数学美的概念分解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学美的概念

爱美之心人人皆有,也正是这样人们才会对美的事物不断的追求。数学家孜孜不倦的研究数学,和他们对美的追求是分不开的。数学美应是“数学中能带给人愉悦的东西”。学生学习数学觉得枯燥的一个重要原因是没有体会到“数学美”,不懂得欣赏数学美或缺少欣赏数学美的能力。因此,本文就主要从数学美的概念数学美与其它美的区别以及它的内容和在数学教育中的体现等方面充分挖掘数学美。通过对学生进行数学美的教育,有助于学生树立学习的信心,提高学习的兴趣,激发学习潜能,在学习中获得愉悦感。

数学美是一种蕴涵的美,它需要从深处去挖掘。关于数学美的内容很多,本文是为了从浅层阐述数学的美,让学生初步感受数学中美的存在,所以本文就主要从数学美的概念、数学美与其它美的区别、数学美的内容和它在数学教育中的体现这几个方面作以下的阐述。

一、数学美的概念

美是人类创造性实践活动的产物,是人类本质力量的感性显现。通常我们所说的美以自然美、社会美以及在此基础上的艺术美、科学美的形式存在。数学美是自然美的客观反映,是科学美的核心。简言之数学美就是数学中奇妙的有规律的让人愉悦的美的东西。

历史上许多学者、数学家对数学美从不同的侧面作过生动的阐述。

普洛克拉斯早就断言:“哪里有数,哪里就有美。”

亚里士多德也曾讲过:“虽然数学没有明显地提到善和美,但善和美也不能和数学完全分离。因为美的主要形式家是“秩序、匀称和确

定性”,这些正是数学研究的原则。”

徐利治教授说:“作为科学语言的数学,具有一般语言文字与艺术所共有的美的特点,即数学在其内容结构上和方法上也都具有自身的某种美,既所谓数学美。数学美的含义是丰富的,如数学概念的简单性、统一性,结构关系的协调性,对称性,数学命题与数学模型的概括性、典型性和普遍性,还有数学中的奇异性等等都是数学美的具体内容。

以上的论述可见,数学中充满着美的因素,数学美是数学科学的本质力量的感性和理性的呈现,它不是什么虚无飘渺、不可捉摸的东西,而是有其确定的客观内容。

二、数学美与其它美的区别

数学美有别与其它的美,它没有鲜艳的色彩,没有美妙的声音,没有动感的画面,它却是一种独特的美。

美国数学家克莱因曾对数学美作过这样的描述:“音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科技可以改善物质生活,但数学却能提供以上一切。”

数学美与其它美的区别还在于它是蕴涵在其中的美。打个比方来说,大家一定都有这种感觉,绝大部分同学对音体美容易产生兴趣,而对数学感兴趣的不多。我认为,这主要有两个方面的原因:一是音体美中所表现出来的美是外显的,这种美同学们比较容易感受、认识和理解;而数学中的美虽然也有一些表现在数学对象的外表,如精美的图形、优美的公式、巧妙的解法等等,但总的来说数学中的美还是

深深地蕴藏在它的基本结构之中,这种内在的理性美学生往往难以感受、认识和理解,这也是数学区别于其它学科的主要特征之一。二是长期以来,我们的数学教材过分强调逻辑体系和逻辑推演,忽视数学美感、数学直觉的作用,长此以往,学生将数学与逻辑等同起来。一味注重数学的逻辑性而忽视了数学本身的美,学习的过程中就会感到枯燥无味缺乏兴趣。

三、数学美的内容

随着数学的发展和人类文明的进步,数学美的概念会有所发展,分类也不相同,但它的基本内容是相对稳定的,这就是:对称性、简单性、统一性和奇异性。

(一)对称性

所谓对称性,既指组成某一事物或对象的两个部分的对等性,从古希腊的时代起,对称性就被认为是数学美的一个基本内容。毕达哥拉斯就曾说过:“一切平面图形中最美的是圆,在一切立体图形中最美的是球形。”这正是基于这两种形体在各个方向上都是对称的。

中国的建筑就很好的应用了数学的对称美,有许多的园林建筑都应用了这一点。

数学中的这种对称处处可见:几何中具有的对称性(中心对称、轴对称、镜象对称等)的图形很多,都给我们一种舒适优美的感觉。几何变换也具有对称性。

杨辉三角更组成美丽的对称图案

1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

……

分析:在杨辉三角的图案中每一行的除了首尾的数字是1以外,其他的数字是左上角和右上角的数字的和。这样就构成了有规律的并且是成对称的形状的三角图案了。

集合运算中的下面两个公式的对称性也是极其优美的:

C (A B ⋃)=CA ⋂CB C (A ⋂B ) =CA ⋃CB

两个集合的并(交)的补集就是两个集合补集的交(并)。

数学的解题中也体现对称美:

例1、9999999999999999991239871

⨯+++++++ 解:原式=111111111×111111111

=12345678987654321

分析:分式的分子是九个九乘以九个九,分母是九个数字的和并且成对称的,结果也是九个数字组成的对称的结构,真是太出人意料了太美妙了

例2、 0×9+1=1

1×9+2=11

12×9+3=111

123×9+4=1111

1234×9+5=11111

…………………

分析:例2中也蕴涵着对称留给读者去体会。

此外代数中的对称多项式,有理系数的多项式方程无理根成对出现,实系数的多项式方程虚根成对出现,函数及其反函数图象的关系,线性方程组的距阵表示及克莱姆法则等都呈现出对称性。

还有一个类似对称的词匀称。“匀称性”的概念可以看成“对称性”的概念的自然发展。线段的黄金分割就是一个典型的例子,主要是因为由此构成的长方形给人以“匀称美”的 感觉。黄金分割比618.02

15=-=ω…也被誉为“人间最巧的比例”。世界上许多著名的建筑广泛采用黄金分割的比例。一些名画的主题,电影画面的主题大多放在画面的0.618处,给人以舒适的美感。乐曲中较长一段一般是总长度的0.618,弦乐器的声码放在琴弦的0.618处会使声音更甜美。另外,黄金分割比在优选法中有着重要的作用。

(二) 简单性

汉语的语言要求言简意赅,同样数学作为逻辑性很强的学科它的语言表达也是简洁的。

简单性(或称简洁性)也是数学美的一个基本内容。数学的简洁性是人类思想表达经济化要求的反映,它同样给人以美感。爱因斯坦说过:“美在本质上终究是简单性。”

数学语言本身就是最简洁的文字,同时反映客观规律极其深刻,许多复杂的客观现象,总结为一定的规律时,往往呈现为十分简单的公式。

欧拉给出的公式:V -E+F=2,堪称“简单美”的典范。世间

相关文档
最新文档