汽车动力学
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• Suspension geometry and kinematics (悬架定 位)- Camber (车轮 外倾角)
41
Chassis Design(底盘设计)
• Suspension geometry and kinematics (悬架定位)- Camber (车轮外倾角)
Camber – Toe out
– – – – – Ride (Vertical) – Spring and damper Ride (Roll) – Anti-roll bar Ride (pitch) – Anti-dive and anti-squat Flat ride Roll centers
40
•
Chassis Design(底盘设计)
• Longitudinal slip - ABS Principle (制动力和轮胎 滑移)
7
Tire Properties (轮胎特性)
• Self-aligning torque Mz(回正力矩)
8
Tire Properties (轮胎特性)
• Driving and braking forces (驱动Biblioteka Baidu和制动力)
19
Handling(操纵稳定性)
– Understeer and oversteer (不足&过 多转向)
20
Handling(操纵稳定性)
– What if a vehicle having understeer or oversteer characteristics do under crosswind action during straight line driving? – 具有不足或过多转向特性的汽车直线行使时,在侧 风作用下,会发生什么呢?
• Primary Ride (低频平顺性)- Flat Ride
K R = 1.2 K F
38
Ride(平顺性)
• Primary Ride (低频平 顺性)- Bounce and Pitch Isolation
K F (a + c) = K R (b − c) ⇒ c =
K F a − K Rb KF + KR
• Primary Ride (低频平顺性)- 5 DOF Model
33
Ride(平顺性)
• Primary Ride (低频平顺性)- 5 DOF Model
Damping effects on spectra of body acceleration and wheel load oscillation
44
Chassis Design(底盘设计)
• Suspension geometry and kinematics (悬架定位)- Caster (主销后倾角)
45
Chassis Design(底盘设计)
• Suspension geometry and kinematics (悬架定位)- Caster (主销后倾角)
21
Handling(操纵稳定性)
22
Handling(操纵稳定性)
23
Handling(操纵稳定性)
24
Handling(操纵稳定性)
25
Ride(平顺性)
• Human natural frequency and comfort factors(人 体频率)
26
Ride(平顺性)
• Primary Ride (低频平顺性)
1
Tire Properties (轮胎特性)
• Construction (结构)
2
Tire Properties (轮胎特性)
• Tire Code (标准标号)
3
Tire Properties (轮胎特性)
• SAE Tire Coordinate System (SAE轮胎坐标系)
4
Tire Properties (轮胎特性)
• Slip angle and cornering performance (侧偏 角&侧偏刚度)
5
Tire Properties (轮胎特性)
• Affecting factors of cornering stiffness (侧偏角&侧偏刚度)
6
Tire Properties (轮胎特性)
2
Wf W δ = 57.3L / R + - r C αf Cαr δ = 57.3L / R + K × a y Wf Wr K= - Cαf Cαr
V2 1 × × R g
V char = 57.3L × g / K Vcrit = − 57.3L × g / K V 2 /(57.3L × g ) = δ 1 + K × V 2 /(57.3L × g ) γ V /L = δ 1 + K × V 2 /(57.3L × g ) ay
29
Ride(平顺性)
• Primary Ride (低频平顺性)- 2 DOF Model
30
Ride(平顺性)
• Primary Ride (低频平顺性)- 2 DOF Model
31
Ride(平顺性)
• Primary Ride (低频平顺性)- 2 DOF Model
32
Ride(平顺性)
16
Handling(操纵稳定性)
– Understeer and oversteer (不足&过 多转向)
17
Handling(操纵稳定性)
– Understeer and oversteer (不足&过 多转向)
18
Handling(操纵稳定性)
– Understeer and oversteer (不足&过 多转向)
39
Dynamic Index : DI = k 2 /(ab) = 1
Chassis Design(底盘设计)
• Suspension geometry and kinematics (悬架定位)
– Determine suspension characteristics – K&C curves – Benchmarking
Vehicle Dynamics/Chassis Design (汽车动力学&底盘设计)
• • • • • • Tire (轮胎) Handling (操纵稳定性) Ride(平顺性) Chassis Design(底盘设计) Validation(验证方法) Active Safety (主动安全控制)
– TNO SWIFT Tire Model: Up to 80 Hz – FTire Model – LMS Series Tire Model
• FEA tire (有限元轮 胎模型)
– ABAQUS
12
Handling(操纵稳定性)
• Steady state cornering performance (稳态 特性)
27
• Secondary Ride(高频平顺性)
Ride(平顺性)
Frequency (Hz)
5 10 15 20 25 30
Input Force
12" Tire Rolling Radius
!st Tire/Wheel (mph)
21
42
63
84
105 mph
Mode
Suspension Hop-Tramp Structural Column
34
Ride(平顺性)
• Primary Ride (低频平顺性)- 7 DOF Model
35
Ride(平顺性)
• Primary Ride (低频平顺性)- 7 DOF Model
36
Ride(平顺性)
• Primary Ride (低频平顺性) - Pitch control
37
Ride(平顺性)
– – – – – – – – – – Sprung mass vibration(簧载质量振动) Frequency range: 1~5 Hz Vertical (bounce): 1.0 ~ 1.2 Hz (竖直方向) Pitch: 1.2 ~ 1.5Hz(俯仰方向) Unsprung mass vibration(非簧载质量振动) Frequency range: 5~25 Hz Wheel hop: 10~12Hz(车轮跳动) Tramp: Wheels are out of phase, same as hop Hz Nibble: Steering wheel torsional vibration 8 – 20 hz Shake: Steering wheel and floor vibration 8 – 20 hz
• Suspension elasticity and compliance (悬架柔性特性)
– Affect handling – Affect ride – Have to be compromised – DOE at as early as possible Ride Magic Formula (平顺性经验公式)
Unit. Body
1st/2nd Bending 1st Torsion Frame Vehicle 1st Bending 1st Torsion Floor/Seat 5 10 15 20 25 30 28
Ride(平顺性)
• Primary Ride (低频平顺性)- 2 DOF Model
42
Chassis Design(底盘设计)
• Suspension geometry and kinematics (悬架定 位)- Camber (车 轮外倾角)
Camber steer principles
43
Chassis Design(底盘设计)
• Suspension geometry and kinematics (悬架定位)- Kingpin Inclination (主 销内倾角)
– Bicycle model (线性二自由度模型)
δ=57.3L / R + α f − α r
15
Handling(操纵稳定性)
– Bicycle model (线性二自由度模型)
Fyf + Fyr = MV 2 / R Fyf × b − Fyr × c = 0
V 1 αf = × × g R Cαf Wr V 2 1 αr = × × g R Cαr Wf
9
Tire Properties (轮胎特性)
• Tire Testing (轮胎试验)
10
Tire Properties (轮胎特性)
• Handling tire Magic Formula (操 纵稳定性轮胎模型)
11
Tire Properties (轮胎特性)
• Ride and Durability tire (平顺性路、可 靠性轮胎模型)
48
Chassis Design(底盘设计)
• Suspension geometry and kinematics (悬架定位)- Scrub Radius (??)
49
Chassis Design(底盘设计)
• Impacts of Suspension geometry misalignment on Vehicle Performance (悬架定 位对车辆性能的影响)
46
Chassis Design(底盘设计)
• Suspension geometry and kinematics (悬架定位)- Caster (主销后倾角)
47
Chassis Design(底盘设计)
• Suspension geometry and kinematics (悬架定位)- Toe (车轮前束)
K s × Kt RideRate : RR = K s + Kt ω n = RR / M ω d = 1 − ζ s2 ζ s = C s / 4K s M
&& + C Z & +K Z =C Z & Sprung Mass : MZ s s s u + K s Z u + Fb && + C Z & & Unsprung Mass : mZ u s u + ( K s + K t ) Z u = Cs Z + K s Z + K t Z r + Fw
– Ackerman Angle (Ackerman 角) – Bicycle model (线性二自由度模型) – Understeer and oversteer (不足&过多转向)
13
Handling(操纵稳定性)
– Ackerman Angle (Ackerman 角)
14
Handling(操纵稳定性)
41
Chassis Design(底盘设计)
• Suspension geometry and kinematics (悬架定位)- Camber (车轮外倾角)
Camber – Toe out
– – – – – Ride (Vertical) – Spring and damper Ride (Roll) – Anti-roll bar Ride (pitch) – Anti-dive and anti-squat Flat ride Roll centers
40
•
Chassis Design(底盘设计)
• Longitudinal slip - ABS Principle (制动力和轮胎 滑移)
7
Tire Properties (轮胎特性)
• Self-aligning torque Mz(回正力矩)
8
Tire Properties (轮胎特性)
• Driving and braking forces (驱动Biblioteka Baidu和制动力)
19
Handling(操纵稳定性)
– Understeer and oversteer (不足&过 多转向)
20
Handling(操纵稳定性)
– What if a vehicle having understeer or oversteer characteristics do under crosswind action during straight line driving? – 具有不足或过多转向特性的汽车直线行使时,在侧 风作用下,会发生什么呢?
• Primary Ride (低频平顺性)- Flat Ride
K R = 1.2 K F
38
Ride(平顺性)
• Primary Ride (低频平 顺性)- Bounce and Pitch Isolation
K F (a + c) = K R (b − c) ⇒ c =
K F a − K Rb KF + KR
• Primary Ride (低频平顺性)- 5 DOF Model
33
Ride(平顺性)
• Primary Ride (低频平顺性)- 5 DOF Model
Damping effects on spectra of body acceleration and wheel load oscillation
44
Chassis Design(底盘设计)
• Suspension geometry and kinematics (悬架定位)- Caster (主销后倾角)
45
Chassis Design(底盘设计)
• Suspension geometry and kinematics (悬架定位)- Caster (主销后倾角)
21
Handling(操纵稳定性)
22
Handling(操纵稳定性)
23
Handling(操纵稳定性)
24
Handling(操纵稳定性)
25
Ride(平顺性)
• Human natural frequency and comfort factors(人 体频率)
26
Ride(平顺性)
• Primary Ride (低频平顺性)
1
Tire Properties (轮胎特性)
• Construction (结构)
2
Tire Properties (轮胎特性)
• Tire Code (标准标号)
3
Tire Properties (轮胎特性)
• SAE Tire Coordinate System (SAE轮胎坐标系)
4
Tire Properties (轮胎特性)
• Slip angle and cornering performance (侧偏 角&侧偏刚度)
5
Tire Properties (轮胎特性)
• Affecting factors of cornering stiffness (侧偏角&侧偏刚度)
6
Tire Properties (轮胎特性)
2
Wf W δ = 57.3L / R + - r C αf Cαr δ = 57.3L / R + K × a y Wf Wr K= - Cαf Cαr
V2 1 × × R g
V char = 57.3L × g / K Vcrit = − 57.3L × g / K V 2 /(57.3L × g ) = δ 1 + K × V 2 /(57.3L × g ) γ V /L = δ 1 + K × V 2 /(57.3L × g ) ay
29
Ride(平顺性)
• Primary Ride (低频平顺性)- 2 DOF Model
30
Ride(平顺性)
• Primary Ride (低频平顺性)- 2 DOF Model
31
Ride(平顺性)
• Primary Ride (低频平顺性)- 2 DOF Model
32
Ride(平顺性)
16
Handling(操纵稳定性)
– Understeer and oversteer (不足&过 多转向)
17
Handling(操纵稳定性)
– Understeer and oversteer (不足&过 多转向)
18
Handling(操纵稳定性)
– Understeer and oversteer (不足&过 多转向)
39
Dynamic Index : DI = k 2 /(ab) = 1
Chassis Design(底盘设计)
• Suspension geometry and kinematics (悬架定位)
– Determine suspension characteristics – K&C curves – Benchmarking
Vehicle Dynamics/Chassis Design (汽车动力学&底盘设计)
• • • • • • Tire (轮胎) Handling (操纵稳定性) Ride(平顺性) Chassis Design(底盘设计) Validation(验证方法) Active Safety (主动安全控制)
– TNO SWIFT Tire Model: Up to 80 Hz – FTire Model – LMS Series Tire Model
• FEA tire (有限元轮 胎模型)
– ABAQUS
12
Handling(操纵稳定性)
• Steady state cornering performance (稳态 特性)
27
• Secondary Ride(高频平顺性)
Ride(平顺性)
Frequency (Hz)
5 10 15 20 25 30
Input Force
12" Tire Rolling Radius
!st Tire/Wheel (mph)
21
42
63
84
105 mph
Mode
Suspension Hop-Tramp Structural Column
34
Ride(平顺性)
• Primary Ride (低频平顺性)- 7 DOF Model
35
Ride(平顺性)
• Primary Ride (低频平顺性)- 7 DOF Model
36
Ride(平顺性)
• Primary Ride (低频平顺性) - Pitch control
37
Ride(平顺性)
– – – – – – – – – – Sprung mass vibration(簧载质量振动) Frequency range: 1~5 Hz Vertical (bounce): 1.0 ~ 1.2 Hz (竖直方向) Pitch: 1.2 ~ 1.5Hz(俯仰方向) Unsprung mass vibration(非簧载质量振动) Frequency range: 5~25 Hz Wheel hop: 10~12Hz(车轮跳动) Tramp: Wheels are out of phase, same as hop Hz Nibble: Steering wheel torsional vibration 8 – 20 hz Shake: Steering wheel and floor vibration 8 – 20 hz
• Suspension elasticity and compliance (悬架柔性特性)
– Affect handling – Affect ride – Have to be compromised – DOE at as early as possible Ride Magic Formula (平顺性经验公式)
Unit. Body
1st/2nd Bending 1st Torsion Frame Vehicle 1st Bending 1st Torsion Floor/Seat 5 10 15 20 25 30 28
Ride(平顺性)
• Primary Ride (低频平顺性)- 2 DOF Model
42
Chassis Design(底盘设计)
• Suspension geometry and kinematics (悬架定 位)- Camber (车 轮外倾角)
Camber steer principles
43
Chassis Design(底盘设计)
• Suspension geometry and kinematics (悬架定位)- Kingpin Inclination (主 销内倾角)
– Bicycle model (线性二自由度模型)
δ=57.3L / R + α f − α r
15
Handling(操纵稳定性)
– Bicycle model (线性二自由度模型)
Fyf + Fyr = MV 2 / R Fyf × b − Fyr × c = 0
V 1 αf = × × g R Cαf Wr V 2 1 αr = × × g R Cαr Wf
9
Tire Properties (轮胎特性)
• Tire Testing (轮胎试验)
10
Tire Properties (轮胎特性)
• Handling tire Magic Formula (操 纵稳定性轮胎模型)
11
Tire Properties (轮胎特性)
• Ride and Durability tire (平顺性路、可 靠性轮胎模型)
48
Chassis Design(底盘设计)
• Suspension geometry and kinematics (悬架定位)- Scrub Radius (??)
49
Chassis Design(底盘设计)
• Impacts of Suspension geometry misalignment on Vehicle Performance (悬架定 位对车辆性能的影响)
46
Chassis Design(底盘设计)
• Suspension geometry and kinematics (悬架定位)- Caster (主销后倾角)
47
Chassis Design(底盘设计)
• Suspension geometry and kinematics (悬架定位)- Toe (车轮前束)
K s × Kt RideRate : RR = K s + Kt ω n = RR / M ω d = 1 − ζ s2 ζ s = C s / 4K s M
&& + C Z & +K Z =C Z & Sprung Mass : MZ s s s u + K s Z u + Fb && + C Z & & Unsprung Mass : mZ u s u + ( K s + K t ) Z u = Cs Z + K s Z + K t Z r + Fw
– Ackerman Angle (Ackerman 角) – Bicycle model (线性二自由度模型) – Understeer and oversteer (不足&过多转向)
13
Handling(操纵稳定性)
– Ackerman Angle (Ackerman 角)
14
Handling(操纵稳定性)