直流测速发电机

合集下载

直流测速发电机的工作原理

直流测速发电机的工作原理

直流测速发电机的工作原理
直流测速发电机是一种将机械能转化为电能的装置。

它的工作原理基
于法拉第电磁感应定律,即在一个导体内,当磁通量发生变化时,就
会产生感应电动势。

直流测速发电机的结构包括转子、定子和磁场系统。

其中,转子是由
永磁体和轴承组成的旋转部分;定子是由线圈和铁芯组成的固定部分;磁场系统则是由永磁体和铁芯组成的。

当转子旋转时,永磁体在定子线圈周围产生一个恒定的磁场。

如果此
时有导体穿过这个恒定磁场,就会在导体内产生感应电动势。

但是,
仅靠这个恒定的磁场无法产生稳定的电压输出。

因此,在直流测速发电机中还需要加入一个可变磁场来增强感应电动势。

这个可变磁场是通过在永磁体上加上一些线圈来实现的。

当这些
线圈通电时,它们会在永磁体周围产生一个可变的辅助磁场。

当转子旋转时,导体就会穿过这个恒定磁场和可变磁场,从而产生感
应电动势。

这个感应电动势会通过导线输出,可以用来驱动负载或充
电电池。

需要注意的是,在使用直流测速发电机时,必须保证转子的旋转速度足够快,才能产生稳定的电压输出。

因此,在实际应用中,通常需要使用齿轮或皮带等机械传动装置来提高转速。

总之,直流测速发电机是一种将机械能转化为电能的装置,其工作原理基于法拉第电磁感应定律。

通过在永磁体上加入可变线圈来增强感应电动势,并通过导线输出产生的电压。

在实际应用中需要保证转子足够快的旋转速度才能产生稳定的输出。

测速发电机方程

测速发电机方程

测速发电机方程嘿,小伙伴们!今天咱来好好聊聊测速发电机方程这玩意儿。

它在咱们电气领域那可是相当重要的,好多实际应用都离不开它呢。

一、测速发电机的基本概念测速发电机呀,简单来说,就是一种能够把机械转速转化为电信号输出的装置。

就好比是一个翻译官,把转动的速度这个“语言”,翻译成电信号这种“语言”,让咱们能更方便地去测量和控制转速。

它主要有直流测速发电机和交流测速发电机两大类。

直流测速发电机的输出是直流电压,交流测速发电机输出的就是交流电压啦。

二、直流测速发电机方程直流测速发电机的输出电压和转速之间有个很重要的关系。

当电枢旋转的时候,电枢绕组就会切割磁力线,根据电磁感应定律,就会产生感应电动势。

这个感应电动势的大小和转速是成正比的哦。

设电枢绕组的匝数为N,磁通为Φ,转速为n(单位是转每分钟,r/min),那么感应电动势E的表达式就是:E = CₑΦn 。

这里的Cₑ是一个常数,它和电机的结构有关。

而在实际应用中,考虑到电枢回路的电阻Rₐ和负载电阻Rₗ ,输出电压U会有所变化。

根据电路知识,咱们可以得到输出电压U 的表达式:U = E - IₐRₐ,其中Iₐ是电枢电流,Iₐ = U / (Rₐ + Rₗ) 。

把这个式子代入前面的式子,经过整理就可以得到直流测速发电机的输出电压和转速之间更准确的关系啦。

三、交流测速发电机方程交流测速发电机又分为同步测速发电机和异步测速发电机。

咱先来说说异步测速发电机。

异步测速发电机的输出电压和转速之间的关系稍微复杂一点。

它的输出电压不仅和转速有关,还和励磁电压的频率、幅值等因素有关。

一般来说,它的输出电压可以表示为:U₂= K₁n + K₂U₁。

这里的U₂是输出电压,n是转速,U₁是励磁电压,K₁和K₂是和电机结构、参数有关的常数。

同步测速发电机呢,它的输出电压频率和励磁电压频率是相同的,输出电压的幅值和转速成正比。

它的方程可以表示为:U = K₃n ,其中K₃也是一个常数。

直流测速发电机的工作原理

直流测速发电机的工作原理

直流测速发电机的工作原理直流测速发电机是一种常用的测速、测量设备,它通过转动磁场产生电势差来测量物体的转速。

它是基于霍尔效应和电磁感应原理设计制造的一种精密仪器。

本文将详细介绍直流测速发电机的工作原理及其应用。

直流测速发电机的内部结构包括转子、定子和霍尔元件。

转子由永磁体和几个磁极组成,固定在被测物体上。

定子由线圈组成,是发电机的主要发电部件。

霍尔元件位于定子上方,并与磁铁相对应,用于感应磁场的变化。

当被测物体旋转时,磁铁的磁场也随之变化。

这种变化被霍尔元件感应到,霍尔元件将磁场变化转化为电压变化,并将其输出给直流测速发电机。

发电机接收到电压信号后,将其转换为测量物体的转速信息。

直流测速发电机的工作原理主要依赖于两个物理规律,即霍尔效应和电磁感应。

首先是霍尔效应。

霍尔效应是指当导电材料通过电流的作用,竖立在磁场中时,会在其两侧产生一定的电压。

这是因为磁场会使电子在导体内发生偏移,产生一种电势差。

直流测速发电机中的霍尔元件利用了这一效应,将转速变化转化为电压变化。

其次是电磁感应。

根据电磁感应原理,当导体相对磁场运动时,导体内部会产生感应电流。

直流测速发电机中的定子线圈通过电磁感应的方式,将被测物体的转速转化为电流输出。

基于霍尔效应和电磁感应原理,直流测速发电机能够准确测量物体的转速。

通过将测得的电压信号进行放大和处理,可以得到精确的转速数据。

直流测速发电机的应用非常广泛。

在工业生产中,它常被用于测量各种旋转设备的转速,如发动机、风机、电机等。

此外,直流测速发电机还可以用于运动控制系统中,实时监测运动的速度和位置。

值得注意的是,在实际使用直流测速发电机时,需要根据被测物体的特性和要求进行合适的参数设置。

例如,可以根据实际需要选择合适的线圈匝数、永磁体的强度和霍尔元件的位置。

总之,直流测速发电机是一种基于霍尔效应和电磁感应的测速设备,其工作原理简单而有效。

通过将物体转速转化为电压信号,它可以提供准确的转速测量数据。

直流测速发电机的工作原理

直流测速发电机的工作原理

直流测速发电机的工作原理概述直流测速发电机是一种将机械能转化为电能的设备,其工作原理是通过将旋转的磁场和导体之间的相对运动转化为感应电动势,进而产生电流。

电磁感应电磁感应是直流测速发电机工作的基础原理。

它是指当导体在磁场中运动或磁场变化时,导体内会产生感应电动势和感应电流。

这是由于磁场变化引起了导体中的电子运动,从而生成电动势。

旋转磁场直流测速发电机中需要产生一个旋转的磁场,以便与导体相对运动,从而产生感应电动势。

旋转磁场可以通过使用定子绕组和电流通路进行实现。

定子绕组通常由直流电源供电,电流通过电枢绕组,产生一个磁场。

导体和电枢导体是指直流测速发电机中的旋转部分,它通常由铜制成,在转子上安装有导条或导线。

导体与旋转的磁场之间的相对运动将导致感应电动势的产生。

电枢是连接到导体的电路系统,它可以将感应电动势转化为电流。

电枢是直流测速发电机的输出端,通过连接负载,可以将电能传送到外部电路。

工作过程当导体中的旋转磁场相对电枢运动时,由于电磁感应的作用,电枢中将产生感应电动势。

感应电动势的大小和方向取决于磁场的大小、导体与磁场的相对速度以及导体的几何形状。

一旦感应电动势产生,电枢中将流过感应电流。

感应电流的大小和方向取决于电枢的阻抗和外部电路的负载特性。

直流发电机的稳定性直流测速发电机具有优良的稳定性,这是由于旋转磁场和导体之间的相对运动产生了恒定的感应电动势。

即使负载发生变化,感应电流也可以自动调整以适应负载特性。

然而,在高速旋转时,还需考虑惯性力对导体的影响,以及电机的机械稳定性和动态特性。

应用领域直流测速发电机的工作原理和稳定性使其在许多领域得到广泛应用。

以下是一些常见的应用领域:1.火车牵引2.汽车发电机3.风力发电4.水力发电5.汽轮机发电6.车载发电结论直流测速发电机是一种将机械能转化为电能的设备,其工作原理是通过将旋转的磁场和导体之间的相对运动转化为感应电动势,进而产生电流。

它具有良好的稳定性和多种应用领域。

直流、交流测速发电机的工作原理

直流、交流测速发电机的工作原理

直流、交流测速发电机的工作原理来源:机械专家网发布时间:2010-03-20 机械专家网一、直流测速发电机:1、直流测速发电机的工作原理:在空载时,直流测速发电机的输出电压就是电枢感应电动势。

显然输出电压与转速成正比。

2. 误差分析直流测速发电机的输出电压与转速要严格保持正比关系在实际中是难以做到的,其实际的输出特性为图中实线,造成这种非线性误差的原因主要有以下三个方面:(1)电枢反应直流测速发电机负载时电枢电流会产生电枢反应,电枢反应的去磁作用使气隙磁通Φ0减小,使输出电压减小。

从输出特性看,斜率将减小,而且电枢电流越大,电枢反应的去磁作用越显著,输出特性斜率减小越明显,输出特性直线变为曲线。

(2)温度的影响如果直流测速发电机长期使用,其励磁绕组会发热,其绕组阻值随温度的升高而增大,励磁电流因此而减小,从而引起气隙磁通减小,输出电压减小,特性斜率减小。

温度升得越高,斜率减小越明显,使特性向下弯曲。

可在励磁回路中串接一个阻值较大而温度系数较小的锰铜或康铜电阻,以减小由于温度的变化而引起的电阻变化,从而减小因温度而产生的线性误差。

(3)接触电阻如果电枢电路总电阻包括电刷与换向器的接触电阻,那么输出电压受接触电阻压降影响总是随负载电流变化而变化,当输入的转速较低时,接触电阻较大,使此时本来就不大的输出电压变得更小,造成的线性误差很大;当电流较大的,接触电阻较小而且基本上趋于稳定的数值,线性误差相对而言小得多。

另外,直流测速发电机输出的是一个脉动电压,其交变分量对速度反馈控制系统、高精度的解算装置有较明显的影响。

二、交流测速发电机:交流测速发电机分为同步测速发电机和异步测速发电机。

在实际应用中异步测速发电机使用较广泛。

交流异步测速发电机工作原理交流异步测速发电机与交流伺服电动机的结构相似,其转子结构有笼型的,也有杯型的,在自动控制系统中多用空心杯转子异步测速发电机。

空心杯转子异步测速发电机定子上有两个在空间上互差90°电角度的绕组,一为励磁绕组,另一为输出绕组。

直流电机测速发电机反馈三线

直流电机测速发电机反馈三线

直流电机测速发电机反馈三线它的原理呢,主要是利用电机转动时产生的电动势。

当电机转起来后,根据电磁感应原理,电机内部的线圈就会切割磁力线,从而产生电动势。

这个电动势的大小和电机的转速是有关系的,转速越快,电动势就越大。

而这三根线呢,就是用来把这个和转速相关的电动势信号传出去的。

举个例子啊,假如有个小风扇,它里面的电机就是用这种测速发电机反馈三线的。

当你把风扇的风速调大,电机转得快了,那通过这三根线反馈回去的信号就会告诉控制电路,现在电机转得比较快啦,这样控制电路就能根据这个信号来做一些相应的调整,比如保持稳定的转速之类的。

那这三根线该怎么连接呢?这可是个关键。

一般来说,这三根线分别有不同的作用。

一根线是电源线,就像是给电机“吃饭”的管道,给电机提供电能,让它能转起来。

比如说,就像你给手机充电的那根线,给手机提供能量一样,这根电源线就是给电机提供能量的。

另一根线是接地线,它的作用就是保证电机的安全和稳定。

想象一下,你家里的电器都有接地线,要是没有它,万一电器漏电了,那可就危险啦。

这根接地线就像是一个“安全卫士”,把电机产生的多余电荷都导到大地里去,让电机能安全地工作。

还有一根线就是信号反馈线啦,它就像一个“小信使”,把电机转速产生的信号传递给控制设备。

连接的时候呢,要注意按照设备的说明书来操作。

比如说,有些设备可能会在电机外壳上标清楚哪根是电源线,哪根是接地线,哪根是信号反馈线,你只要按照标注对应连接到控制设备上相应的接口就可以了。

再举个例子,有个小型的电动玩具车,它的电机也是这种有反馈三线的。

在安装的时候,你就要找到电机上的三根线,把电源线接到电池的正极,接地线接到电池的负极或者车子的金属外壳上(因为金属外壳一般是接地的),信号反馈线接到玩具车的控制芯片上相应的接口,这样玩具车就能根据电机的转速信号来调整速度啦。

这种反馈三线的应用可广泛啦,在很多地方都能见到。

还有在电梯里,电梯的升降电机也会用到这个。

直流测速发电机的优缺点

直流测速发电机的优缺点

要求:自动控制系统对测速发电机的基本要求是:⑴ 输出电压应与转
速成正比且比例系数要大;⑵ 转动惯量小。此外,还要求它对无线电 通讯干扰小、噪声低、工作可靠等。
5.2 直流测速发电机
5.2.1 输出特性
5.2.2 直流测速发电机的误差及其减小方法
5.2.3 直流测速发电机的主要性能指标
5.2 直流测速发电机
6. 纹波系数
5.2.3 直流测速发电机的主要性能指标
1.线性误差 l
它是在工作转速范围内,实际输出特性曲线与过OB的线性输出特性 之间的最大差值 ΔU m与最高线性转速 nmax 在线性特性曲线上对应的 电压 U m之比。
l
5 6
ΔU m 100% Um
在图5-10中,B点为 nb nmax时实 际输出特性的对应点。
第5章 测速发电机
5.1 概述 5.2 直流测速发电机 5.3 感应测速发电机 5.4 测速发电机的选择及应用举例
5.1概述
功能:测速发电机是一种把转子转速转换为电压信号的机电式元件。 它的输出电压与转速成正比关系,即 U a Kn

U a K K d dt
测速发电机的输出电压能表征转速,因而可用来测量转速;测速发电机 的输出电压正比于转子转角对时间的微分,在解算装置中可以把它作为 微分或积分元件。 分类:按结构和工作原理的不同,测速发电机分为直流测速发电机、 感应测速发电机和同步测速发电机,近年来还有采用新原理、新结构 研制的霍尔效应测速发电机等。
出特性斜率发生变化。 改变转子转向,Ua的极性随之改变。 图5-2 不同负载时的理想输出特性
5.2.2 直流测速发电机的误差及其减小方法
1. 电枢反应的影响 2. 延迟换向的影响

直流测速发电机的工作原理

直流测速发电机的工作原理

Ia
=
Ua RL
(3-4)
经化简后为
U a= Ea

U R
a L
Ra
Ua
=
Ea
1+
Ra RL
=
Ke
1+
Ra RL
n = Cn
(3-5)
式中
C
=
Ke
1+
Ra RL
C 为测速发电机输出特性的斜率。当不考虑电枢反应,且认为Φ、 Ra 和 RL 都能保持为常
数,斜率 C 也是常数,输出特性便有线性关系。对于不同的负载电阻 RL ,测速发电机输出特性
(1)输出电压与转速保持良好的线性关系; (2)剩余电压(转速为零时的输出电压)要小; (3)输出电压的极性和相位能反映被测对象的转向; (4)温度变化对输出特性的影响小; (5)输出电压的斜率大,即转速变化所引起的输出电压的变化要大; (6)摩擦转矩和惯性要小。 此外,还要求它的体积小、重量轻、结构简单、工作可靠、对无线电通讯的干扰小、噪声 小等。
1
此外,还有性能和可靠性更高的无刷测速发电机。
§3-2 直流测速发电机
一、直流测速发电机的型式 直流测速发电机实际上是一种微型直流发电机。按励磁方式可分为两种型式。 1.电磁式 表示符号如图 3-2(a)所示。定子常为二极,励磁绕组由外部直流电源供电,通电时产生 磁场。目前,我国生产的 CD 系列直流测速发电机为电磁式。 2.永磁式 表示符号如图 3-2(b)所示。定子磁极是由永久磁钢做成。由于没有励磁绕组,所以可省 去励磁电源。具有结构简单,使用方便等特点,近年来发展较快。其缺点是永磁材料的价格较 贵,受机械振动易发生程度不同的退磁。为防止永磁式直流测速发电机的特性变坏,必须选用 矫顽力较高的永磁材料。目前,我国生产的 CY 系列直流测速发电机为永磁式。

第四章直流测速发电机和直流伺服发电机

第四章直流测速发电机和直流伺服发电机

第四章直流测速发电机和直流伺服发电机(1)
图5
3.纹波电压 Ku=1/2(Emax -Emin) /Eav100% 输出电压交流 分量与直流分 量之比最高为 1%.
三、传递函数和动态特性 若将直流测速发电机理想化,即不考 虑电枢回路的电感、电枢反应和电刷 的接触压降,由上节已知其输出电压 表达式是 U=un · u’n · n= Ω 对上式两边取拉氏变换,即可求出直 流测速发电机的传递函数 W(s)=U(s)/ Ω(s)= u’n
转速下降是由电枢电阻电 压降引起的,因伺服电动 机电枢电阻较大,所以转 速下降较大。当考虑电枢 反应的去磁作用,磁通Φ 将略有下降,这就使转速 下降稍小些。 特性曲线表明以下点: (1)当n =0时,Tem = Tst,称为启动转矩或堵 转转矩Td。 (2)当Tem =0时,n=no, 称为理想空载转速。
第四章 直流测速发电机和直流伺服发电机

直流测速发电机和直流伺服电动机属 于控制电机。在自动控制系统中,直 流伺服电动机用作执行元件,直流测 速发电机用作信号元件。 控制电机的功率一般都在几百W以下, 最小的不到1 W。外形尺寸也较小,机 壳外径一般不大于160 mm。
第四章 直流测速发电机和直流伺服发电机
第四章直流测速发电机和直流伺服发电机(2)
与交流伺服电动机相比,它在 控制方便,工作特性线性度好 等方面有着突出的优点,因此 目前在要求高的调速装置的控 制系统中,都是选用直流电动 机与整流型(或直流斩波型) 调速装置组合使用。
第四章直流测速发电机和直流伺服发电机(2)
它的缺点是:有换向器和电刷的滑 动接触,接触电阻的变化使工作性 能的稳定性受到影响;电刷下的火 花使换向器需要经常维护,又不能 在易爆炸的地方使用,且产生无线 电干扰,又因控制电源是直流,使 得放大元件变得复杂。

第2章 直流测速发电机

第2章 直流测速发电机
2011-12-23
If
R toC Rt
Nf Rf Lf
Uf
热敏电阻应具有负 的温度系数, 的温度系数,当温 度增加时, 度增加时,并联网 络电阻的减小补偿 了励磁绕组电阻R 了励磁绕组电阻 f 的增加,励磁回路 的增加, 总电阻基本不变。 总电阻基本不变。
16
第2章 直流测速发电机
(2)励磁回路串联较大的附加电阻 励磁回路串联较大的附加电阻R 励磁回路串联较大的附加电阻 If Uf Uf R >>Rf → If = ≈ R+Rf R Uf 当温度增加时,励磁回路总 当温度增加时 励磁回路总 变化甚微; 电阻(R+Rf)变化甚微; 电阻 变化甚微 R用温度系数很小的锰镍 用温度系数很小的锰镍 或镍铜合金制成。 或镍铜合金制成。 (3) 将磁路设计得比较饱和 H∝If ,电流变化较大时 ∝ 电流变化较大时, 磁通变化很小。 磁通变化很小。 o
n过高 ⇒ Ua大 ⇒ Ia大 过高 ② n一定 一定 RL过小 ⇒ Ia大 三、解决办法 和最小负载电阻值R 限制最高转速 nmax 和最小负载电阻值 Lmin。
2011-12-23
10
第2章 直流测速发电机
二、换向的电磁理论 1. 换向元件中的电动势: 换向元件中的电动势: 电抗电势e 电抗电势 L: 在换向周期 Tk内,换向元件电 流要从(+i 变到 变到(-i 所以, 流要从 a)变到 a),所以,换 向元件内有自感电动势: 向元件内有自感电动势: S 2Ia dia eL = −L = −L Tk dt 根据楞次定律自感电动势的方向与换向前电流方 向相同,即总是阻碍换向的。 向相同,即总是阻碍换向的。
2011-12-23
Φk 对主磁通起去磁作用。 对主磁通起去磁作用。

直流测速发电机的工作原理

直流测速发电机的工作原理

直流测速发电机的工作原理
1. 引言
直流测速发电机是一种能将机械能转换为直流电能的装置。


在测速领域起着重要的作用,可以用于测量机械转速或流速等参数。

本文将探讨直流测速发电机的工作原理。

2. 基本构造
直流测速发电机由以下几部分构成:导体线圈、磁场、转子、
电刷和电路等。

导体线圈固定在转子上,转子与磁场之间存在相对
运动,导致导体线圈中产生感应电动势。

3. 工作原理
当转子与磁场之间存在相对运动时,导体线圈中会产生感应电
动势。

这是基于法拉第电磁感应定律的原理,即当导体线圈与磁场
之间相对运动时,会产生感应电流。

直流测速发电机的工作原理可
以简单概括为以下几个步骤:
3.1 磁场产生
在直流测速发电机中,磁场可以由永磁体或电磁体产生。

当电流通过线圈时,线圈中产生的磁场与永磁体或电磁体的磁场相互作用,形成一个稳定的磁场。

3.2 相对运动
直流测速发电机中的转子与磁场之间必须存在相对运动,这样才能产生感应电动势。

转子可以通过机械装置实现相对运动,例如风力发电机中的风车叶片转动,或水力发电机中的水轮转动。

3.3 感应电动势产生
由于转子与磁场之间存在相对运动,导体线圈中会产生感应电动势。

这个电动势的大小取决于导体线圈的长度、磁场的强度以及相对运动的速度等因素。

感应电动势的方向根据楞次定律确定,它的方向与转子与磁场之间的相对运动方向有关。

3.4 输出电能
直流测速发电机的最终目的是将机械能转换为电能,输出到外部电路中进行使用。

为了实现这一点,直流测速发电机通常配备了。

直流测速发电机的工作原理

直流测速发电机的工作原理

直流测速发电机的工作原理直流测速发电机是一种将机械能转化为电能的设备,具有广泛的应用。

其工作原理是基于法拉第电磁感应定律和洛伦兹力的作用机制。

直流测速发电机的转子是由永磁体和电枢组成的。

当转子以一定的转速旋转时,永磁体和电枢之间就会产生相对运动。

这时,电枢中就会产生感应电动势,其大小和方向与转子旋转的速度和方向相关。

法拉第电磁感应定律指出,当磁通量发生变化时,就会在导体中产生感应电动势。

在直流测速发电机中,永磁体的磁通量是固定的,而电枢旋转时会改变磁通量的大小和方向,进而在电枢中产生感应电动势。

洛伦兹力的作用机制是指当导体在磁场中运动时,就会受到一个与运动方向垂直的力。

在直流测速发电机中,电枢中的电流会产生磁场,与永磁体产生相互作用,导致电枢受到一个与旋转方向垂直的力,这就是洛伦兹力。

这个力的方向和大小与电枢的旋转速度和方向相关。

综合以上三个作用机制,可以得到直流测速发电机的工作原理。

当转子以一定的转速旋转时,永磁体和电枢之间就会产生相对运动,进而在电枢中产生感应电动势。

同时,电枢中的电流会产生磁场,与永磁体产生相互作用,导致电枢受到一个与旋转方向垂直的力。

这些相互作用的效果使得直流测速发电机能够将机械能转化为电能。

需要注意的是,直流测速发电机的输出电压和转速之间存在一定的关系。

当转速增加时,感应电动势的大小也会增加,进而输出电压也会增加。

但是当转速过高时,还会产生一些不利的影响,如电刷磨损、晶闸管发热等,因此需要在设计和使用中进行合理的控制。

直流测速发电机是一种重要的能量转换设备,其工作原理基于法拉第电磁感应定律和洛伦兹力的作用机制。

通过对其工作原理的研究,可以更好地理解其产生电能的原理,为其应用和优化提供更加科学的依据。

第二章直流测速发电机

第二章直流测速发电机

第二章直流测速发电机Chapter two DC Tachogenerator 2.1 直流电机基本结构和工作原理(The Structure and Principle of a DC Machine)直流发电机工作原理直流电动机工作原理2.2 直流电机的电势和电磁转矩(EMF and MMF of DC machine)电势:n a pN n C E e a φφ60== 电磁转矩:a a T I apN I C T φπφ2== 磁场分布和电刷电势图2 - 13 直流电机磁路 图2 - 14 气隙中磁通密度分布图()()lv B e θθ=图 2 - 2 磁场分布和电刷电势2.3 直流测速发电机(DC Tachogenerator )PRINCIPLE OF OPERATION :The DC Tachogenerator is a speed transducer, which develops DC voltage proportional to speed of the motor connected to it. Permanent Magnetic field eliminates the need of external excitation and offers extremely reliable and stable outputs. The accuracy of the tachogenerator decides the maximum accuracy of speed of the controlled machine. They are widely used for feedback and display purposes.直流测速发电机及其输出特性1) 对直流测速发电机要求:(1)输出电压与转子转速之间的关系(称为输出特性)应为线形,如图2-17;图2-17 测速发电机的理想输出特性(2)输出特性的斜率要大;(3)温度变化对输出特性的影响要小;(4)输出电压的纹波要小;(5)正、反转两个方向的输出特性要一致。

直流测速发电机在自动控制系统中主要起什么作用

直流测速发电机在自动控制系统中主要起什么作用

直流测速发电机在自动控制系统中主要起什么作用直流测速发电机广泛应用于各种自动控制系统中,其主要作用是实时测量和反馈系统中的转速信息。

通过准确获取转速数据,直流测速发电机能够对自动控制系统进行精准的调节和控制,确保系统的稳定运行和高效性能。

本文将从控制系统的角度详细探讨直流测速发电机在自动控制系统中的作用。

一、转速控制直流测速发电机作为转速传感器,可以通过测量输出的电压信号转化成转速数据,反馈给自动控制系统。

在转速控制系统中,直流测速发电机起到了重要的作用。

通过与控制系统的连接,直流测速发电机可以提供准确的转速信息,帮助控制系统实时监测和控制转速。

控制系统可以通过对直流测速发电机的信号进行分析和比较,调节相关参数,确保设备按照预定转速运行。

二、位置控制除了转速控制,直流测速发电机还可以用于位置控制。

在这种情况下,直流测速发电机可以作为位置传感器来使用。

通过测量输出的位置信号,控制系统可以准确地判断和控制执行机构的位置。

通过与其他控制元件的配合,如电机驱动器等,系统可以实现精准的位置调节和控制。

三、闭环反馈直流测速发电机在自动控制系统中的另一个重要作用是提供闭环反馈。

在自动控制系统中,闭环反馈是实现精确控制的关键之一。

直流测速发电机作为转速传感器,通过实时监测系统的转速,并将数据反馈给控制器,控制器根据这些数据进行实时调节。

通过不断比较实际转速与目标转速,系统可以快速响应,及时调整控制参数,保持系统的稳定性和高效性。

四、故障诊断直流测速发电机还可以用于故障诊断。

在自动控制系统中,故障的发生会导致系统运行的异常或失控。

通过监测直流测速发电机的输出信号,控制系统可以检测出异常值或故障信号,并及时采取措施,以避免进一步的故障。

直流测速发电机的故障诊断功能可以帮助控制系统实现故障的自动排除和修复,提高系统的可靠性和稳定运行时间。

总结来说,直流测速发电机在自动控制系统中主要起到转速测量、位置控制、闭环反馈和故障诊断等重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章直流测速发电机1. 为什么直流发电机电枢绕组元件的电势是交变电势而电刷电势是直流电势?答:电枢连续旋转,导体ab和cd轮流交替地切割N极和S极下的磁力线,因而ab和cd 中的电势及线圈电势是交变的。

由于通过换向器的作用,无论线圈转到什么位置,电刷通过换向片只与处于一定极性下的导体相连接,如电刷A始终与处在N极下的导体相连接,而处在一定极性下的导体电势方向是不变的,因而电刷两端得到的电势极性不变,为直流电势。

2. 如果图2 - 1 中的电枢反时针方向旋转,试问元件电势的方向和A、B电刷的极性如何? 答:在图示瞬时,N极下导体ab中电势的方向由b指向a,S极下导体cd中电势由d指向c。

电刷A通过换向片与线圈的a端相接触,电刷B与线圈的d端相接触,故此时A电刷为正,B电刷为负。

当电枢转过180°以后,导体cd处于N极下,导体ab处于S极下,这时它们的电势与前一时刻大小相等方向相反,于是线圈电势的方向也变为由a到d,此时d为正,a为负,仍然是A刷为正,B刷为负。

4. 为什么直流测速机的转速不得超过规定的最高转速? 负载电阻不能小于给定值?答:转速越高,负载电阻越小,电枢电流越大,电枢反应的去磁作用越强,磁通被削弱得越多,输出特性偏离直线越远,线性误差越大,为了减少电枢反应对输出特性的影响,直流测速发电机的转速不得超过规定的最高转速,负载电阻不能低于最小负载电阻值,以保证线性误差在限度的范围内。

而且换向周期与转速成反比,电机转速越高,元件的换向周期越短;eL正比于单位时间内换向元件电流的变化量。

基于上述分析,eL必正比转速的平方,即eL ∝n2。

同样可以证明ea∝n2。

因此,换向元件的附加电流及延迟换向去磁磁通与n2成正比,使输出特性呈现非线性。

所以,直流测速发电机的转速上限要受到延迟换向去磁效应的限制。

为了改善线性度,采用限制转速的措施来削弱延迟换向去磁作用,即规定了最高工作转速。

第三章1. 直流电动机的电磁转矩和电枢电流由什么决定?答;直流电动机的电枢电流不仅取决于外加电压和本身的内阻,而且还取决于与转速成正比的反电势(当?=常数时)根据转矩平衡方程式,当负载转矩不变时,电磁转矩不变;加上励磁电流If不变,磁通Φ不变,所以电枢电流Ia也不变,直流电动机的电磁转矩和电枢电流由直流电动机的总阻转矩决定。

3. 一台他励直流电动机,如果励磁电流和被拖动的负载转矩都不变,而仅仅提高电枢端电压,试问电枢电流、转速变化怎样?答:答:当直流伺服电动机负载转矩、励磁电流不变时,仅将电枢电压增大,此时由于惯性,转速来不及变化,Ea=Ceφn,感应电势不变,电枢电压增大,由电压平衡方程式:Ia=(Ua-Ea)/Ra=(Ua-Ceφn)/Ra可知,电枢电流Ia突然增大;又T=CTφIa,电磁转矩增大;此时,电磁转矩大于负载转矩,由T=TL+Tj=TL+JdΩ/dt知道,电机加速;随着转速n的增加,感应电势Ea增加,为保持电压平衡,电枢电流Ia将减少,电磁转矩T也将减少,当电磁转矩减小到等于总的负载阻转矩时,电机达到新的稳态,相对提高电枢电压之前状态,此时电机的转速增加、电磁转矩、电枢电流不变。

6. 一台直流电动机,额定转速为3000 r/min。

如果电枢电压和励磁电压均为额定值,试问该电机是否允许在转速n=2500 r/min下长期运转? 为什么?答:不能,因为根据电压平衡方程式,若电枢电压和励磁电压均为额定值,转速小于额定转速的情况下,电动机的电枢电流必然大于额定电流,电动机的电枢电流长期大于额定电流,必将烧坏电动机的电枢绕组7. 直流电动机在转轴卡死的情况下能否加电枢电压? 如果加额定电压将会有什么后果?答:不能,因为电动机在转轴卡死的情况小,加额定的电枢电压,则电压将全部加载电枢绕组上,此时的电枢电流为堵转电流,堵转电流远远大于电枢绕组的额定电流,必将烧坏电动机的电枢绕组。

8. 并励电动机能否用改变电源电压极性的方法来改变电动机的转向?答:不能,改变电动机的转向有两种方法:改变磁通的方向和改变电枢电流的方向,如果同时改变磁通的方向和电枢电流的方向,则电动机的转向不变。

并励电动机若改变电源电压的极性,将同时改变磁通的方向和电枢电流的方向,则电动机的转向不变。

第4章变压器(P75)1. 某台变压器,额定电压U1n/U2n=220/110(V),额定频率fn=50 Hz,问原边能否接到下面的电源上?试分析原因。

(1)交流380V,50Hz;(2)交流440V;100Hz;(3)直流220V。

答:(1)不可以。

由U=E=4.44Wfφm,在电源频率均为50Hz的条件下,主磁通φm决定于外加电压U,380V的电压比额定的原边电压220V大很多,则加电后必然导致铁心严重饱和,变压器主磁通一般就设计的比较饱和,增加很小的磁通将引起空载电流I0急剧增加,即使变压器不带负载,变压器也会因此损坏。

(2)可以。

由U=E=4.44Wfφm,电压增加一倍,频率也增加一倍,则主磁通φm基本不变,因此,对变压器的影响很小。

但不是最理想。

(3)不可以。

变压器对于直流电源相当于短路,因此,一旦接上直流220V,变压器将很快烧毁。

3. 某台单相变压器原边有两个额定电压为110 V的线圈,如图4 - 27 所示,图中副边绕组未画。

若电源电压为交流220 V和110 V两种,问这两种情况分别将1 , 2 , 3 , 4 这四个端点如何联接,接错时会产生什么后果?答:(1)220V电压可以接在1,4两端,而把2和3两端相连;110V电压可以接在1,2两端及3,4两端(2)若220V电压按110V的接法,则变压器原边电压将超过额定电压,变压器空载电流I0就会急剧增加,若超过不允许的的电流值,会导致变压器过热烧毁;若110V电压按220V接法,原边电压将低于额定电压,接负载工作时若负载要求电压比副边能够提供的电压高,则变压器不能正常工作。

第七章1. 单相绕组通入直流电、交流电及两相绕组通入两相交流电各形成什么磁场? 它们的气隙磁通密度在空间怎样分布,在时间上又怎样变化?答:单相绕组通入直流电会形成恒定的磁场,单相绕组通入交流电会形成脉振磁场;两相绕组通入两相交流电会形成脉振磁场或旋转磁场。

恒定磁场在磁场内部是一个匀强磁场,不随时间变化。

脉振磁场的幅值位置不变,其振幅永远随时间交变;对某瞬时来说,磁场的大小沿定子内圆周长方向作余弦分布,对气隙中某一点而言,磁场的大小随时间作正弦变化。

圆形旋转磁场的特点是:它的磁通密度在空间按正弦规律分布,其幅值不变并以恒定的速度在空间旋转。

2. 何为对称状态? 何为非对称状态? 交流伺服电动机在通常运行时是怎样的磁场? 两相绕组通上相位相同的交流电流能否形成旋转磁场?答:一般地,当两相绕组产生圆形旋转磁场时,这时加在定子绕组上的电压分别定义为额定励磁电压和额定控制电压,并称两相交流伺服电动机处于对称状态。

当两相绕组产生椭圆形旋转磁场时,称两相交流伺服电动机处于非对称状态。

两相绕组通上相位相同的交流电流不能形成旋转磁场,只能形成脉振磁场3. 当两相绕组匝数相等和不相等时,加在两相绕组上的电压及电流应符合怎样条件才能产生圆形旋转磁场?答:当两相绕组匝数相等时,加在两相绕组上的电压及电流值应相等才能产生圆形旋转磁场。

当两相绕组有效匝数不等时,若要产生圆形旋转磁场,电流值应与绕组匝数成反比,电压值应与绕组匝数成正比。

4. 改变交流伺服电动机转向的方法有哪些? 为什么能改变?答:把励磁与控制两相绕组中任意一相绕组上所加的电压反相(即相位改变180°),就可以改变旋转磁场的转向。

因为旋转磁场的转向是从超前相的绕组轴线(此绕组中流有相位上超前的电流)转到落后相的绕组轴线,而超前的相位刚好为90°。

5. 什么叫作同步速”如何决定? 假如电源频率为60 Hz,电机极数为6,电机的同步速等于多少?答:旋转磁场的转速常称为同步速,以ns表示。

同步速只与电机极数和电源频率有关,其关系式为:,假如电源频率为60 Hz,电机极数为6,电机的同步速等于1200r/min。

6. 为什么交流伺服电动机有时能称为两相异步电动机? 如果有一台电机,技术数据上标明空载转速是1 200 r/min,电源频率为50 Hz,请问这是几极电机? 空载转差率是多少?答:因为交流伺服电动机的定子绕组有励磁绕组和控制绕组两相组成,交流伺服电动机转速总是低于旋转磁场的同步速,而且随着负载阻转矩值的变化而变化,因此交流伺服电动机又称为两相异步伺服电动机。

空载转速是1200 r/min,电源频率为50 Hz的电机是4极电机,空载转差率是20%。

7. 当电机的轴被卡住不动,定子绕组仍加额定电压,为什么转子电流会很大? 伺服电动机从启动到运转时,转子绕组的频率、电势及电抗会有什么变化? 为什么会有这些变化?答:当电机的轴被卡住不动,定子绕组仍加额定电压,此时电动机处于堵转状态,感应电势ER较大,所以转子电流会很大。

伺服电动机从启动到运转时,转子绕组的频率、电势及电抗会变小,因为电机转动时,转子导体中感应电流的频率、电势及电抗分别等于转子不动时的频率、电势及电抗乘上转差率9. 什么是电源移相,什么是电容移相,电容移相时通常移相电容值怎样确定? 电容伺服电动机转向怎样?答:直接将电源移相或通过移相网络使励磁电压和控制电压之间有一固定的90°相移,这些移相方法通称为电源移相。

在交流伺服电动机内部采用励磁相串联电容器移相的移相方法叫电容移相。

电容伺服电动机转向是从励磁绕组转向控制绕组。

10. 怎样看出椭圆形旋转磁场的幅值和转速都是变化的? 当有效信号系数αe从0~1变化时,电机磁场的椭圆度怎样变化? 被分解成的正、反向旋转磁场的大小又怎样变化?答:椭圆形旋转磁场的幅值和转速都是变化的详见课本151页,当有效信号系数αe从0~1变化时,电机磁场的椭圆度将变小,被分解成的正向旋转磁场增大,反向旋转磁场减小。

11. 什么是自转现象? 为了消除自转,交流伺服电动机零信号时应具有怎样的机械特性? 答:当伺服电动机的控制电信号Uk=0时,只要阻转矩小于单相运行时的最大转矩,电动机仍将在电磁转矩T作用下继续旋转的现象叫自转现象。

为了消除自转,交流伺服电动机零信号时的机械特性应位于二、四象限12. 与幅值控制时相比,电容伺服电动机定子绕组的电流和电压随转速的变化情况有哪些不同? 为何它的机械特性在低速段出现鼓包现象?答:与幅值控制时相比,电容伺服电动机定子绕组的电流和电压随转速的增加而增大,励磁电压Uf的相位也增大。

因机械特性在低速段随着转速的增加转矩下降得很慢,而在高速段,转矩下降得很快,从而使机械特性在低速段出现鼓包现象(即机械特性负的斜率值降低)。

相关文档
最新文档