|2x(x-2)<1},B={x|y=ln(1-x)},则图中阴影部分表示的集合为( )A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}[解析] 易知A ={x |2x (x -2)<1}={x |x (x -2)<0}={x |0<x <2},B ={x |y =ln(1-x )}={x |1-x >0}={x |x <1},则∁U B ={x |x ≥1},阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}.[答案] B4.已知集合A ={x |x 2-3x -10≤0},B ={x |m +1≤x ≤2m -1}.若A ∪B =A ,则实数m 的取值范围是________.[解析] 由A ∪B =A 知B ⊆A .因为A ={x |-2≤x ≤5},①若B =∅,则m +1>2m -1,即m <2,此时A ∪B =A ;②若B ≠∅,则m +1≤2m -1,即m ≥2,由B ⊆A 得⎩⎪⎨⎪⎧-2≤m +1,2m -1≤5,解得-3≤m ≤3.又因为m ≥2,所以2≤m ≤3.由①②知,当m ≤3时,A ∪B =A .[答案] m ≤3[快速审题] (1)看到集合中的元素,想到代表元素的意义;看到点集,想到其对应的几何意义.(2)看到数集中元素取值连续时,想到借助数轴求解交、并、补集等;看到M ⊆N ,想到集合M 可能为空集.解决集合问题的3个注意点(1)集合含义要明确:构成集合的元素及满足的性质.(2)空集要重视:已知两个集合的关系,求参数的取值,要注意对空集的讨论. (3)“端点”要取舍:要注意在利用两个集合的子集关系确定不等式组时,端点值的取舍问题,一定要代入检验,否则可能产生增解或漏解现象.考点二 充分与必要条件的判断充分、必要条件与充要条件的含义若p 、q 中所涉及的问题与变量有关,p 、q 中相应变量的取值集合分别记为A ,B ,那么有以下结论:A1.(2018·北京卷)设a ,b 均为单位向量,则“|a -3b |=|3a +b |”是“a ⊥b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件[解析] |a -3b |=|3a +b |⇔|a -3b |2=|3a +b |2⇔a 2-6a ·b +9b 2=9a 2+6a ·b +b 2⇔2a 2+3a ·b -2b 2=0,又∵|a |=|b |=1,∴a ·b =0⇔a ⊥b ,故选C .[答案] C2.(2017·天津卷)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] ∵⎪⎪⎪⎪⎪⎪θ-π12<π12⇔-π12<θ-π12<π12⇔0<θ<π6,sin θ<12⇔θ∈⎝ ⎛⎭⎪⎫2k π-7π6,2k π+π6,k ∈Z ,⎝ ⎛⎭⎪⎫0,π6 ⎝ ⎛⎭⎪⎫2k π-7π6,2k π+π6,k∈Z ,∴“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件.[答案] A3.已知条件p :x +y ≠-2,条件q :x ,y 不都是-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[解析] 因为p :x +y ≠-2,q :x ≠-1或y ≠-1,所以綈p :x +y =-2,綈q :x =-1且y =-1,因为綈q ⇒綈p 但綈p ⇒/綈q ,所以綈q 是綈p 的充分不必要条件,即p 是q的充分不必要条件.[答案] A4.(2018·山西五校联考)已知p:(x-m)2>3(x-m)是q:x2+3x-4<0的必要不充分条件,则实数m的取值范围为________________.[解析]p对应的集合A={x|x<m或x>m+3},q对应的集合B={x|-4<x<1},由p是q的必要不充分条件可知B A,∴m≥1或m+3≤-4,即m≥1或m≤-7.[答案]m≥1或m≤-7[快速审题] 看到判断充分、必要条件,想到定条件,找推式,想到命题所对应集合间的包含关系.充分、必要条件的3种判断方法(1)利用定义判断:直接判断“若p,则q”“若q,则p”的真假.在判断时,确定条件是什么,结论是什么.(2)从集合的角度判断:利用集合中包含思想判定.抓住“以小推大”的技巧,即小范围推得大范围,即可解决充分必要性的问题.(3)利用等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假.考点三命题真假的判定与命题的否定1.四种命题的关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.2.复合命题真假的判断方法含逻辑联结词的命题的真假判断:“p∨q”有真则真,其余为假;“p∧q”有假则假,其余为真;“綈p”与“p”真假相反.3.全称量词与存在量词(1)全称命题p:∀x∈M,p(x),它的否定綈p:∃x0∈M,綈p(x0).(2)特称命题p:∃x0∈M,p(x0),它的否定綈p:∀x∈M,綈p(x).[对点训练]1.(2018·山东泰安联考)下列命题正确的是( )A .命题“∃x ∈[0,1],使x 2-1≥0”的否定为“∀x ∈[0,1],都有x 2-1≤0” B .若命题p 为假命题,命题q 是真命题,则(綈p )∨(綈q )为假命题 C .命题“若a 与b 的夹角为锐角,则a ·b >0”及它的逆命题均为真命题D .命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”[解析] 对于选项A ,命题“∃x ∈[0,1],使x 2-1≥0”的否定为“∀x ∈[0,1],都有x 2-1<0”,故A 项错误;对于选项B ,p 为假命题,则綈p 为真命题;q 为真命题,则綈q为假命题,所以(綈p )∨(綈q )为真命题,故B 项错误;对于选项C ,原命题为真命题,若a ·b >0,则a 与b 的夹角可能为锐角或零角,所以原命题的逆命题为假命题,故C 项错误;对于选项D ,命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”,故选项D 正确.因此选D .[答案] D2.(2018·清华大学自主招生能力测试)“∀x ∈R ,x 2-πx ≥0”的否定是( ) A .∀x ∈R ,x 2-πx <0 B .∀x ∈R ,x 2-πx ≤0 C .∃x 0∈R ,x 20-πx 0≤0D .∃x 0∈R ,x 20-πx 0<0[解析] 全称命题的否定是特称命题,所以“∀x ∈R ,x 2-πx ≥0”的否定是“∃x 0∈R ,x 20-πx 0<0”.故选D .[答案] D3.(2018·湖南师大附中模拟)已知命题p :∃x 0∈(-∞,0),2x 0<3x 0;命题q :∀x ∈⎝ ⎛⎭⎪⎫0,π2,sin x <x ,则下列命题为真命题的是( ) A .p ∧q B .p ∨(綈q ) C .(綈p )∧qD .p ∧(綈q )[解析] 因为当x <0时,⎝ ⎛⎭⎪⎫23x >1,即2x >3x,所以命题p 为假命题,从而綈p 为真命题;因为当x ∈⎝⎛⎭⎪⎫0,π2时,x >sin x ,所以命题q 为真命题,所以(綈p )∧q 为真命题,故选C .[答案] C4.(2018·豫西南五校联考)若“∀x ∈⎣⎢⎡⎦⎥⎤-π4,π3,m ≤tan x +2”为真命题,则实数m的最大值为________.[解析] 由x ∈⎣⎢⎡⎦⎥⎤-π4,π3可得-1≤tan x ≤3,∴1≤tan x +2≤2+3,∵“∀x ∈⎣⎢⎡⎦⎥⎤-π4,π3,m ≤tan x +2”为真命题,∴实数m 的最大值为1. [答案] 1[快速审题] (1)看到命题真假的判断,想到利用反例和命题的等价性.(2)看到命题形式的改写,想到各种命题的结构,尤其是特称命题、全称命题的否定,要改变的两个地方.(3)看到含逻辑联结词的命题的真假判断,想到联结词的含义.解决命题的判定问题应注意的3点(1)判断四种命题真假有下面两个途径,一是先分别写出四种命题,再分别判断每个命题的真假;二是利用互为逆否命题是等价命题这一关系来判断它的逆否命题的真假.(2)要判定一个全称命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立.要判定一个特称(存在性)命题是真命题,只要在限定集合M中,至少能找到一个x=x0,使p(x0)成立即可.(3)含有量词的命题的否定,需从两方面进行:一是改写量词或量词符号;二是否定命题的结论,两者缺一不可.1.(2018·全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}[解析]化简A={x|x<-1或x>2},∴∁R A={x|-1≤x≤2}.故选B.[答案] B2.(2018·全国卷Ⅲ)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0} B.{1}C.{1,2} D.{0,1,2}[解析]∵A={x|x≥1},B={0,1,2},∴A∩B={1,2},故选C[答案] C3.(2017·全国卷Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B 中元素的个数为( )A .3B .2C .1D .0[解析] 集合A 表示单位圆上的所有的点,集合B 表示直线y =x 上的所有的点.A ∩B 表示直线与圆的公共点,显然,直线y =x 经过圆x 2+y 2=1的圆心(0,0),故共有两个公共点,即A ∩B 中元素的个数为2.[答案] B4.(2018·天津卷)设x ∈R ,则“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] 由⎪⎪⎪⎪⎪⎪x -12<12得-12<x -12<12,解得0<x <1.由x 3<1得x <1.当0<x <1时能得到x <1一定成立;当x <1时,0<x <1不一定成立.所以“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件. [答案] A5.(2018·北京卷)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________.[解析] 根据函数单调性的概念,只要找到一个定义域 为[0,2]的不单调函数,满足在定义域内有唯一的最小值点,且f (x )min =f (0)即可,除所给答案外,还可以举出f (x )=⎩⎪⎨⎪⎧0,x =0,1x,0<x ≤2等.[答案] f (x )=sin x ,x ∈[0,2](答案不唯一)1.集合作为高考必考内容,多年来命题较稳定,多以选择题形式在前3题的位置进行考查,难度较小.命题的热点依然会集中在集合的运算方面,常与简单的一元二次不等式结合命题.2.高考对常用逻辑用语考查的频率较低,且命题点分散,其中含有量词的命题的否定、充分必要条件的判断需要关注,多结合函数、平面向量、三角函数、不等式、数列等内容命题。
高考数学必考知识点总结
![高考数学必考知识点总结](https://img.taocdn.com/s3/m/f7c4fd3c905f804d2b160b4e767f5acfa1c7834a.png)
高考数学必考知识点总结高考数学必考知识点总结1考点一:集合与简易逻辑集合局部一般以选择题出现,属容易题。
重点考查集合间关系的理解和认识。
近年的试题加强了对集合计算化简能力的考查,并向无限集开展,考查抽象思维能力。
在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。
简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系〞、命题真伪的判断、全称命题和特称命题的否认等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、根本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。
导数局部一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量一般是2道小题,1道综合解答题。
小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。
大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。
向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点〞题型.考点四:数列与不等式不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、根本不等式的应用等,通常会在小题中设置1到2道题。
对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.考点五:立体几何与空间向量一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。
高考数学第一章集合与常用逻辑用语2第2讲命题及其关系、充分条件与必要条件理
![高考数学第一章集合与常用逻辑用语2第2讲命题及其关系、充分条件与必要条件理](https://img.taocdn.com/s3/m/c1f0b7da58fb770bf68a55b9.png)
12/12/2021
第十五页,共四十一页。
4.已知集合 P=x|x=k+12,k∈Z,Q=x|x=k2,k∈Z,记
原命题:“x∈P,则 x∈Q”,那么,在原命题及其逆命题、
否命题、逆否命题中,真命题的个数是( )
A.0
B.1
C.2
D.4
12/12/2021
第十六页,共四十一页。
解析:选 C.因为 P=x|x=k+12,k∈Z=x|x=2k+2 1,k∈Z, Q=x|x=k2,k∈Z, 所以 P Q, 所以原命题“x∈P,则 x∈Q”为真命题, 则原命题的逆否命题为真命题. 原命题的逆命题“x∈Q,则 x∈P”为假命题, 则原命题的否命题为假命题,所以真命题的个数为 2.
12/12/2021
第二十一页,共四十一页。
(2)
若
|
→ AB
+
→ AC
|>|
→ BC
|
,
则
|
→ AB
+
→ AC
|2>|
→ BC
|2
,
AB2
+
A→C2
+
2A→B·A→C>|B→C|2,因为点 A,B,C 不共线,所以线段 AB,BC,
AC 构成一个三角形 ABC,设内角 A,B,C 对应的边分别为 a,
12/12/2021
第六页,共四十一页。
下列命题为真命题的是( A.若1x=1y,则 x=y C.若 x=y,则 x= y
答案:A
) B.若 x2=1,则 x=1 D.若 x<y,则 x2<y2
12/12/2021
第七页,共四十一页。
(教材习题改编)命题“若 a>b,则 a-1>b-1”的否命题是 () A.若 a>b,则 a-1≤b-1 B.若 a>b,则 a-1<b-1 C.若 a≤b,则 a-1≤b-1 D.若 a<b,则 a-1<b-1
高考数学复习:集合与常用逻辑用语
![高考数学复习:集合与常用逻辑用语](https://img.taocdn.com/s3/m/5d557e6d102de2bd960588e4.png)
数
二 轮
4.全(特)称命题及其否定
学
复 习
(1)全称命题p:∀x∈M,p(x).它的否定¬p:____∃_x_0∈__M__,__¬_p_(_x_0)____.
(2)特称命题p:∃x0∈M,p(x).它的否定¬p:___∀__x_∈__M_,__¬_p_(_x_)____.
返回导航
专题一 集合、常用逻辑用语、向量、复数、算法、推理与证明、不等式
A.{0}
B.{1}
二
C.{1,2}
D.{0,1,2}
轮
复 习
[解析] ∵A={x|x-1≥0}={x|x≥1},∴A∩B={1,2}.
(C)
数 学
故选C.
返回导航
专题一 集合、常用逻辑用语、向量、复数、算法、推理与证明、不等式
9.(文)(2017·全国卷Ⅰ,1)已知集合A={x|x<2},B={x|3-2x>0},则
学
返回导航
专题一 集合、常用逻辑用语、向量、复数、算法、推理与证明、不等式
[解析] ∵f(x)=cosx+bsinx为偶函数,
∴对任意的x∈R,都有f(-x)=f(x),
即cos(-x)+bsin(-x)=cosx+bsinx,
∴2bsinx=0.由x的任意性,得b=0.
二
故f(x)为偶函数⇒b=0.必要性成立.
进行否定,而否命题既对命题的条件进行否定,又对命题的结论进行否定.
返回导航
专题一 集合、常用逻辑用语、向量、复数、算法、推理与证明、不等式
1.(文)(2019·全国卷Ⅰ,2)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B=
{2,3,6,7},则B∩∁UA= A.{1,6}
高考数学专题01-集合、常用逻辑用语与复数(原卷版)
![高考数学专题01-集合、常用逻辑用语与复数(原卷版)](https://img.taocdn.com/s3/m/5994a203e53a580217fcfe09.png)
《备战2020年浙江省高考数学优质卷分类解析》第一章 集合、常用逻辑用语与复数1.集合的运算,五年五考.高考对集合基本运算的考查,集合由描述法呈现,转向由离散元素呈现.解决这类问题的关键在于正确理解集合中元素所具有属性的,明确集合中含有的元素,进一步进行交、并、补等运算.常见选择题.2. 充要条件,五年五考.高考对命题及其关系和充分条件、必要条件的考查,主要命题形式是选择题.由于知识载体丰富,因此题目有一定综合性,属于中、低档题.命题重点主要集中在以函数、方程、不等式、立体几何线面关系、数列等为背景的充分条件和必要条件的判定.3.复数的概念运算,五年三考(近三年).常见题型有选择题、填空题,重点考查除法、乘法等运算,同时考查复数的模、共轭复数等概念.一.选择题1.【浙江省三校2019年5月份第二次联考】已知全集,,则( )A .B .C .D .2.【浙江省台州市2019届高三4月调研】若全集,集合,,则集合( )A .B .C .D .3.【浙江省2019届高三高考全真模拟(二)】已知集合2{|560}A x x x =-+≤,{|15}B x Z x =∈<<,则A B ⋂=( ) A .[2,3]B .(1,5)C .{}2,3D .{2,3,4}4.【浙江省温州市2019届高三2月高考适应性测试】已知集合 A ={1,2,-1},集合 B ={y | y =x 2,x∈A},则A∪B=( ) A .{1} B .{1,2,4}C .{-1,1,2,4}D .{1,4}5.【浙江省宁波市2019届高三上期末】已知集合,则( ). A .B .C .D .6.【浙江省湖州三校2019年普通高等学校招生全国统一考试】已知集合,,则( )A .B .C .D .7.【浙江省金华十校2019届高三上学期期末】如果全集,,,则A .B .C .D .8.【浙江省金丽衢十二校2019届高三第一次联考】若集合,,则( ) A .B .C .D .9.【浙江省金华十校2019届下学期高考模拟】设集合11{|}22M x x =-<<,2{|}N x x x =≤,则M N ⋂=( )A .1[0,)2B .1(,1]2-C .1[1,)2-D .1(,0]2-10.【浙江省金华十校2019届下学期高考模拟】已知,a b ∈R ,下列四个条件中,使a b >成立的充分不必要的条件是( ) A .1a b >-B .1a b >+C .a b >D .22a b > 11.【浙江省金华十校2019届高三上学期期末】已知条件p :,条件,则p 是q 的A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件 12.【浙江省台州市2019届高三4月调研】已知,则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件13.【浙江省宁波市2019届高三上学期期末】已知平面 ,直线满足,则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 14.【浙江省三校2019年5月份第二次联考】已知平面,直线,若,,,则“”是“中至少有一条与垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件15.【浙江省温州市2019届高三2月高考适应性测试】已知a ,b 都是实数,那么“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.【浙江省2019届高三高考全真模拟(二)】设0a >,0b >,则“lg()0ab >”是“lg()0a b +>”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件17.【浙江省湖州三校2019年普通高等学校招生全国统一考试】设平面与平面相交于直线,直线在平面内,直线在平面内,且,则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件18. 【浙江省金丽衢十二校2019届高三第二次联考】已知直线平面,直线平面,则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 19.【浙江省2019届高考模拟卷(三)】在中,“”是“为钝角三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 20.【浙江省七彩联盟2019届高三上期中】设,则“数列为等比数列”是“数列为等比数列”的A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要条件21. 【浙江省2019届高考模拟卷(一)】已知圆.设条件,条件圆上至多有个点到直线的距离为,则是的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件22. 【浙江省2019届高考模拟卷(二)】已知平面,直线满足,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件23.【浙江省湖州三校2019年普通高等学校招生全国统一考试】复数(为虚数单位)的共轭复数是()A.B.C.D.24.【浙江省三校2019年5月份第二次联考】已知是虚数单位,则复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限25.【浙江省2019届高三高考全真模拟(二)】已知i是虚数单位,复数z满足2(1)1iiz-=+,则z=()A.2B.2 C.1 D.526.【浙江省温州市2019届高三2月高考适应性测试】已知i是虚数单位,则等于()A.1 -i B.1 +i C.- 1 - i D.- 1+i27.【浙江省金丽衢十二校2019届高三第一次联考】己知复数满足,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题28.【浙江省宁波市2019届高三上期末】设为虚数单位,给定复数,则的虚部为___;模为___29.【浙江省金华十校2019届高三上学期期末】已知复数z 的共轭复数,则复数z 的虚部是______,______.30.【浙江省金华十校2019届下学期高考模拟】已知复数z 满足(12)34i z i +=-,i 为虚数单位,则z 的虚部是_____,z =_____.。
高考理科数学二轮复习新课标通用课件集合复数常用逻辑用语
![高考理科数学二轮复习新课标通用课件集合复数常用逻辑用语](https://img.taocdn.com/s3/m/b99ce4566ad97f192279168884868762caaebbb2.png)
(ad + bc)i$。
03
复数的除法
设 $z_1 = a + bi, z_2 = c + di$($c, d$ 不同时为 0),则
$frac{z_1}{z_2} = frac{a + bi}{c + di} = frac{(a + bi)(c - di)}{(c +
di)(c - di)} = frac{(ac + bd) + (bc - ad)i}{c^2 + d^2}$。
集合的运算
交集、并集、补集。由两个集合的公共元素组成的集合叫做这两个集合的交集;由两个集合的所有元素组成的集 合叫做这两个集合的并集;对于一个集合,由全集U中不属于该集合的所有元素组成的集合叫做该集合的补集。
典型例题解析
例题1
已知集合A={x|x^23x+2=0},B={x|x^2ax+(a-1)=0}, C={x|x^2-bx+2=0}, 若B⊆A,C⊆A,求a、b 的值。
充要条件
如果A是B的充要条件,那 么A发生当且仅当B发生。
逻辑联结词与简单逻辑电路
逻辑联结词
包括“且”、“或”、“非”等,用于连 接命题构成复合命题。
简单逻辑电路
由逻辑门电路组成,实现基本的逻辑运算 功能,如与门、或门、非门等。
逻辑运算的性质
包括交换律、结合律、分配律等,用于简 化复合命题的逻辑结构。
注意事项
在使用数学归纳法时,要确保基础 步骤和归纳步骤都正确无误,和等比数列求和公式
等差数列求和公式
$S_n = frac{n}{2} [2a_1 + (n1)d]$,其中 $a_1$ 是首项,$d$ 是公差,$n$ 是项数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 算法、复数、推理与证明考点一 复数的概念与运算1.复数的乘法复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类项,不含i 的看作另一类项,分别合并同类项即可.2.复数的除法除法的关键是分子分母同乘以分母的共轭复数,解题时要注意把i 的幂写成最简形式.复数的除法类似初中所学化简分数常用的“分母有理化”,其实质就是“分母实数化”.3.复数运算中常见的结论(1)(1±i)2=±2i,1+i 1-i =i ,1-i 1+i =-i ;(2)i 4n=1,i 4n +1=i ,i4n +2=-1,i4n +3=-i ;(3)i 4n+i4n +1+i 4n +2+i4n +3=0.[对点训练]1.(2018·全国卷Ⅰ)设z =1-i1+i+2i ,则|z |=( ) A .0 B .12 C .1D . 2[解析] ∵z =(1-i )2(1+i )(1-i )+2i =1-2i -12+2i =i ,∴|z |=1,故选C .[答案] C2.(2018·安徽安庆二模)已知复数z 满足:(2+i)z =1-i ,其中i 是虚数单位,则z 的共轭复数为( )A .15-35i B .15+35i C .13-i D .13+i [解析] 由(2+i)z =1-i ,得z =1-i 2+i =(1-i )(2-i )(2+i )(2-i )=15-35i ,∴z -=15+35i.故选B .[答案] B3.(2018·安徽马鞍山二模)已知复数z 满足z i =3+4i ,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] 由z i =3+4i ,得z =3+4i i =(3+4i )(-i )-i 2=4-3i ,∴复数z 在复平面内对应的点的坐标为(4,-3),该点位于第四象限.故选D .[答案] D4.(2018·江西师大附中、临川一中联考)若复数z =1+i 1-i ,z -为z 的共轭复数,则(z -)2017=( )A .iB .-iC .-22017iD .22017i[解析] 由题意知z =1+i 1-i =(1+i )2(1-i )(1+i )=i ,可得z -=-i ,则(z -)2017=[(-i)4]504·(-i)=-i.故选B .[答案] B[快速审题] (1)看到题目的虚数单位i ,想到i 运算的周期性;看到z ·z -,想到公式z ·z -=|z |2=|z -|2.(2)看到复数的除法,想到把分母实数化处理,即分子、分母同时乘以分母的共轭复数,再利用乘法法则化简.复数问题的解题思路以复数的基本概念、几何意义、相等的条件为基础,结合四则运算,利用复数的代数形式列方程或方程组解决问题.考点二 程序框图1.当需要对研究的对象进行逻辑判断时,要使用条件结构,它是根据指定条件选择执行不同指令的控制结构.2.注意直到型循环和当型循环的本质区别:直到型循环是先执行再判断,直到满足条件才结束循环;当型循环是先判断再执行,若满足条件,则进入循环体,否则结束循环.3.循环结构主要用在一些有规律的重复计算的算法中,如累加求和、累乘求积等. [对点训练]1.执行如图所示的程序框图,运行相应的程序,若输出的结果是4,则常数a 的值为( )A .4B .2C .12D .-1[解析] S 和n 依次循环的结果如下:S =11-a ,n =2;S =1-1a ,n =4.所以1-1a=2,a =-1.故选D .[答案] D2.若某程序框图如图所示,则该程序运行后输出的i 的值为( )A .4B .5C .6D .7[解析] 根据程序框图,程序执行中的数据变化如下:n =12,i =1;n =6,i =2;6≠5;n =3,i =3;3≠5;n =10,i =4;10≠5;n =5,i =5;5=5成立,程序结束,输出i =5.故选B .[答案] B3.(2018·全国卷Ⅱ)为计算S =1-12+13-14+…+199-1100,设计了下面的程序框图,则在空白框中应填入( )A .i =i +1B .i =i +2C .i =i +3D .i =i +4[解析] S =1-12+13-14+…+199-1100=⎝ ⎛⎭⎪⎫1+13+15+…+199-⎝ ⎛⎭⎪⎫12+14+…+1100,当不满足判断框内的条件时,S =N -T ,所以N =1+13+15+…+199,T =12+14+…+1100,所以空白框中应填入i =i +2.故选B .[答案] B4.执行如图所示的程序框图,输出的S 的值是________.[解析] 由程序框图可知,n =1,S =0;S =cos π4,n =2;S =cos π4+cos 2π4,n =3;…;S =cosπ4+cos 2π4+cos 3π4+…+cos 2014π4=251⎝⎛⎭⎪⎫cos π4+cos 2π4+…+cos 8π4+cosπ4+cos2π4+…+cos 6π4=251×0+22+0+⎝ ⎛⎭⎪⎫-22+(-1)+⎝ ⎛⎭⎪⎫-22+0=-1-22,n =2015,输出S .[答案] -1-22[快速审题] (1)看到循环结构,想到循环体的结构;看到判断框,想到程序什么时候开始和终止.(2)看到根据程序框图判断程序执行的功能,想到依次执行n 次循环体,根据结果判断. (3)看到求输入的值,想到利用程序框图得出其算法功能,找出输出值与输入值之间的关系,逆推得输入值.求解程序框图2类常考问题的解题技巧(1)程序框图的运行结果问题先要找出控制循环的变量及其初值、终值.然后看循环体,若循环次数较少,可依次列出即可得到答案;若循环次数较多,可先循环几次,找出规律.要特别注意最后输出的是什么,不要出现多一次或少一次循环的错误,尤其对于以累和为限定条件的问题,需要逐次求出每次迭代的结果,并逐次判断是否满足终止条件.(2)程序框图的填充问题最常见的是要求补充循环结构的判断条件,解决此类问题的方法是创造参数的判断条件为“i >n ?”或“i <n ?”,然后找出运算结果与条件的关系,反解出条件即可.考点三 推理与证明1.归纳推理的思维过程实验、观察―→概括、推广―→猜测一般性结论 2.类比推理的思维过程实验、观察―→联想、类推―→猜测新的结论[对点训练]1.(2017·全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩[解析] 由题意可知,“甲看乙、丙的成绩,不知道自己的成绩”说明乙、丙两人是一个优秀一个良好,则乙看了丙的成绩,可以知道自己的成绩;丁看了甲的成绩,也可以知道自己的成绩.故选D .[答案] D2.(2018·山西孝义期末)我们知道:在平面内,点(x 0,y 0)到直线Ax +By +C =0的距离公式d =|Ax 0+By 0+C |A 2+B 2,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x +2y+2z +3=0的距离为( )A .3B .5C .5217D .3 5[解析] 类比平面内点到直线的距离公式,可得空间中点(x 0,y 0,z 0)到直线Ax +By +Cz +D =0的距离公式为d =|Ax 0+By 0+Cz 0+D |A 2+B 2+C 2,则所求距离d =|2+2×4+2×1+3|12+22+22=5,故选B . [答案] B3.(2018·安徽合肥模拟)《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:223= 223,338= 338,4415= 4415,5524= 5524,…,则按照以上规律,若99n=99n具有“穿墙术”,则n =( )A .25B .48C .63D .80[解析] 由 2 23= 223,3 38= 338,4 415= 4415,5 524= 5524,…, 可得若9 9n=99n具有“穿墙术”,则n =92-1=80,故选D .[答案] D[快速审题] 看到由特殊到一般,想到归纳推理;看到由特殊到特殊,想到类比推理.(1)破解归纳推理题的思维3步骤①发现共性:通过观察特例发现某些相似性(特例的共性或一般规律); ②归纳推理:把这种相似性推广为一个明确表述的一般命题(猜想);③检验,得结论:对所得的一般性命题进行检验,一般地,“求同存异”“逐步细化”“先粗后精”是求解由特殊结论推广到一般结论型创新题的基本技巧.(2)破解类比推理题的3个关键①会定类,即找出两类对象之间可以确切表述的相似特征;②会推测,即用一类事物的性质去推测另一类事物的性质,得出一个明确的猜想; ③会检验,即检验猜想的正确性.要将类比推理运用于简单推理之中,在不断的推理中提高自己的观察、归纳、类比能力.1.(2018·全国卷Ⅱ)1+2i 1-2i =( )A .-45-35iB .-45+35iC .-35-45iD .-35+45i[解析] 1+2i 1-2i =(1+2i )2(1-2i )(1+2i )=-3+4i 5=-35+45i ,故选D .[答案] D2.(2018·浙江卷)复数21-i (i 为虚数单位)的共轭复数是( )A .1+iB .1-iC .-1+iD .-1-i[解析] ∵21-i =2(1+i )(1-i )(1+i )=1+i ,∴21-i的共轭复数为1-i. [答案] B3.(2018·北京卷)执行如图所示的程序框图,输出的s 值为( )A .12 B .56 C .76D .712[解析] k =1,s =1;s =1+(-1)1×11+1=1-12=12,k =2,2<3;s =12+(-1)2×11+2=12+13=56,k =3,此时跳出循环,∴输出56.故选B . [答案] B4.(2018·天津卷)阅读下边的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为( )A.1 B.2C.3 D.4[解析]第一次循环T=1,i=3;第二次循环T=1,i=4;第三次循环T=2,i=5,满足条件i≥5,结束循环.故选B.[答案] B5.(2016·全国卷Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是 2.”乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1.”丙说:“我的卡片上的数字之和不是5.”则甲的卡片上的数字是________.[解析]由丙说的话可知丙的卡片上的数字一定不是2和3.若丙的卡片上的数字是1和2,则乙的卡片上的数字是2和3,甲的卡片上的数字是1和3,满足题意;若丙的卡片上的数字是1和3,则乙的卡片上的数字是2和3,此时,甲的卡片上的数字只能是1和2,不满足题意.故甲的卡片上的数字是1和3.[答案]1和31.高考对复数的考查重点是其代数形式的四则运算(特别是乘、除法),也涉及复数的概念及几何意义等知识,题目多出现在第1~3题的位置,难度较低,纯属送分题目.2.高考对算法的考查,每年平均有一道小题,一般出现在第6~9题的位置上,难度中等偏下,均考查程序框图,热点是循环结构和条件结构,有时综合性较强,其背景涉及数列、函数、数学文化等知识.3.在全国课标卷中很少直接考查“推理与证明”,特别是合情推理,而演绎推理,则主要体现在对问题的证明上.热点课题2 数学归纳法的应用[感悟体验]已知数列{a n }中,a 1=1,a n +1=1-4a n +3,数列{b n }满足b n =1a n +1(n ∈N *). (1)求数列{b n }的通项公式;(2)证明:1b 21+1b 22+…+1b 2n<7.[解] (1)由a 1=1,得b 1=12;由a 1=1,得a 2=0,b 2=1; 由a 2=0,得a 3=-13,b 3=32;由a 3=-13,得a 4=-12,b 4=2,由此猜想b n =n2.下面用数学归纳法加以证明: ①当n =1时,b 1=12符合通项公式b n =n 2;②假设当n =k (k ∈N ,k ≥1)时猜想成立, 即b k =1a k +1=k 2,a k =2k-1, 那么当n =k +1时a k +1=a k -1a k +3=2k -1-12k-1+3=1-k 1+k,b k +1=1a k +1+1=11-k 1+k+1=k +12,即n =k +1时猜想也能成立,综合①②可知,对任意的n ∈N *都有b n =n2.(2)证明:当n =1时,左边=1b 21=4<7不等式成立;当n =2时,左边=1b 21+1b 22=4+1=5<7不等式成立;当n ≥3时, 1b 2n=4n 2<4n (n -1)=4⎝ ⎛⎭⎪⎫1n -1-1n ,左边=1b 21+1b 22+…+1b 2n <4+1+4⎝ ⎛⎭⎪⎫12-13+13-14+…+1n -1-1n =5+4⎝ ⎛⎭⎪⎫12-1n =7-4n <7,不等式成立.专题跟踪训练(八)一、选择题1.已知z =1+2i ,则复数2iz -2的虚部是( ) A .25 B .-25C .25i D .-25i[解析]2i z -2=2i -1+2i =2i (-1-2i )(-1+2i )(-1-2i )=45-25i ,该复数的虚部为-25.故选B . [答案] B2.若复数z =1+2i ,则4iz z --1等于( ) A .1 B .-1 C .i D .-i[解析]4i z z --1=4i(1+2i )(1-2i )-1=i.故选C . [答案] C3.已知z (3+i)=-3i(i 是虚数单位),那么复数z 对应的点位于复平面内的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限[解析] z =-3i 3+i=-3i (3-i )(3+i )(3-i )=-3-3i 4=-34-3i4,z 对应的点⎝ ⎛⎭⎪⎫-34,-34位于复平面内的第三象限.故选C .[答案] C4.(2018·大连模拟)下列推理是演绎推理的是( )A .由于f (x )=c cos x 满足f (-x )=-f (x )对任意的x ∈R 都成立,推断f (x )=c cos x 为奇函数B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜出数列{a n }的前n 项和的表达式C .由圆x 2+y 2=1的面积S =πr 2,推断:椭圆x 2a 2+y 2b2=1的面积S =πabD .由平面三角形的性质推测空间四面体的性质[解析] 由特殊到一般的推理过程,符合归纳推理的定义;由特殊到与它类似的另一个特殊的推理过程,符合类比推理的定义;由一般到特殊的推理符合演绎推理的定义.A 是演绎推理,B 是归纳推理,C 和D 为类比推理,故选A .[答案] A5.(2018·江西南昌三模)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x=3,n=2,依次输入的a为2,2,5,则输出的s =( )A.8 B.17C.29 D.83[解析]根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量s 的值.模拟程序的运行过程:输入的x=3,n=2,当输入的a为2时,s=2,k=1,不满足退出循环的条件;当再次输入的a为2时,s=8,k=2,不满足退出循环的条件;当输入的a为5时,s=29,k=3,满足退出循环的条件.故输出的s的值为29.故选C.[答案] C6.用反证法证明命题:“已知a,b是自然数,若a+b≥3,则a,b中至少有一个不小于2”.提出的假设应该是( )A.a,b至少有两个不小于2B.a,b至少有一个不小于2C.a,b都小于2D.a,b至少有一个小于2[解析]根据反证法可知提出的假设为“a,b都小于2”.故选C.[答案] C7.(2018·广东汕头一模)执行如图所示的程序框图,输出的结果是( )A .56B .54C .36D .64[解析] 模拟程序的运行,可得:第1次循环,c =2,S =4,c <20,a =1,b =2;第2次循环,c =3,S =7,c <20,a =2,b =3;第3次循环,c =5,S =12,c <20,a =3,b =5;第4次循环,c =8,S =20,c <20,a =5,b =8;第5次循环,c =13,S =33,c <20,a =8,b =13;第6次循环,c =21,S =54,c >20,退出循环,输出S 的值为54.故选B .[答案] B8.(2018·广东茂名一模)执行如图所示的程序框图,那么输出的S 值是( )A .12B .-1C .2008D .2[解析] 模拟程序的运行,可知S =2,k =0;S =-1,k =1;S =12,k =2;S =2,k =3;…,可见S 的值每3个一循环,易知k =2008对应的S 值是第2009个,又2009=3×669+2,∴输出的S 值是-1,故选B .[答案] B9.(2018·湖南长沙模拟)如图,给出的是计算1+14+17+…+1100的值的一个程序框图,则图中判断框内(1)处和执行框中的(2)处应填的语句是( )A .i >100,n =n +1B .i <34,n =n +3C .i >34,n =n +3D .i ≥34,n =n +3[解析] 算法的功能是计算1+14+17+…+1100的值,易知1,4,7,…,100成等差数列,公差为3,所以执行框中(2)处应为n =n +3,令1+(i -1)×3=100,解得i =34,∴终止程序运行的i 值为35,∴判断框内(1)处应为i >34,故选C .[答案] C10.(2018·武汉调研)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )A .甲B .乙C .丙D .丁[解析]由题可知,乙、丁两人的观点一致,即同真同假,假设乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话,推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两个结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙供述可得,乙是罪犯.[答案] B11.(2018·昆明七校调研)阅读如图所示的程序框图,运行相应的程序,若输出S的值为1,则判断框内为( )A.i>6? B.i>5?C.i≥3? D.i≥4?[解析]依题意,执行程序框图,进行第一次循环时,S=1×(3-1)+1=3,i=1+1=2;进行第二次循环时,S=3×(3-2)+1=4,i=2+1=3;进行第三次循环时,S=4×(3-3)+1=1,i=4,因此当输出的S的值为1时,判断框内为“i≥4?”,选D.[答案] D12.(2018·吉林一模)祖暅是南北朝时代的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )A .①②B .①③C .②④D .①④[解析] 设截面与底面的距离为h ,则①中截面内圆的半径为h ,则截面圆环的面积为π(R 2-h 2);②中截面圆的半径为R -h ,则截面圆的面积为π(R -h )2;③中截面圆的半径为R -h 2,则截面圆的面积为π(R -h2)2;④中截面圆的半径为R 2-h 2,则截面圆的面积为π(R 2-h 2).所以①④中截面的面积相等,故其体积相等,选D .[答案] D 二、填空题13.i 是虚数单位,若复数(1-2i)(a +i)是纯虚数,则实数a 的值为________.[解析] ∵(1-2i)(a +i)=2+a +(1-2a )i 为纯虚数,∴⎩⎪⎨⎪⎧1-2a ≠0,2+a =0,解得a =-2.[答案] -214.如图是一个三角形数阵:按照以上排列的规律,第16行从左到右的第2个数为________.[解析] 前15行共有15(15+1)2=120(个)数,故所求的数为a 122=12×122-1=1243.[答案]124315.(2018·河南三市联考)执行如图所示的程序框图,如果输入m =30,n =18,则输出的m 的值为________.[解析] 如果输入m =30,n =18,第一次执行循环体后,r =12,m =18,n =12,不满足输出条件;第二次执行循环体后,r =6,m =12,n =6,不满足输出条件;第三次执行循环体后,r =0,m =6,n =0,满足输出条件,故输出的m 值为6.[答案] 616.“求方程⎝ ⎛⎭⎪⎫513x +⎝ ⎛⎭⎪⎫1213x =1的解”,有如下解题思路:设f (x )=⎝ ⎛⎭⎪⎫513x +⎝ ⎛⎭⎪⎫1213x ,则f (x )在R 上单调递减,且f (2)=1,所以原方程有唯一解x =2,类比上述解题思路,可得不等式x 6-(x +2)>(x +2)3-x 2的解集是________.[解析] 因为x 6-(x +2)>(x +2)3-x 2,所以x 6+x 2>(x +2)3+(x +2),所以(x 2)3+x 2>(x +2)3+(x +2).令f (x )=x 3+x ,所以不等式可转化为f (x 2)>f (x +2).因为f (x )在R 上单调递增,所以x 2>x +2,解得x <-1或x >2.故原不等式的解集为(-∞,-1)∪(2,+∞).[答案] (-∞,-1)∪(2,+∞)。