三角形内角和定理及推论

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三 角 形内 角和定理及推论

阅读下列文字,结合本章学过的数学知识,按要求在横线上补全内容。

一、三角形三个内角的关系

三角形三个内角的和等于_____.在小学,我们已通过下列三种实验,观察猜想得到。

⑴ 折叠 本册教材P 70图______示意。(填图序号。下同)

(2)剪拼 本册教材P 70图______示意或本册教材 P 75图______示意。

(3)度量

实际上,有可能:

折叠时,边缝不易平齐,难以拼成一个平角;

剪拼时,发现三个内角难以拼成一个平角,只是接近180°的某个角;

度量三个角,然后相加,有的接近179°,有的接近181°,不是很准确地都得180°。

以致于怀疑我们的猜想:三角形的内角的和等于180°。

事实上,它是真命题,并且曾多次运用它求三角形内角的度数。要判断它的“真“,必须进

行 _________。

二、证明三角形的内角的和等于180°

1、分析 要想求得三角形的内角的和等于180°,三角形纸片的折叠、剪拼过

程给我们这样的提示:

把三角形三个分散的角,全部或部分适当地集中起来,利用平角定义或两直

线平行,同旁内角互补来证明。这就需要在原来的图形上,添画一些线,转化为

易于证明的情况。

为了证明的需要,在原来的图形上添画的线,叫做__________.为了区别

于原图形中的线,辅助线一般画成____线。

由剪、拼角给我们的提示,得到辅助线的添法,如图(1)、(2)、(3)、(4) 所示。

(2) (1) 图(1):剪掉三个角,拼接在它的一边BC 上,∠B 放在∠CDF 上,∠C 放在∠BDE

图(2)剪掉两个角(∠A 与∠B ),拼接在它的顶点C 处,其中∠A 放在∠1上

E

B

C A D

图(3)剪掉两个角(∠B 与∠C ),拼接在它的顶点A 处,∠B 放在∠BAD 上

(3) (4)

图(4)剪掉∠C 放在∠DAC 上。

作辅助线是几何证明常用的方法,在书写几何证明时,首先应该写明辅助线的画法。上面四

个图辅助线的添法,可用下面的几何语言表达:

1、作BC 的延长线CD ,在△ABC 的外部,以CA 为一边,CE 为另一边,画∠1=∠A 。< >

2、作BC 的延长线CD ,过C 点作CE ∥AB 。 < >

3、过A 点作DE ∥BC 。 < >

4、过A 点作射线AD ∥BC 。 < >

5、在BC 上任取点D ,过D 作DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F 。 < > 请在上面五句话后面的< >内填上对应的图号。

2.证明:

请你根据图(4)证明“三角形的内角的和等于180°”

至此,我们明白,“三角形的内角的和等于180°”是一个真命题,并且,常被选作解决其他

问题的依据,所以课本上,把它称之为_______。

三角形内角和定理

表达式: △ABC 中

∠A+∠B+∠C=180°(三角形内角和定理)

根据图(3),证明三角形内角和定理:______________________________________________.

三.

推论1:直角三角形的两个锐角互余。

表达式∵在Rt △ACB 中,∠C=90°(已知)

∴∠A+∠B=90°(直角三角形的两个锐角互余) 推论2:有两个角互余的三角形是直角三角形。

表达式:∵△ACB 中,∠A +∠B=90°

∴∠C=90°(即 △ACB 是直角三角形) 推论3:三角形的一个外角等于和它不相邻的两个内角的和。

表达式:△ACB 中,∠ACD=∠A +∠ B

推论4:三角形的一个外角大于任何一个和它不相邻的内角。

表达式:△ACB 中,∠ACD >∠A ,∠ACD >∠B

结合教材P 82内容,解决下列问题:

1._____________________________________________________________叫做三角形

的外角。注意:同一顶点处虽然有两个外角,但我们通常指一个。

在上图中,延长CA 到点E,得到内角∠BAC 相邻的外角∠BAE ,再根据推论3、

推论4,分别写出它们各自的几何表达式。

E B C B

推论3的:________________________________________________

推论4的:_________________________________________________

2证明上面四个推论:

推论1:_____________________________________________________

推论2:______________________________________________________

推论3:______________________________________________________

推论4:______________________________________________________

四三角形内角和定理及其推论的应用

1.三角形内角和定理及推论的作用

1)在三角形中,利用三角形内角和定理,已知两角求第三角或已知各角之间的关系求各角。

2)在直角三角形中,已知一个锐角利用推论1求另一个锐角或已知两个锐角的关系,求这两个锐角。另外,推论1常与同角(等角)的余角相等结合来证角相等。

3)利用推论4证三角形中角的不等关系。

2.阅读例题

例1.已知:如图02-13△ABC中,∠C=90°,∠BAC,∠ABC的平分线AD、BE交于点O,求:∠AOB的度数。

另解:同上可得到∠1+∠2=45°

∴∠3=∠1+∠2=45°(三角形外角等于和它不相邻的两个内角和)

∵∠AOB+∠3=180°(平角定义)

∴∠AOB=180°-∠3=180°-45°=135°

∴∠AOB=135°

例2.AB与CD相交于点O,求证:∠A+∠C=∠B+∠D

思路分析:在△AOC中,

∠A+∠C+∠AOC=180°(三角形内角定理)

在△BOD中,∠B+∠D+∠BOD=180°(三角形内角和定理)

∴∠A+∠C+∠AOC=∠B+∠D+∠BOD(等量代换)

相关文档
最新文档