工具变量回归

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10
ln(Qibutter ) 关于 ln( Pi butter ) OLS 回归中的双向因果关系偏差源于 价格和需求量是由需求和供给共同决定的
11
供给和需求的交互作用得到了
利用这些数据得到的回归是需求曲线吗?
12
但如果只有供给移动了你将得到什么?
TSLS 通过分离出价格和量中源于供给移动的变动来估计 需求曲线. Z 是导致供给移动而需求不动的变量.
因为 Zi 与 ui 不相关,因此 0 + 1Zi 与 ui 不相关. 我们不 知道0 或者 1 但我们可以估计它们 ˆ , 其中 X ˆ = ˆ0 + ˆ1 Zi, i = 1,…,n. 计算 Xi 的预测值 X i i
5
TSLS (续)
ˆ : (2) 将感兴趣回归中的 Xi 替换为 X i ˆ 的回归: 利用 OLS 建立 Y 关于 X i ˆ + ui Yi = 0 + 1 X i
1
12.1 单个回归变量和单个工具变量的IV 回归
Yi = 0 + 1Xi + ui IV 回归将 X 分解成两部分: 第一部分与 u 相关, 第二部分 与 u 不相关. 通过分离出与 u 不相关的部分, 可以用来估计
1.
利用工具变量 Zi 可以做到这一点,其中工具变量与 ui 不相 关. 工具变量能够检测出 Xi 中与 ui 不相关的变动 ,并利用这 部分估计 1.
6
TSLS小结
假设你有有效的工具 Zi.
ˆ 第 1 步: 建立 Xi 关于 Zi 的回归,得到预测值 X i
ˆ 的回归, X ˆ 的系数就是 TSLS 估计 第 2 步: 建立 Yi 关于 X i i ˆ TSLS . 量,
1
ˆ TSLS 是 1 的一致估计量. 1
7
IV 估计量, 一个 X和一个Z (续)
第12章 工具变量回归
影响回归结果正确性的三大威胁有: 遗漏变量偏差,由于没有遗漏变量的观测数据所以不能 把它加到回归中; 双向因果关系 (X 导致了 Y, Y 导致了 X); 变量有测量误差 (X 中带有测量误差) 当 E(u|X) ≠ 0 时,工具变量回归可消除偏差——利用工具变 量( instrumental variable) Z
3
有效工具变量的两个条件
Yi = 0 + 1Xi + ui 要使工具变量 (“工具”) Z 有效, 必须满足下面两个条件: 1. 2.
工具相关性: corr(Zi,Xi) 0 工具外生性: corr(Zi,ui) = 0
现假设你找到了这样的 Zi (怎么找这样的 Z?) 问题:如何利用 Zi 估计 1?
(2)
ˆ 与 ui 不相关(当 n 较大时), 所以第一个最小二乘假 因为 X i 设成立 (当 n 较大时) 因此可基于回归(2)利用 OLS 估计 1 这个论断依赖于大样本 (于是利用回归(1)可较好地估计 0 和1 ) ˆ TSLS . 得到的估计量被称为两阶段最小二乘 (TSLS) 估计量, 1
合理: 雨量不足会使牧草减少而使黄油减少
14
在供给需求实例中的TSLS (续)
ln(Qibutter ) = 0 + 1ln( Pi butter ) + ui Zi = raini = 牧场地区的降雨量. Stage 1: 建立 ln( Pi butter ) 关于 rain 的回归, 得到 ln( Pi butter ) .
4
IV 估计量, 一个X 和一个 Z
#1: 两阶段最小二乘(Two Stage Least Squares ,TSLS) 正如其名字指出的, TSLS 分为两个阶段,即两个回归: (1) 首先利用 X 关于 Z 的 OLS 回归分离出与 u 不相关的那部 分X: Xi = 0 + 1Zi + vi (1)
13
在供给需求实例中的TSLS:
ln(Qibutter ) = 0 + 1ln( Pi butter ) + ui 令 Z = 牧场地区的降雨量. Z 是一个有效的工具变量吗? (1) 外生性? corr(raini,ui) = 0? 合理的: 牧场地区是否下雨不影响需求 (2) 相关性? corr(raini,ln( Pi butter )) 0?
#2: 简单的代数 Yi = 0 + 1Xi + ui 于是, cov(Yi,Zi) = cov(0 + 1Xi + ui,Zi) = cov(0,Zi) + cov(1Xi,Zi) + cov(ui,Zi) = 0 + cov(1Xi,Zi) + 0 = 1cov(Xi,Zi) 其中 cov(ui,Zi) = 0 (工具外生性); 因此
cov(Yi , Z i ) 1 = cov( X i , Z i )
8
IV 估计量, 一个 X和一个Z (续)
cov(Yi , Z i ) 1 = cov( X i , Z i )
IV 估计量为将这些总体协方差替换为样本协方差:
sYZ TSLS ˆ , 1 = s XZ
sYZ 和 sXZ 伪样本协方差. 这就是 TSLS 估计量 ,只是采用了 不同的推导!
9
实例#1: 黄油的供给和需求
IV 回归最开始是用于估计农产品(例如黄油)的需求弹性: ln(Qibutter ) = 0 + 1ln( Pi butter ) + ui 1 = 黄油的价格弹性 = 价格变化 1%引起的需求量的百分 比变化 (回顾双对数模型) 数据: 不同年份中黄油价格和需求量的观测值 ln(Qibutter ) 关于 ln( Pi butter ) 的 OLS 回归中遭遇了双向因果关 系偏差(为什么?)
2
百度文库
术语: 内生性(endogeneity)和外生性(exogeneity)
内生 变量是指与 u 相关的变量 外生 变量是指与 u 不相关的变量 注记: “内生的” 字面意思指 “在系统内决定,” 即, 和 Y 共
同确定的变量, 也是遭受 双向因果关系的变量. 然而,这 种定义较为狭义,IV 回归可用于处理遗漏变量偏差和测 量误差偏差, 而不仅仅是双向因果关系偏差.
相关文档
最新文档