时间序列分析法PPT(共85页)
合集下载
时间序列分析模型课件(PPT108张)
确定性时序分析的目的
• 克服其它因素的影响,单纯测度出某一个 确定性因素对序列的影响 • 推断出各种确定性因素彼此之间的相互作 用关系及它们对序列的综合影响
4-3-2 时间序列趋势分析
• 目的
–有些时间序列具有非常显著的趋势,我们分析 的目的就是要找到序列中的这种趋势,并利用 这种趋势对序列的发展作出合理的预测
随机性变化分析: AR、MA、ARMA模型
Cramer分解定理(1961)
• 任何一个时间序列 { x t }都可以分解为两部分的叠 加:其中一部分是由多项式决定的确定性趋势成 分,另一部分是平稳的零均值误差成分,即
x t t t
d j0
jt j
(B)at
随机性影响
确定性影响
对两个分解定理的理解
(2)季节性周期变化 受季节更替等因素影响,序列依一固 定周期规则性的变化,又称商业循环。 采用的方法:季节指数; (3)循环变化 周期不固定的波动变化。
(4)随机性变化
由许多不确定因素引起的序列变化。 随机性变化分析: AR、MA、ARMA模型
确定性变化分析 时间序列分析
趋势变化分析 周期变化分析 循环变化分析
(1 )
0 1 , 2 j
j0
2 ~ WN ( 0 , (2) t )
( V , ) 0 , t s (3 ) E t s
确定性序列与随机序列的定义
• 对任意序列 而言,令 序列值作线性回归 关于q期之前的
2 ( t ) q 其中{ t } 为回归残差序列, Var
参数估计方法
线性最小二乘估计
Tt ab
t
a ln a b ln b
b t T t a
时间序列分析ppt课件
时间序列分析ppt课 件
目录
• 时间序列分析简介 • 时间序列的基本概念 • 时间序列分析方法 • 时间序列分析案例 • 时间序列分析的未来发展
01 时间序列分析简介
时间序列的定义与特点
定义
时间序列是指按照时间顺序排列的一 系列观测值。
特点
时间序列具有动态性、趋势性和周期 性等特点,这些特点对时间序列分析 具有重要的影响。
时间序列的季节性
总结词
时间序列的季节性是指时间序列在固定周期内重复出现的模式,这种模式可能是由于季节性因素、周 期性事件或数据采集的频率所引起的。
详细描述
季节性是时间序列中的一个重要特征,许多时间序列都表现出季节性。例如,一个表示月度销售的序 列可能会在每个月份都出现类似的销售模式。在进行时间序列分析时,需要考虑季节性对模型的影响 ,以便更准确地预测未来的趋势和模式。
时间序列分析在金融领域的应用广泛,如股票价格预测 、风险评估等。未来将进一步探索时间序列分析时间序列分析可用于医学影像分析、疾病 预测等方面。未来将进一步拓展其在健康领域的应用范 围,为医疗保健提供有力支持。
谢谢聆听
时间序列分析的意义
01
预测未来趋势
通过对时间序列进行分析,可以了解数据的变化趋势, 从而预测未来的走势,为决策提供依据。
02
揭示内在规律
时间序列分析可以帮助我们揭示数据背后的内在规律和 机制,进一步理解事物的本质。
03
优化资源配置
通过对时间序列的预测和分析,可以更好地优化资源配 置,提高资源利用效率。
03 时间序列分析方法
图表分析法
总结词
通过图表直观展示时间序列数据,便 于观察数据变化趋势和异常点。
详细描述
目录
• 时间序列分析简介 • 时间序列的基本概念 • 时间序列分析方法 • 时间序列分析案例 • 时间序列分析的未来发展
01 时间序列分析简介
时间序列的定义与特点
定义
时间序列是指按照时间顺序排列的一 系列观测值。
特点
时间序列具有动态性、趋势性和周期 性等特点,这些特点对时间序列分析 具有重要的影响。
时间序列的季节性
总结词
时间序列的季节性是指时间序列在固定周期内重复出现的模式,这种模式可能是由于季节性因素、周 期性事件或数据采集的频率所引起的。
详细描述
季节性是时间序列中的一个重要特征,许多时间序列都表现出季节性。例如,一个表示月度销售的序 列可能会在每个月份都出现类似的销售模式。在进行时间序列分析时,需要考虑季节性对模型的影响 ,以便更准确地预测未来的趋势和模式。
时间序列分析在金融领域的应用广泛,如股票价格预测 、风险评估等。未来将进一步探索时间序列分析时间序列分析可用于医学影像分析、疾病 预测等方面。未来将进一步拓展其在健康领域的应用范 围,为医疗保健提供有力支持。
谢谢聆听
时间序列分析的意义
01
预测未来趋势
通过对时间序列进行分析,可以了解数据的变化趋势, 从而预测未来的走势,为决策提供依据。
02
揭示内在规律
时间序列分析可以帮助我们揭示数据背后的内在规律和 机制,进一步理解事物的本质。
03
优化资源配置
通过对时间序列的预测和分析,可以更好地优化资源配 置,提高资源利用效率。
03 时间序列分析方法
图表分析法
总结词
通过图表直观展示时间序列数据,便 于观察数据变化趋势和异常点。
详细描述
《时间序列分析法》课件
《时间序列分析法》ppt课件
目录
• 时间序列分析法概述 • 时间序列数据的预处理 • 时间序列的模型选择 • 时间序列的预测与分析 • 时间序列分析法的实际应用案例 • 时间序列分析法的未来发展与挑战
01
时间序列分析法概述
时间序列分析法的定义
时间序列分析法是一种统计方法,通 过对某一指标在不同时间点的观测值 进行统计分析,以揭示其内在的规律 和趋势。
处理速度要求高
大数据时代要求快速处理和分析时间序列数据 ,以满足实时性和高效率的需求。
数据质量与噪声处理
大数据中存在大量噪声和异常值,需要有效的方法进行清洗和预处理。
时间序列分析法与其他方法的融合
统计学方法
时间序列分析法可以与统计学方 法相结合,利用统计原理对数据 进行建模和推断。
深度学习方法
深度学习在处理复杂模式和抽象 特征方面具有优势,可以与时间 序列分析法相互补充。
ARIMA模型
适用于平稳时间序列的预测, 通过差分和整合方式处理非平
稳数据。
指数平滑法
适用于具有趋势和季节性变化 的时间序列,通过不同权重调 整预测值。
神经网络
适用于复杂非线性时间序列, 通过训练数据建立预测模型。
支持向量机
适用于小样本数据和分类问题 ,通过核函数处理非线性问题
。
预测精度评估
均方误差(MSE)
它通常用于预测未来趋势、分析周期 波动、研究长期变化等方面。
时间序列分析法的应用领域
金融市场分析
用于股票、债券、商品等市场的价格预测和 风险评估。
气象预报
通过对历史气象数据的分析,预测未来的天 气变化。
经济周期研究
分析经济周期波动,预测经济走势。
目录
• 时间序列分析法概述 • 时间序列数据的预处理 • 时间序列的模型选择 • 时间序列的预测与分析 • 时间序列分析法的实际应用案例 • 时间序列分析法的未来发展与挑战
01
时间序列分析法概述
时间序列分析法的定义
时间序列分析法是一种统计方法,通 过对某一指标在不同时间点的观测值 进行统计分析,以揭示其内在的规律 和趋势。
处理速度要求高
大数据时代要求快速处理和分析时间序列数据 ,以满足实时性和高效率的需求。
数据质量与噪声处理
大数据中存在大量噪声和异常值,需要有效的方法进行清洗和预处理。
时间序列分析法与其他方法的融合
统计学方法
时间序列分析法可以与统计学方 法相结合,利用统计原理对数据 进行建模和推断。
深度学习方法
深度学习在处理复杂模式和抽象 特征方面具有优势,可以与时间 序列分析法相互补充。
ARIMA模型
适用于平稳时间序列的预测, 通过差分和整合方式处理非平
稳数据。
指数平滑法
适用于具有趋势和季节性变化 的时间序列,通过不同权重调 整预测值。
神经网络
适用于复杂非线性时间序列, 通过训练数据建立预测模型。
支持向量机
适用于小样本数据和分类问题 ,通过核函数处理非线性问题
。
预测精度评估
均方误差(MSE)
它通常用于预测未来趋势、分析周期 波动、研究长期变化等方面。
时间序列分析法的应用领域
金融市场分析
用于股票、债券、商品等市场的价格预测和 风险评估。
气象预报
通过对历史气象数据的分析,预测未来的天 气变化。
经济周期研究
分析经济周期波动,预测经济走势。
第五章 时间序列分析PPT
解:根据式(5-3),有:
Y Y 18547.9 21617.9 89403.6 54425.(7 亿元)
n
11
5.2.2.2 根据时点数列计算序时平均数
要精确计算时点数列序时平均数就应该有每一瞬间都登记的资 料,这在实际中几乎是不可能的。在社会经济统计中一般是将一天 看作一个时点,即以“一天”作为最小时间单位。这样时点序列可 认为有连续时点和间断时点序列之分;而连续和间断时点序列又有 间隔相等与间隔不等之别。其序时平均数的计算方法略有不同。
(1)间隔相等连续时点序时平均数的计算: 在统计中,以“天”为统计间隔的时点序列,视其为间隔相等 的连续时点。其序时平均数可按式5–3计算。
n
Y
Y1 Y2 Yn
Yi
i 1
n
n
5.2.2.2 根据时点数列计算序时平均数
(2)间隔不相等连续时点序时平均数的计算: 如果数据资料登记的时间单位仍然是天,但实际上只在观察值 发生变动时才记录一次。此时需采用加权算术平均数的方法计算序 时平均数,权数是每一观察值的持续天数。计算公式如下:
2 140 2 340 2 711 3 371 4 538 5 500 6 210 6 470 7 479 8 346 9 371
103.1 103.4 106.4 114.7 124.1 117.1 108.3 102.8 99.2 98.6
100.4
5.1.1.1 绝对数时间序列
绝对数时间序列又称总量指标序列,指总量指标在不同时间上 的观察值按时间顺序排列而成的序列。总量指标序列是计算分析相 对数和平均数时间序列的基础。
42(台)
5.2.2.2 根据时点数列计算序时平均数
Y Y 18547.9 21617.9 89403.6 54425.(7 亿元)
n
11
5.2.2.2 根据时点数列计算序时平均数
要精确计算时点数列序时平均数就应该有每一瞬间都登记的资 料,这在实际中几乎是不可能的。在社会经济统计中一般是将一天 看作一个时点,即以“一天”作为最小时间单位。这样时点序列可 认为有连续时点和间断时点序列之分;而连续和间断时点序列又有 间隔相等与间隔不等之别。其序时平均数的计算方法略有不同。
(1)间隔相等连续时点序时平均数的计算: 在统计中,以“天”为统计间隔的时点序列,视其为间隔相等 的连续时点。其序时平均数可按式5–3计算。
n
Y
Y1 Y2 Yn
Yi
i 1
n
n
5.2.2.2 根据时点数列计算序时平均数
(2)间隔不相等连续时点序时平均数的计算: 如果数据资料登记的时间单位仍然是天,但实际上只在观察值 发生变动时才记录一次。此时需采用加权算术平均数的方法计算序 时平均数,权数是每一观察值的持续天数。计算公式如下:
2 140 2 340 2 711 3 371 4 538 5 500 6 210 6 470 7 479 8 346 9 371
103.1 103.4 106.4 114.7 124.1 117.1 108.3 102.8 99.2 98.6
100.4
5.1.1.1 绝对数时间序列
绝对数时间序列又称总量指标序列,指总量指标在不同时间上 的观察值按时间顺序排列而成的序列。总量指标序列是计算分析相 对数和平均数时间序列的基础。
42(台)
5.2.2.2 根据时点数列计算序时平均数
时间序列分析教材(PPT 82页)
滞后算子的性质: 常数与滞后算子相乘等于常数。 滞后算子适用于分配律。
Lc c
(Li Lj )x t Lix t Ljx t x ti x t-j
•滞后算子适用于结合律。 LiLjxt Li jx t x t-i-j •滞后算子的零次方等于1。L0xt xt
•滞后算子的负整数次方意味着超前。Lixt xti
8
随机过程与时间序列的关系如下所示:
随机过程: {y1, y2, …, yT-1, yT,} 第1次观测:{y11, y21, …, yT-11, yT1} 第2次观测:{y12, y22, …, yT-12, yT2}
第n次观测:{y1n, y2n, …, yT-1n, yTn}
某河流一年的水位值,{y1, y2, …, yT-1, yT,},可以看作 一个随机过程。每一年的水位纪录则是一个时间序 列 =成2,了时{y)y2取11,的y值2水1,的…位样,纪y本T录-1空1,是y间T不1}。。相而同在的每。年{ y中21,同y2一2, 时…,刻y2(n,}如构t
, k 0 , 则称{xt}为白噪声过程。
3
4
DJ P Y
2
2 1
0
0
-1
-2 -2
white noise -3
20 40 60 80 100 120 140 160 180 200
-4 20 40 60 80 100 120 140 160 180 200
由白噪声过程产生的时间序列(nrnd)
日元对美元汇率的收益率序列
长期趋势分析、季节变动 分析、循环波动分析。
随机性时间序列分析方 法:ARIMA模型等。
一、时间序列分析的几个基本概念
1.随机过程 由随机变量组成的一个有序序列称为随机过程,记为Yt ,t T ,
第十章时间序列pptPowerPointP
5.皮尔曲线
技术和经济的发展过程经历发生、发展、
成熟三个阶段。在发生阶段变化速度较缓慢;
在发展阶段变化速度加快;在成熟阶段变化速
度由趋向于缓慢;
▪ 其一般形式为:
Yt
L 1 aebt
其中,L为变量Yt的极限值, a,b为常数,t为时间变量
如电视机、手机普及率等。
k
4
3
2
1
-2
-1
1
2
如电视机、手机普及率等。
习惯上,令=1 w,则Yˆt1 Yt (1 )Yˆt
Yˆt1表示第t 1期的预测值;
称为平滑系数,是人为确定的权数;
Yˆt为第t期的预测值或修匀值;
10.3 季节变动分析
移动平均趋势剔除法
时间序列的趋势变动和季节变动同时存在,先将序列的趋势 剔除,再来测定季节变动
(1)根据时间序列的数据求出各期趋势值Vt
yˆt
1 N
( yt
ytN )
适用于: •近期预测
•预测目标的发展趋势变化不大
N 的选取:在实用上,一般用对过去数据预测的均方误
差S 来作为选取N 的准则。
例:我国近十年来糖的产量
年序
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
糖产量 三期移动平均 四期移动平均
通常表示为:y1, y2 ,..., yt ,..., yn
▪ 例:工农业总产值按年度顺序排列起来的数列; ▪ 某种商品销售量按季度或月度排列起来的数列;等等 ▪ 一个时间序列的形成受到许多因素的共同影响,为了分析
其成因及变动的规律,就需要对其进行分解。
时间序列中每一期的数据都是由不同的因素 同时发生作用的综合结果。
第7章时间序列分析PPT课件
平稳时间序列与非平稳时间序列图
Xt
Xt
2021/5/31
t
(a)
(b)
第9页/共91页
t
7-9
7.1.4 时间序列的差分
假设 {Xt : t Z}为一时间序列,一阶差分为:
Xt Xt Xt1
其中表示一阶差分算子(difference operator), 也即当前的观测值减去前面一定间隔的某个观测值。
义时间变量,打开数据文件,执行 Data
Define Dates 命令,打开Define Dates命令框,左 边显示的是各种日期格式,在此数据中,时间格式 是以年为单位,因此点中Years,右边即显示出需
2021/5/31
7-13
第13页/共91页
要指定的时间初始值,在First Cases is中输入Years 的初始值为1978,单击OK按钮,就可以形成两个 新的时间变量,YEAR_,DATE_,并出现在数据 文件的第二、三列。其中YEAR_,DATE_的数值 看上去是一样的,但YEAR_是数值变量,DATE_ 是字符变量,字符型变量主要功能在与方便进行图 型显示。
2021/5/31
7-23
第23页/共91页
27-02241/5/31
其中最后一列为字符型变量,该变量综合了年 和月的时间表示。利用时序图类似的操作方法
AnalyzeTime series Sequence chart 命令
就可以给出7.0中的时序图。 下面我们利用SPSS软件对该数据进行指数
平滑分析。打开数据文件,执行Analyze Time seriesCreate Model命令,出现一个对
Xt 的观测值 xt ,t T 时, 我们就得到了该序列 的一次实现 {xt : t T} 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、它仅适用于具有等比或近似等比关系的数据。
4、几何平均数的对数是各变量值对数的算术平均数。
计算几何平均数应注意的问题
1、变数数列中任何一个变数值不能为0,一个为0,则几何平均数为0。
2、用环比指数计算的几何平均易受最初水平和最末水平的影响。
3、几何平均法主要用于动态平均数的计算。
几何平均数的计算举例
几何平均数的概念
几何平均数是n个变数值连乘积的n次方根。
几何平均数多用于计算平均比率和平均速度。如:平均利率、平均发展速度、平均合格率等。
几何平均数的计算
1、简单几何平均法
2、加权几何平均法
几何平均数的特点
1、几何平均数受极端值的影响较算术平均数小。
2、如果变量值有负值,计算出的几何平均数就会成为负数或虚数。
骤如下:
选择工具菜单中的数据分析命令,此时弹出数据分析对话框。 在分析工具列表框中,选择移动平均工具。 这时将弹出移动平均对话框,如图所示。 在输入框中指定输入参数。在输入区域框中指定统计数据 所在区域B1:B22;因指定的输入区域包含标志行,所以选中 标志位于第一行复选框;在间隔框内键入移动平均的项数5( 根据数据的变化规律,本例选取移动平均项数N=5)。 在输出选项框内指定输出选项。可以选择输出到当前工作 表的某个单元格区域、新工作表或是新工作簿。本例选定输 出区域,并键入输出区域左上角单元格地址C2;选中图表输 出复选框。若需要输出实际值与一次移动平均值之差,还可 以选中标准误差复选框。 单击确定按钮。 这时,Excel给出一次移动平均的计算结果及实际值与一 次移动平均值的曲线图,如图所示。
移动平均法的特点:
1、对于较长观察期内,时间序列的观察值变动 方向和程度不尽相同,呈现波动状态或受随 机因素影响比较明显时,移动平均法能够消 除不规则敦动的同时,又对其波动有所反映。 也就是说,移动平均法在反映现象变动方面 较敏感的。
2、移动平均预测法所需贮存的观察值比数少,因 为随著移动,远期的观察值对预测数值的确定 就不必要了,只需保留跨越期个观察值就可以 了。
存货的加权平均单位成本=(月初结存货成本+本月购入存货成本)/(月初结存存货数量+
本月购入存货数量)
月末库存存货成本=月末库存存货数量×存货加权平均单位成本
本期发出存货的成本=本期发出存货的数量×存货加权平均单位成本
或
=期初存货成本+本期收入存货成本-期末存货成本
加权平均法,在市场预测里,就是在求平均数时,根据观察期各资料重要性的不同,分别给以
时间序列分析法
1 时间序列分析法的特点
时间序列预测法的含义(Time Series Forecasting) 是将历史资料和数据,按时间顺序排成 一系列,根据时间序列所反映的经济现象 的发展过程、方向和趋势,将时间序列外 推或延伸,以预测经济现象未来可能达到 的水平。
2 简易平均法
一、算术平均法 二、几何平均法 三、加权平均法
不同的权数加以平均的方法。
其特点是:所求得的平均数,已包含了长期趋势变动。
加权平均法的优缺点:
优点:计算方法简单。
缺点:不利于核算的及时性;在物价变动幅度较大的情况下,按加权平均单价计算的期末存货
价值与现行成本有较大的差异。适合物价变动幅度不大的情况。
A鸡蛋34元一个,买了10个,B鸡蛋45元一个,买了20个,问买了A鸡蛋和B鸡蛋的平均价格是
多少?
这时肯定不能用算术平均,直接(34+45)/2,因为他们买的数量不一样,因此要计算他们的
平均价格,只能用所买的数量作为权数,进行加权平均:
(34×10+45×20)/(10+20)= 1240 /30 = 41.33元/个
3 移动平均法
移动平均预测法(Moving Average) 是对时间序列观察值,由远向近按一定跨 越期计算平均值的一种预测方法。 移动平均市场预测法适用于: (1) 既有趋势变动又有波动的时间序列 (2) 有波动的季节变动现象
假定某地储蓄年利率(按复利计算):5%持续1.5年,3%持续2.5年,2.2%持续1年。请问此5年内该地平均储
蓄年利率。该地平均储蓄年利率
加权平均法
加权平均法,亦称全月一次加权平均法,是指以当月全部进货数量加上月初存货数量作为权数,去除当 月全部进货成本加上月初存货成本,计算出存货的加权平均单位成本,以此为基础计算当月发出存货 的成本和期末存货的成本的一种方法。
算术平均法
算术平均法是求出一定观察期内预测目标的时间数列的算术平均数作 为下期预测值的一种最简单的时序预测法。
常用的有简单算术平均法和加权算术平均法。
算术平均法是简易平均法中的一种。
设:X1,X2,X3,... ,Xn为观察期的n个资料,求得n个资料的
算术平均数的公式为:
X=(X1+X2+X3+...Xn)÷n
一次移动平均预测法
是对时间序列按一定跨越期,移动计算观察值的 算术平均数,其平均数随着观察值的移动而向后 移动,并作为下一期的预测值。
预测模型:
t
Ft1Xt Xt1Xt n2Xtn1itn nX 1i
一次移动平均预测法适用于: 基本呈水平型变动,又有些波动的时间序列。
举例:已知某商场1978~1998年的年销售额如下表 所示,试预测1999年该商场的年销售额。
移动平均法跨越期的确定:
1、要根据时间序列本身的特点 2、要根据研究问题的需要
如果时间序列的波动主要不是由随机因素引起的 ,而是现象本身的变化规律,这就需要预测值 充分表现这种波动,把跨越期取短些。如果时间 序列观察值的波动, 主要是由随机因素引起的, 研究问题的目的是观察预测事物的长期趋势值,则 可以把跨越期取长些。
比率速度大体接近的情况。
现象发展的平均速度,一般用几何平均法计算。按几何平均法求平均发展速度,需要借助于对数来计算。但
在实际工作中,我们统计工作者常用两种工具来计算,一种是用多功能电子计算器计算;另一种是查《水平法查对
表》。这种查对数在已知“总速度”和“间隔期”的情况下,可以直接查到平均增长速度。
几何平均数(Geometric mean)
或简写为: X(平均数)=∑x÷n
式中:n为资料期数(数据个数)
运用算术平均法求平均数,进行市场预测有两种形式:
(一)以最后一年的每月平均值或数年的每月平均值,作为次年
的每月预测值。
(二)以观察期的每月平均值作为预测期对应月份的预测值。
几何平均法
运用几何平均数求出预测目标的发展速度,然后进行预测。它适用预测目标发展过程一贯上升或下降,且逐期环
年份
销售额 年份
销售额
1978
32
1989
76
1979
41
1990
73
1980
48
1991
79
1981
53
1992
84
1982
51
1993
86
1983
58
1994
87
1984
57
1995
92
1985
64
1996
95
1986
69
1997
101
1987
67
1998
107
1988
69
使用excel移动平均工具进行预测,具体操作步