小升初奥数试题及答案解析
小升初50道经典奥数题及答案详细解析精编版
小升初50道经典奥数题及答案详细解析1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。
运后结算时,共付运费4400元。
托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。
小升初奥数题大全100道附答案(完整版)
小升初奥数题大全100道附答案(完整版)题目1:有三个连续的自然数,它们的乘积是60。
这三个数分别是多少?答案:3、4、5因为3×4×5 = 60题目2:一个数除以5 余3,除以6 余4,除以7 余5。
这个数最小是多少?答案:2085、6、7 的最小公倍数是210,这个数为210 - 2 = 208题目3:小明在计算两个数相加时,把一个加数个位上的6 错写成2,把另一个加数十位上的5 错写成3,所得的和是374。
原来两个数相加的正确结果是多少?答案:408一个加数个位上的6 错写成2,少加了4;把另一个加数十位上的5 错写成3,少加了20。
所以正确结果是374 + 4 + 20 = 408题目4:鸡兔同笼,共有30 个头,88 只脚。
求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只假设全是鸡,有脚60 只,少了28 只脚。
每把一只鸡换成一只兔,脚多2 只,所以兔有28÷2 = 14 只,鸡有16 只题目5:在一条长400 米的环形跑道上,甲、乙两人同时从同一点出发,同向而行,甲每秒跑6 米,乙每秒跑4 米。
经过多少秒甲第一次追上乙?答案:200 秒甲每秒比乙多跑2 米,多跑一圈400 米追上,所以400÷2 = 200 秒题目6:一个长方体的棱长总和是80 厘米,长、宽、高的比是5 : 3 : 2。
这个长方体的体积是多少?答案:240 立方厘米长方体有4 条长、4 条宽、4 条高,所以一组长、宽、高的和为20 厘米。
按比例分配可得长10 厘米、宽6 厘米、高4 厘米,体积为10×6×4 = 240 立方厘米题目7:某工厂有三个车间,第一车间人数占总人数的1/4,第二车间人数是第三车间人数的3/4,第一车间比第二车间少40 人。
三个车间共有多少人?答案:560 人设总人数为x 人,则第一车间人数为1/4 x 人,第二车间人数为3/7×3/4 x 人,可列方程3/7×3/4 x - 1/4 x = 40题目8:一个分数,分子与分母的和是48,如果分子、分母都加上1,所得分数约分后是2/3。
小升初奥数50道经典奥数题及答案解析
小升初奥数50道经典奥数题及答案解析1. 一个数的百分之一比这个数的百分之10小9,这个数是多少?解析:假设这个数为x,则百分之一可以表示为0.01x,百分之10可以表示为0.1x。
根据题意可得0.01x = 0.1x - 9。
整理得到0.09x = 9,解得x = 100。
2. 假设一个数的百分之一是3,这个数是多少?解析:可以设这个数为x,则百分之一可以表示为0.01x。
根据题意可得0.01x = 3,解得x = 300。
3. 4的百分之一是多少?解析:可以直接计算得到4的百分之一为0.04。
4. 假设一个数的百分之一是0.02,这个数是多少?解析:设这个数为x,则百分之一可以表示为0.01x。
根据题意可得0.01x = 0.02,解得x = 2。
5. 判断下列四个小数哪一个是最小的?0.01,0.1,0.02,0.2。
解析:可以将四个小数都化为百分数进行比较。
0.01 = 1%,0.1 = 10%,0.02 = 2%,0.2 = 20%。
显然,1%是最小的。
6. 在数的添加、减少、乘法和除法中,哪种运算是无法实现负数的?解析:除法无法实现负数,因为任何数除以0都是无意义的。
7. 将0.35表示成分数形式。
解析:0.35可以表示为35/100,然后将分数进行约分得到7/20。
8. 填入下面的括号中:(2-3)÷(-2)=()。
解析:(2-3)÷(-2) = -1/(-2) = 1/2。
9. 计算:(-2)+3-5×(-4)÷(-2)。
解析:根据运算法则,先进行乘法和除法,再进行加法和减法。
(-2)+3-5×(-4)÷(-2) = (-2)+3-20÷(-2) = (-2)+3-(-10) = (-2)+3+10 = 11。
10. 计算:(-12)-0.5×(2-3)+4÷2。
解析:先进行括号内的运算,(-12)-0.5×(2-3)+4÷2 = (-12)-0.5×(-1)+4÷2 = (-12)-(-0.5)+4÷2 = (-12)+0.5+2 = -9.5。
小升初奥数试题及答案解析
【导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更⾼、更强。
下⾯是⽆忧考为⼤家带来的“⼩升初奥数试题及答案解析”,欢迎⼤家阅读。
【篇⼀】 【篇⼀】 1.王刚、李强和⼩莉、⼩芳是两对夫妻,四⼈的年龄和是132岁。
丈夫都⽐⾃⼰的妻⼦⼤5岁,李强⽐⼩芳⼤6岁。
⼩莉多少岁? 解答: 若妻⼦都增加5岁,那么四⼈的年龄和为132+5×2=142岁,因此两个丈夫的年龄和是142÷2=71岁。
由条件可以知道,李强的妻⼦是⼩莉,王刚的妻⼦是⼩芳。
李强⽐⼩芳⼤6岁,王刚⽐⼩芳⼤5岁,所以李强⽐王刚⼤1岁,因此李强的年龄为(71+1)÷2=36岁,⼩莉是36-5=31岁。
2.第⼀个图形由4根⽕柴棍组成,第⼆个图形由12根⽕柴棍组成,第三个图形由24根⽕柴棍组成,依此类推,第100个图形由多少根⽕柴棍组成? 解答: 横向与纵向的⽕柴棍根数⼀样。
4=2×1×2,12=2×2×3,24=2×3×4,依此类推,第100个图形共有2×100×101=20200根。
【篇⼆】 【篇⼆】 1.将15拆成若⼲个互不相同的⾃然数之和,要求这些⾃然数的乘积尽量⼤,那么积是多少? 解答: 15=2+3+4+6,2×3×4×6=144 2.将各位数字都不⼤于5的⾮0⾃然数,从⼩到⼤排列,第2010个数是多少? 解答: 实际就是将六进制的数从⼩到⼤排列。
将2010转化为六进制。
(2010)10=(13150)6 第2010个数就是13150。
3.⼀条马路长200⽶,在马路两侧每隔4⽶种⼀棵树,则⼀共要种多少棵树? 解答: 200÷4+1=51(棵)51×2=102(棵) 【篇三】【篇三】 1.中午12时,校准A、B、C三钟。
小升初最难的奥数题
小升初最难的奥数题一、题目列举1. 工程问题类有一项工程,甲单独做需要10天完成,乙单独做需要15天完成。
现在甲先做了3天,剩下的工程由甲乙合作完成,问还需要多少天?这题分值可以占20分。
解题思路就是把这项工程的工作量看作单位“1”,甲的工作效率就是1÷10 = 1/10,乙的工作效率是1÷15 = 1/15。
甲先做3天,完成的工作量是1/10×3 = 3/10,剩下的工作量是1 - 3/10 = 7/10。
甲乙合作的工作效率是1/10+1/15 = 1/6,那么剩下工程需要的时间就是7/10÷1/6 = 4.2天。
2. 行程问题类甲乙两车分别从A、B两地同时出发,相向而行。
甲车速度是每小时60千米,乙车速度是每小时40千米,两车相遇后继续前行,甲车到达B地后立即返回,乙车到达A地后也立即返回,第二次相遇时距离A地80千米,求A、B两地的距离。
这题分值可以是20分。
设A、B两地距离为x千米。
第一次相遇时,甲乙两车行驶的时间相同,所以路程比等于速度比,即甲行驶的路程:乙行驶的路程= 60:40 = 3:2,那么第一次相遇时甲行驶了3/5x千米,乙行驶了2/5x千米。
第二次相遇时,甲乙两车一共行驶了3x千米,甲行驶了2x - 80千米,乙行驶了x+80千米,根据时间相同路程比等于速度比,可列出方程(2x - 80):(x + 80)=3:2,解得x = 200千米。
3. 数论问题类一个数除以5余3,除以6余4,除以7余5,这个数最小是多少?这题分值15分。
这个数加上2就能被5、6、7整除。
5、6、7的最小公倍数是5×6×7 = 210,所以这个数最小是210 - 2 = 208。
4. 几何问题类有一个直角三角形,两条直角边分别是6厘米和8厘米,求这个三角形外接圆的半径。
这题分值15分。
直角三角形外接圆的半径等于斜边的一半。
根据勾股定理,斜边的长度是√(6²+8²)=10厘米,所以外接圆半径是5厘米。
小升初典型奥数题及详细答案
【答案解析】:设总路程为S,则去时用的时间为S/X,回来的时候用的时间为S/Y 那么平均速度为2S∕(S/X+S/Y)=2/(1∕X+1∕Y)=2XY∕(X+Y) 6、参加数学竞赛的男生比女生多28人,女生全部优胜,男生的3/4得优胜男女生各优胜的共42人,求男女生参 加竞赛的各多少人?
31、一对李生姐妹今年的年龄的和、差、积、商相加的和为100,她们今年多少岁? 【答案解析】:年龄为X,则: 2X+0+X×X+l=100 解得X=9 32、一列客车长200皿,一列货车长280πι,它们在平行的轨道上相向行驶,从相遇到车尾离开需18s. 【答案解析】:巳知客车与货车的速度为5:3,求两车每秒各行多少千米? 速度和=(200+280)+18=80/3米/秒 客车速度二80∕3÷(5+3)x5=50∕3米/秒 货车速度=80/3-50/3=10米/秒 33、圆锥形容器中装有2升水,水面高度正好是圆锥高度的一半,这个容 器还能装多少升水? (8-1)x2=14 注:在这种情况下体积的比永远是8:1 34、六年级(D班原来有学生54人,男生占全班人数的5/9,后来男生转走了几人,这时男生占全班的13
3×3×3×3×2=162o 26、一只布袋中装有大小相同,但颜色不同的手套若干只。已知手套的颜色有黑白灰三种。最少要取多少副手 套才有保证有3副手套是同色的? 【答案解析】:4+3+3=10只 最坏的取法是三种手套分别拿4只3只3只,取10只就能保证有两副相同 手套只有3种,题目要我们要相同,我们就不让他相同,抽屉原理就是这样的
小升初奥数试题及参考答案
小升初奥数试题及参考答案一、选择题1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3参考答案:C2. 一个数的1/5加上它的1/3,求和的结果是这个数的几分之几?A. 1/15B. 8/15C. 1/3D. 3/5参考答案:B3. 一个长方体的长是10厘米,宽是8厘米,高是5厘米,其表面积是多少平方厘米?A. 170B. 270C. 340D. 420参考答案:D二、填空题4. 一个数的3/4加上它的1/2,和是这个数的______。
参考答案:7/85. 一本书的价格是35元,如果打8折出售,那么现价是______元。
参考答案:286. 一个正方形的边长增加10%,那么它的面积增加了多少百分比?参考答案:21%三、解答题7. 一块长方形草地的长是40米,宽是30米。
现在要在其四周围上篱笆,问篱笆的总长度是多少米?参考答案:(40+30)×2 = 140米8. 小明和小红合作完成一项工作,小明单独完成需要4小时,小红单独完成需要6小时。
现在他们合作,共同完成这项工作需要多少时间?参考答案:设工作总量为1,小明每小时完成1/4,小红每小时完成1/6的工作量。
合作时,他们每小时完成的工作量是1/4 + 1/6 =5/12。
所以,他们合作完成工作需要的时间为1 ÷ (5/12) = 2.4小时。
9. 一个班级有48名学生,其中2/3是男生,剩下的是女生。
问这个班级有多少名女生?参考答案:48 × (1 - 2/3) = 48 × 1/3 = 16名女生。
四、应用题10. 小华有一些贴纸,她给了小明一半的贴纸后,自己还剩下20张。
请问小华原来有多少张贴纸?参考答案:设小华原来有x张贴纸,根据题意,x/2 = 20,解得x = 40张。
11. 一辆汽车从甲地到乙地,如果速度提高20%,可以比原定时间提前1小时到达。
已知原定速度是60公里/小时,求两地之间的距离。
小升初最常考奥数题100道及答案(完整版)
小升初最常考奥数题100道及答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:3/4×2 = 3/2 = 1.5(杯)2. 小明看一本书,第一天看了全书的1/4,第二天看了全书的2/5,第二天比第一天多看了21 页,这本书一共有多少页?答案:21÷(2/5 - 1/4)= 21÷3/20 = 140(页)3. 有一批货物,第一天运走了总数的2/5,第二天运走的货物比总数的1/4 多4 吨,这时还剩17 吨,这批货物共有多少吨?答案:(17 + 4)÷(1 - 2/5 - 1/4)= 21÷7/20 = 60(吨)4. 某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:40÷[(1 - 25%)×3/(3 + 4) - 25%] = 40÷[3/7 - 1/4] = 560(人)5. 师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21 个,这批零件有多少个?答案:21÷(1 - 2/7 - 2/7)= 21÷3/7 = 49(个)6. 仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3 少12 袋,这时仓库里还剩24 袋,两次共取出多少袋?答案:(24 - 12)÷(1 - 2/5 - 1/3)= 12÷4/15 = 45(袋),45 - 24 = 21(袋)7. 甲、乙、丙三个数的和是110,甲与乙的比是3:2,乙与丙的比是4:1,乙数是多少?答案:甲:乙= 3:2 = 6:4,乙:丙= 4:1,所以甲:乙:丙= 6:4:1,乙数:110×4/(6 + 4 + 1) = 408. 一辆汽车从甲地开往乙地,行了全程的3/8,离乙地还有135 千米,两地之间的公路长多少千米?答案:135÷(1 - 3/8)= 216(千米)9. 修一条路,已修的与未修的比是1:5,又修了490 米后,已修的与未修的比是3:1,这时还有多少米未修?答案:490÷(3/4 - 1/6)×1/4 = 180(米)10. 某校有学生465 人,其中女生的2/3 比男生的4/5 少20 人,男、女生各有多少人?答案:设男生有x 人,4/5 x - 2/3×(465 - x) = 20 ,解得x = 225,女生人数:465 - 225 = 240(人)11. 水果店里卖出的梨的重量是苹果的5/7,梨比苹果少卖30 千克,梨卖了多少千克?答案:30÷(1 - 5/7)×5/7 = 75(千克)12. 一筐苹果卖掉1/5 后,又卖掉6 千克,这时卖出的重量正好是剩下的1/2,这筐苹果原来有多少千克?答案:6÷(1/3 - 1/5)= 45(千克)13. 甲、乙两班共有84 人,甲班人数的5/8 与乙班人数的3/4 共有58 人,甲、乙两班各有多少人?答案:设甲班有x 人,5/8 x + 3/4×(84 - x) = 58 ,解得x = 40,乙班:84 - 40 = 44(人)14. 学校买来两种图书共220 本,取出甲种图书的1/4 和乙种图书的1/5 共50 本借给五年级(1)班同学阅读,问甲、乙两种图书各买来多少本?答案:设甲种图书有x 本,1/4 x + 1/5×(220 - x) = 50 ,解得x = 120,乙种图书:220 - 120 = 100(本)15. 某工厂第一车间有工人150 人,第二车间有工人90 人,要使第一车间人数是第二车间的2 倍,需要从第二车间调多少人到第一车间?答案:(150 + 90)÷(2 + 1) = 80(人),90 - 80 = 10(人)16. 甲、乙两堆煤共180 吨,甲堆煤的1/3 比乙堆煤的2/3 多18 吨,甲、乙两堆煤各有多少吨?答案:设甲堆煤有x 吨,1/3 x - 2/3×(180 - x) = 18 ,解得x = 138,乙堆煤:180 - 138 = 42(吨)17. 学校图书馆有科技书和文艺书共3200 本,科技书的本数是文艺书的4/5,科技书和文艺书各有多少本?答案:文艺书:3200÷(1 + 4/5)= 16000/9 ≈1778(本),科技书:3200 - 1778 = 1422(本)18. 一辆汽车从甲地到乙地,已经行了全程的1/5,再向前行50 千米,就比全程的2/3 少6 千米,求甲乙两地的距离。
小升初奥数题试题及答案
小升初奥数题试题及答案【试题一】题目:一个数列的前三项分别为 2,4,6,从第四项开始,每一项都是它前三项的和。
求第 10 项的值。
答案:首先,我们可以观察到数列的规律是每一项都是前三项的和。
数列的前几项为:2,4,6,(2+4+6)=12,(4+6+12)=22,(6+12+22)=40,(12+22+40)=74,(22+40+74)=136,(40+74+136)=250,(74+136+250)=460。
所以,第 10 项的值为 460。
【试题二】题目:一个长方形的长是宽的两倍,若将长和宽都增加 8 厘米,新的长方形面积比原来增加了192 平方厘米。
求原来长方形的宽。
答案:设原来长方形的宽为 x 厘米,那么长就是 2x 厘米。
根据题意,长和宽都增加 8 厘米后,新的长方形的长为 2x + 8 厘米,宽为 x + 8 厘米。
新的长方形面积比原来增加了 192 平方厘米,可以得到方程:(2x + 8)(x + 8) - 2x * x = 192。
解这个方程,我们可以得到 x =10 厘米。
所以,原来长方形的宽是 10 厘米。
【试题三】题目:一个班级有 48 名学生,其中 1/4 是女生,剩下的是男生。
这些男生中,有 1/8 是足球队的成员。
问班级中有多少名男生,以及足球队中有多少名男生。
答案:班级中有 48 名学生,其中 1/4 是女生,即女生有 48 * 1/4= 12 名。
剩下的是男生,所以男生有 48 - 12 = 36 名。
这些男生中,有 1/8 是足球队的成员,即足球队的男生有 36 * 1/8 = 4.5 名。
但是学生人数必须是整数,所以这个问题的描述有误,无法给出准确的答案。
【试题四】题目:一个水池有 A 和 B 两个进水管,同时开放 A 和 B,注满水池需要 6 小时。
如果只开放 A,注满水池需要 10 小时。
问只开放 B,注满水池需要多少小时?答案:设 A 和 B 的工作效率分别为 A 和 B,水池的容量为 C。
小升初数学必考奥数题100道附答案(完整版)
小升初数学必考奥数题100道附答案(完整版)题目1:有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄乘积是360。
他们中年龄最大的是多少岁?答案:将360 分解因数,360 = 2×2×2×3×3×5 = 3×4×5×6,所以年龄最大的是6 岁。
题目2:计算:1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 +…+ 2014 - 2015 - 2016 + 2017 + 2018答案:原式= (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) +…+ (2013 + 2014 - 2015 - 2016) + 2017 + 2018 = 2017 + 2018 = 4035题目3:一项工程,甲单独做10 天完成,乙单独做15 天完成。
甲乙合作,几天可以完成?答案:甲每天完成工程的1/10,乙每天完成工程的1/15,两人合作每天完成1/10 + 1/15 = 1/6,所以合作需要6 天完成。
题目4:在一个比例中,两个外项互为倒数,其中一个内项是2.5,另一个内项是多少?答案:两个外项互为倒数,乘积为1。
根据比例的性质,两个内项的积也为1,所以另一个内项是1÷2.5 = 0.4题目5:一个数除以8 余5,除以9 余6,这个数最小是多少?答案:这个数加上3 就能被8 和9 整除,8 和9 的最小公倍数是72,所以这个数最小是72 - 3 = 69题目6:一个圆形花坛的周长是25.12 米,在它的周围加宽1 米,加宽后的面积比原来增加了多少平方米?答案:原来花坛的半径为25.12÷3.14÷2 = 4 米,加宽后的半径为5 米。
增加的面积为3.14×(5²- 4²) = 28.26 平方米题目7:一个长方体的棱长总和是120 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少立方厘米?答案:120÷4 = 30 厘米,3 + 2 + 1 = 6,长为15 厘米,宽为10 厘米,高为5 厘米,体积为750 立方厘米题目8:甲乙两车同时从A、B 两地相对开出,4 小时后相遇。
小升初数学奥数题120道附带完整答案
小升初数学奥数题120道附带完整答案1. 某数加上6,乘以6,减去6,除以6,其结果等于6,求这个数。
答案:1。
解题思路:从后向前来推算,“除以6,结果等于6”,则前一个数是6×6=36;“减去6 等于36”,则前一个数是36+6=42;“乘以6 等于42”,则前一个数是42÷6=7;“加上6 等于7”,所以这个数是7-6=1。
2. 两支蜡烛,第一支4 小时燃尽,第二支3 小时燃尽,如果同时点燃这两支蜡烛,问多长时间后第一支蜡烛的长度是第二支蜡烛的2 倍?答案:12/5 小时。
解题思路:把蜡烛的长度看作单位“1”,第一支蜡烛每小时燃烧1/4,第二支蜡烛每小时燃烧1/3,设x 小时后第一支蜡烛的长度是第二支蜡烛的 2 倍,可列出方程1-x/4=2×(1-x/3),解得x=12/5。
3. 一个最简分数,如果分子加1,分数值就等于1,如果分母加1,分数值就等于2/3,求原来这个分数。
答案:4/5。
解题思路:设分子为x,分母为y,根据条件可列方程组(x+1)/y=1,x/(y+1)=2/3,解方程组可得x=4,y=5,所以原来的分数是4/5。
4. 甲、乙两车分别从A、B 两地同时出发相向而行,它们的速度比是2:3,在途中相遇后,甲车速度提高20%,乙车速度不变,当乙车到达A 地时,甲车距B 地还有28 千米,求A、B 两地相距多少千米?答案:180 千米。
解题思路:相遇时甲乙所行路程比也是2:3,设全程为 5 份,相遇后乙行2 份到 A 地,甲行2×(1+20%)=2.4 份,那么3-2.4=0.6 份是28 千米,一份是28÷0.6=140/3 千米,全程5 份就是140/3×5=700/3=180 千米。
5. 有含盐8%的盐水40 千克,要配制成含盐20%的盐水,需加盐多少千克?答案:6 千克。
解题思路:原来盐水中盐的质量为40×8%=3.2 千克,设加盐x 千克,可列出方程(3.2+x)/(40+x)=20%,解得x=6。
小升初奥数题及答案五篇
小升初奥数题及答案五篇第一篇:数与代数1. 某数的三倍加上5等于20,求这个数。
解答:设这个数为x,则根据题意,可以列出方程3x + 5 = 20。
解这个一次方程可以得到x = 5。
2. 一个数增加20%后得到30,求这个数。
解答:设这个数为x,则根据题意,可以列出方程x + 0.2x = 30。
解这个一次方程可以得到x = 25。
第二篇:几何与图形1. 已知长方形的长是5cm,宽是3cm,求其面积和周长。
解答:长方形的面积可以通过长度乘以宽度来计算,即5cm × 3cm = 15cm²。
周长可以通过将长度和宽度相加再乘以2来计算,即(5cm + 3cm) × 2 = 16cm。
2. 在平面直角坐标系中,点A(2,3)和点B(5,1)连线,求线段AB的长度。
解答:根据坐标系中两点间的距离公式,线段AB的长度可以计算为√[(5-2)²+(1-3)²] = √[(3)²+(-2)²] = √(9+4) = √13。
第三篇:概率与统计1. 从1至15中随机抽取一个整数,求这个整数是偶数的概率。
解答:在1至15中,一共有8个偶数(2, 4, 6, 8, 10, 12, 14, 15)和7个奇数(1, 3, 5, 7, 9, 11, 13)。
因此,抽取的整数是偶数的概率为8/15。
2. 一个骰子中的每个面都标有1至6的数字,投掷骰子一次,求投掷结果是5或6的概率。
解答:骰子共有6个面,其中有2个面标有5和6。
因此,投掷结果是5或6的概率为2/6 = 1/3。
第四篇:逻辑与推理1. 小明说他有7本书,其中一半给了朋友,又借了5本回来,这时他还有多少本书?解答:小明有7本书,一半给了朋友,剩下的数量是7/2 = 3.5本。
因为书的数量不能为小数,所以小明实际上只剩下3本书。
2. 汤姆比杰克大三岁,而杰克比肯尼大两岁。
如果汤姆今年10岁,那么肯尼的年龄是多少?解答:根据题意,杰克比肯尼大两岁,汤姆比杰克大三岁,所以汤姆与肯尼之间的年龄差是5岁。
小升初奥数竞赛题100例附答案(完整版)
小升初奥数竞赛题100例附答案(完整版)1. 计算:2 + 4 + 6 + 8 + …+ 100解:这是一个等差数列求和,项数= (100 - 2)÷2 + 1 = 50和= (2 + 100)×50 ÷2 = 2550答:25502. 若a△b = a×b - a + b,计算5△3解:5△3 = 5×3 - 5 + 3 = 13答:133. 一本书,已看页数与未看页数之比是3 : 5,再看30 页,已看页数与未看页数之比是2 : 3,这本书共有多少页?解:30÷(2/5 - 3/8)= 1200(页)答:1200 页4. 甲、乙、丙三个数的比是5 : 3 : 4,甲数是20,乙数比丙数少多少?解:乙数:20÷5×3 = 12丙数:20÷5×4 = 16乙数比丙数少:16 - 12 = 4答:45. 一个圆柱的底面半径是4 厘米,高是6 厘米,它的侧面积是多少平方厘米?解:侧面积= 2×3.14×4×6 = 150.72(平方厘米)答:150.72 平方厘米6. 一项工程,甲队单独做10 天完成,乙队单独做15 天完成,两队合作几天能完成这项工程的一半?解:1/2÷(1/10 + 1/15)= 3(天)答:3 天7. 有浓度为30%的糖水200 克,要使浓度变为40%,需蒸发掉多少克水?解:糖的质量:200×30% = 60(克)后来糖水质量:60÷40% = 150(克)蒸发掉水:200 - 150 = 50(克)答:50 克8. 一圆形花坛周长36 米,每隔6 米种一棵月季花,在相邻两棵月季花之间种两棵菊花,一共种了多少棵花?解:月季花:36÷6 = 6(棵)菊花:6×2 = 12(棵)共种:6 + 12 = 18(棵)答:18 棵9. 鸡兔共有20 只,脚有56 只,鸡兔各有多少只?解:假设全是鸡,脚有20×2 = 40 只兔:(56 - 40)÷(4 - 2)= 8(只)鸡:20 - 8 = 12(只)答:鸡12 只,兔8 只10. 把一个棱长8 厘米的正方体木块削成一个最大的圆柱,圆柱的体积是多少?解:半径= 8÷2 = 4(厘米)体积= 3.14×4²×8 = 401.92(立方厘米)答:401.92 立方厘米11. 某商品进价100 元,按20%的利润定价,然后打九折出售,赚了多少钱?解:定价:100×(1 + 20%)= 120(元)售价:120×90% = 108(元)利润:108 - 100 = 8(元)答:8 元12. 甲乙两车分别从A、B 两地同时出发,相向而行,甲车每小时行70 千米,乙车每小时行80 千米,3 小时后两车相距60 千米,A、B 两地相距多少千米?解:(70 + 80)×3 + 60 = 450 + 60 = 510(千米)答:510 千米13. 小明读一本书,第一天读了全书的1/5,第二天读了28 页,这时读的页数与剩下页数的比是5 : 6,这本书有多少页?解:两天读了全书的5/(5 + 6)= 5/11全书页数:28÷(5/11 - 1/5)= 110(页)答:110 页14. 在200 克水中加入50 克盐,盐水的含盐率是多少?解:50÷(200 + 50)×100% = 20%答:20%15. 一个数的3/4 比它的40%多70,这个数是多少?解:70÷(3/4 - 40%)= 200答:20016. 修一条路,已修的和未修的长度比是3 : 5,如果再修12 千米,已修的和未修的长度比是9 : 11,这条路全长多少千米?解:原来已修的占全长的3/(3 + 5)= 3/8后来已修的占全长的9/(9 + 11)= 9/20全长:12÷(9/20 - 3/8)= 160(千米)答:160 千米17. 一个圆锥形麦堆,底面直径6 米,高1.2 米。
小升初数学常见奥数题100道附答案(完整版)
小升初数学常见奥数题100道附答案(完整版)1. 甲、乙两人同时从A、B 两地相向而行,甲每分钟走52 米,乙每分钟走48 米,两人走了10 分钟后交叉而过,又相距38 米,A、B 两地相距多少米?答案:962 米思路:两人10 分钟走的路程之和为(52 + 48)×10 = 1000 米,减去交叉而过相距的38 米,A、B 两地相距1000 - 38 = 962 米。
2. 一筐苹果,先拿出140 个,又拿出余下的60%,这时剩下的苹果正好是原来总数的1/6,这筐苹果原来有多少个?答案:240 个思路:设这筐苹果原来有x 个,(x - 140)×(1 - 60%) = 1/6x ,解得x = 240 。
3. 修一条路,第一天修了全长的1/5 多100 米,第二天修了余下的2/7 ,还剩500 米,这条路全长多少米?答案:1000 米思路:设全长为x 米,第一天修了1/5x + 100 米,余下x - (1/5x + 100) = 4/5x - 100 米,第二天修了2/7×(4/5x - 100) 米,可列方程4/5x - 100 - 2/7×(4/5x - 100) = 500 ,解得x = 1000 。
4. 某工厂三个车间共有180 人,第二车间人数是第一车间人数的3 倍多1 人,第三车间人数是第一车间人数的一半还少1 人,三个车间各有多少人?答案:第一车间40 人,第二车间121 人,第三车间19 人思路:设第一车间有x 人,则第二车间有3x + 1 人,第三车间有1/2x - 1 人,x + 3x + 1 + 1/2x - 1 = 180 ,解得x = 40 ,第二车间121 人,第三车间19 人。
5. 一个书架,上层书的本数是下层的4 倍,如果从上层拿60 本到下层,两层书的本数就相同,上层和下层原来各有多少本书?答案:上层160 本,下层40 本思路:设下层原来有x 本,则上层原来有4x 本,4x - 60 = x + 60 ,解得x = 40 ,上层160 本。
小升初奥数专题题及答案
小升初奥数专题题及答案一、数学问题:年龄问题题目:小华今年12岁,他的哥哥比他大4岁。
5年后,哥哥的年龄是小华的几倍?解答:首先,我们计算出哥哥现在的年龄。
小华12岁,哥哥比他大4岁,所以哥哥现在是12 + 4 = 16岁。
5年后,小华的年龄将是12 + 5 = 17岁,而哥哥的年龄将是16 + 5 = 21岁。
接下来,我们计算哥哥的年龄是小华的几倍。
21除以17,即21 ÷ 17 ≈ 1.235倍。
二、数学问题:速度问题题目:甲乙两人分别从A、B两地同时出发,相向而行。
甲的速度是每小时5公里,乙的速度是每小时3公里。
如果他们相遇时,甲比乙多走了6公里,求A、B两地的距离。
解答:设A、B两地的距离为x公里。
根据题意,甲乙相遇时,甲走了x/2 + 3公里,乙走了x/2 - 3公里。
由于甲比乙多走了6公里,我们可以得到方程:x/2 + 3 - (x/2 - 3) = 6。
简化方程得到:6 = 6,这个方程是正确的,但我们需要解出x。
将方程两边同时乘以2,得到x + 6 = 12,解得x = 6。
所以,A、B两地的距离是12公里。
三、数学问题:组合问题题目:有5个不同的球和3个不同的盒子,要求每个盒子至少有一个球,问有多少种不同的放法?解答:首先,我们需要将5个球分配到3个盒子中,每个盒子至少有一个球。
我们可以使用“隔板法”来解决这个问题。
将5个球排成一行,有4个空位可以插入隔板。
我们需要在这4个空位中选择2个位置插入隔板,这样每个盒子至少有一个球。
根据组合数公式,我们有C(4,2)种方法,即从4个空位中选择2个位置的组合数。
计算得到C(4,2) = 4! / (2! * (4 - 2)!) = 6种不同的放法。
四、数学问题:几何问题题目:一个长方形的长和宽分别是8厘米和6厘米,求这个长方形的面积和周长。
解答:长方形的面积可以通过长乘以宽来计算,即面积 = 长× 宽。
所以,面积 = 8厘米× 6厘米 = 48平方厘米。
小升初常考的奥数题100道附答案(完整版)
小升初常考的奥数题100道附答案(完整版)1. 有红、黄、白三种颜色的球,红球和黄球一共有21 个,黄球和白球一共有20 个,红球和白球一共有19 个。
三种球各有多少个?答案:三种球的总数:(21 + 20 + 19)÷2 = 30(个)白球:30 - 21 = 9(个)红球:30 - 20 = 10(个)黄球:30 - 19 = 11(个)2. 在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3 倍,那么差等于多少?答案:被减数= 减数+ 差被减数+ 减数+ 差= 120所以被减数= 60差:60÷(3 + 1) = 153. 某班学生去划船,如果增加一条船,那么每条船正好坐6 人;如果减少一条船,那么每条船就要坐9 人。
问:学生有多少人?答案:设原来有x 条船。
6(x + 1) = 9(x - 1)x = 5学生人数:6×(5 + 1) = 36(人)4. 老师把一些苹果分给小朋友。
如果每人分一个,还剩下8 个苹果;如果每人分2 个,那么还少2 个苹果。
一共有多少个小朋友?答案:设小朋友有x 个。
x + 8 = 2x - 2x = 105. 甲、乙两数的和是180,甲数的1/4 等于乙数的1/5,甲、乙两数各是多少?答案:甲:乙= 4 : 5甲:180×4/(4 + 5) = 80乙:180 - 80 = 1006. 一个长方形,如果长增加2 厘米,宽增加5 厘米,那么面积就增加60 平方厘米,这时恰好是一个正方形。
原来长方形的面积是多少平方厘米?答案:设正方形边长为x 厘米。
(x - 2)(x - 5) + 60 = x²x = 10原长方形长8 厘米,宽 5 厘米,面积40 平方厘米。
7. 一筐苹果分给甲、乙、丙三人,甲分得全部苹果的1/5 加5 个苹果,乙分得全部苹果的1/4 加7 个苹果,丙分得其余苹果的1/2,最后剩下的苹果正好等于一筐苹果的1/8。
小升初奥数题及解答(三篇)
小升初奥数题及解答(三篇)1、一副扑克有四种花色,每一种花色有13张,(大、小王除外)从中至少抽出多少张牌,才能保证其中有4张牌是同一花色?解答:根据最不利原则,3×4+1=13张。
2、某些三位数的数字之和是5的倍数,这样的三位数有多少个?解答:根据乘法原理,百位和十位分别有9种和10种选法,这时由前两位构成的数共有9×10=90个。
这90个数的数字之和可分为5类(被5整除,被5除余1,被5除余2,被5除余3,被5除余4),每类其个位均可有两种填法,使其变成数字之和能被5整除的三位数。
所以满足条件的三位数共有9×10×2=180种。
小升初奥数题及解答篇二把一个两位数质数写在另一个两位数质数右边,得到一个四位数,它能被这两个质数之和的一半整除,那么这样的两个质数乘积是()。
考点:与最小。
分析:根据题意,设出两个质数,再根据题中的数量关系,列出方程,再根据未知数的取值受限,解答即可。
解答:解:设a,b是满足题意的质数,根据一个两位质数写在另一个两位质数后面,得到一个四位数,它能被这两个质数之和的一半整除,那么有100a+b=k(a+b)÷2(k为大于0的整数),即(200-k)a=(k-2)b,因为a,b均为质数,所以k-2能够整除a,200-k能够整除b,那么设k-2=ma,200-k=mb,(m为整数),得到m(a+b)=198,因为a+b能够被2整除,所以m是99的约数,可能是1,3,9,11,33,99,若m=1,a+b=198且为两位数显然只有99+99这时a,b不是质数,若m=3,a+b=66则a=13b=53,或a=19b=47,或a=23b=43,或a=29b=37,若m=9,a+b=22则a=11b=11(舍去),其他的m值都不存有满足的a,b,综上a,b实数对有(13,53)(19,47)(23,43)(29,37)共4对,当两个质数最接近时,乘积,所以两个质数乘积是:29×37=1073,故答案为:1073。
小升初50道经典奥数题及答案详细解析
小升初50道经典奥数题及答案详细解析1.已知一张桌子的价钱是一把椅子的10倍,又知道一张桌子比一把椅子多288元。
求一张桌子和一把椅子各多少元。
设一把椅子的价钱为x元,则一张桌子的价钱为10x元。
根据题意,有10x - x = 288,解得x = 32,因此一把椅子的价钱为32元,一张桌子的价钱为320元。
2.3箱苹果重45千克。
一箱梨比一箱苹果多5千克,求3箱梨重多少千克。
设一箱苹果的重量为x千克,则3箱苹果重量为3x千克。
根据题意,有3x = 45,解得x = 15,因此一箱苹果的重量为15千克。
又因为一箱梨比一箱苹果多5千克,所以一箱梨的重量为20千克,3箱梨的重量为60千克。
3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米。
设甲的速度为x千米/小时,则乙的速度为(x-4)千米/小时。
根据题意,有4x = (x-4)×4 + 4,解得x = 16,因此甲的速度为16千米/小时,乙的速度为12千米/小时,甲比乙每小时快4千米。
4.___和___同样多的钱买了同一种铅笔,___要了13支,___要了7支,___又给___5元钱。
求每支铅笔多少钱。
设每支铅笔的价钱为x元,则___付出13x元,___付出7x元。
又因为___给___5元钱,所以有13x = 7x + 5,解得x = 0.5,因此每支铅笔的价钱为0.5元。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,求两地相距多少千米。
设两地相距为x千米,则甲乙两车相遇时,已经行驶了共(40+45)t千米,其中t为两车相遇后再返回各自出发车站的时间。
又因为两车同时到达河的两岸,所以甲车和乙车各自返回的时间相等,且均为(12-t)小时。
2024年小升初奥数题
2024年小升初奥数题一、计算类1. 34.5×1.2 +2.5×34.5 - 34.5×0.7(10分)解题思路:这道题可以运用乘法分配律,我们可以把34.5提出来,得到34.5×(1.2 + 2.5 - 0.7)。
先计算括号里的式子,1.2+2.5 - 0.7 = 3。
然后再计算34.5×3 = 103.5。
2. 1/2+1/6+1/12+1/20+1/30(10分)解题思路:我们可以把这些分数进行拆分,1/2 = 1 - 1/2,1/6 = 1/2 - 1/3,1/12 = 1/3 - 1/4,1/20 = 1/4 - 1/5,1/30 = 1/5 - 1/6。
然后把它们相加,就会发现很多项可以相互抵消,最后得到1 - 1/6 = 5/6。
二、几何类1. 一个等腰三角形的顶角是70度,求它的底角是多少度?(8分)解题思路:等腰三角形的两个底角相等,三角形的内角和是180度。
所以用(180 - 70)÷2 = 55度。
2. 一个长方形的长是8厘米,宽是5厘米,求它的面积和周长。
(8分)解题思路:长方形的面积= 长×宽,也就是8×5 = 40平方厘米。
周长=(长+ 宽)×2=(8 + 5)×2 = 26厘米。
三、应用题1. 小明和小红一起做纸飞机,小明做了30个,小红做的比小明多10个,他们一共做了多少个纸飞机?(10分)解题思路:先求出小红做的纸飞机数量,小红做了30+10 = 40个。
然后把小明和小红做的纸飞机数量相加,30+40 = 70个。
2. 一辆汽车从A地到B地,速度是每小时60千米,4小时到达。
如果速度变为每小时80千米,需要多少小时到达?(10分)解题思路:根据路程= 速度×时间,先求出A地到B地的距离,60×4 = 240千米。
当速度变为80千米每小时,时间= 路程÷速度,240÷80 = 3小时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初奥数模拟试题及答案分析(十)
一、填空题:
1.29×12+29×13+29×25+29×10=______.
2.2,4,10,10四个数,用四则运算来组成一个算式,使结果等于24.______.
______页.
4.如图所示为一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,则剩下的体积
是原正方体的百分之______(保留一位小数).
5.某校五年级(共3个班)的学生排队,每排3人、5人或7人,最后一排都只有2人.这个学校五年
级有______名学生.
6.掷两粒骰子,出现点数和为7、为8的可能性大的是______.
7.老妇提篮卖蛋.第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次
余下的一半又半个,第四次卖了第三次余下的一半又半个.这时,全部鸡蛋都卖完了.老妇篮中原有
鸡蛋______个.
8.一组自行车运动员在一条不宽的道路上作赛前训练,他们以每小时35千米的速度向前行驶.突然运动员甲离开小组,以每小时45千米的速度向前行驶10千米,然后转回来,以同样的速度行驶,重新
和小组汇合,运动员甲从离开小组到重新和小组汇合这段时间是______.
9.一对成熟的兔子每月繁殖一对小兔子,而每对小兔子一个月后就变成一对成熟的兔子.那么,从一
对刚出生的兔子开始,一年后可变成______对兔子.
10.有一个10级的楼梯,某人每次能登上1级或2级,现在他要从地面登上第10级,有______种不同的方式.
二、解答题:
1.甲、乙二人步行的速度相等,骑自行车的速度也相等,他们都要由A处到B处.甲计划骑自行车和
步行所经过的路程相等;乙计划骑自行车和步行的时间相等.谁先到达目的地
共有多少个
3.某商店同时出售两件商品,售价都是600 元,一件是正品,可赚20%;另一件是处理品,要赔
20%,以这两件商品而言,是赚,还是赔
4.有一路电车起点站和终点站分别是甲站和乙站.每隔5分钟有一辆电车从甲站出发开往乙站,全程
要走15分钟.有一个人从乙站出发沿电车路线骑车前往甲站.他出发时,恰有一辆电车到达乙站.在
路上遇到了10辆迎面开来的电车.当到达甲站时,恰又有一辆电车从甲站开出,问他从乙站到甲站用
了多少分钟。