珩磨技术资料

合集下载

加工科缸体珩磨培训资料_图文

加工科缸体珩磨培训资料_图文
计测工位、加工工位气动检测都是同样使用AE变换器(東京精密产 )进行检测,并且检测原理基本相同
AE变换器 原空气
气管
工件
测头
工件
根据测头和工件之间的间隙产生压力差。 AE变换器换算这个压力差得出孔径的测量结
果。
三-1、关于孔径测量
孔径是根据测头和工件之间的间隙产生压力差。AE变换器换算这个压力差 得出孔径的测量结果。如果气嘴被油泥堵了的话无法正确的测量。为此、 需要定期清理。可以的话按每周1次左右的频次进行清理较好。清理时把油 泥和脏东西挤进气嘴的话毫无意义。所以先把测量用的气管拆下、从测量 喷嘴 吹气把脏东西从测头里吹出来较好。 必须保证测量喷嘴绝对不能划伤。
珩磨条磨损⇒通过自锐性磨出新的磨粒⇒磨损⇒新磨粒・・・・・・是一 个重复,这种作用的构造。 锋利度变差后露出新磨粒、因为锋利度变好变得容易加工、节拍 时间也变快。 为此根据珩磨条的锋利度节拍时间会变化。
七-1、珩磨条锋利度和节拍时间的关系
・为什么锋利度变差会出现自锐性?
即使珩磨条颗粒磨损对珩磨条施加的力小的话颗粒不 脱落只是继续磨损。 于是、缸孔精加工机监视金刚石的节拍时间、节拍时 间延长的话把加工时的扩张压力一点点提高。 扩张压力升高等于对珩磨条施加的力增加 所以施加了一定的力量的时候旧磨粒磨损磨粒能够脱 落。磨损的磨粒脱落、露出新磨粒节拍时间变快、所 以通过节拍时间的监视、下一次把扩张压力一点点降 低。通过重复这个循环、使其产生自锐性作用经常保 持良好的锋利度。
八-1、金刚珩磨条NC扩张压力补偿的说明
为避免这种情况,要根据实际加工时间的长短进 行扩张压力补偿。
②补偿内 容:进行扩 张压力补偿 的加工工程 是“粗加工 1”工程和“ 精加工”工
程。

珩磨加工技术一书之样件

珩磨加工技术一书之样件

第五章珩磨头§1.珩磨头的分类珩磨头是用来安装与固定珩磨油石组件的。

珩磨头对于珩磨加工精度、加工件表面粗糙度以及生产率有着直接、重要的影响。

磨头的结构性能和刚性往往是珩磨加工成败的关键。

通常所说的珩磨头,是指珩磨头的综合体。

它由接杆和珩磨头两大部分组成。

珩磨头与机床主轴的连接,是通过珩磨夹头实现的。

而珩磨头与夹头的连接方式有固定式和浮动式两种。

固定连接是通过螺纹连接实现的。

浮动连接,通过万向活节实现,万向活节所处的轴向位置,即上下位置,对珩磨加工孔的几何形状精度有着重要影响。

当主轴的轴线与工件孔轴线不重合时,即存在偏心距e时,对磨头产生偏转力矩,它会使磨头变形,使被加工孔产生不园度。

上下两个万向活节之间距离越大,即接杆越长,其偏转力矩越小。

接杆下面的万向活节越靠近磨头,偏转力矩越小。

一般情况下,珩磨头由彼此互相联系的三种元件组成。

它们是油石张开的驱动元件、油石张开驱动力的转换元件和磨头的工作元件。

珩磨头的形式和结构多种多样。

磨头的结构、类别如下:按生产批量划分:单件生产用的珩磨头、中小批量生产用的珩磨头、大批量生产用的珩磨头。

按磨头与主轴的连接方式:浮动形珩磨头、刚性连接的珩磨头、半浮动形珩磨头。

按磨头数量划分:有一个磨头的称为单节珩磨头、有两个磨头串连的称为多节珩磨头,叫双节珩磨头或多节珩磨头。

按用途划分:有标准型和专用型。

专用型珩磨头很多,如平顶珩磨头、花键孔珩磨头、平面珩磨头、锥孔珩磨头、盲孔珩磨头等。

按珩磨工艺划分:电化珩磨头、振动珩磨头、超声波珩磨头、通用型珩磨头等。

按油石张开的驱动划分:弹簧驱动张开式、液压张开式、磁性力驱动式、电热驱动张开等珩磨头。

按张开驱动力的转换机构划分:杠杆式、齿轮齿条式、凸轮式、液压式等珩磨头。

按被加工孔的形状划分:有园柱孔、锥孔、不园孔、球面、外园柱面、花键孔等珩磨头。

§2.珩磨头结构及其应用在众多的珩磨头中,选用哪种珩磨头,主要根据被加工材料孔的几何形状精度、尺寸精度、表面粗糙度和生产率等要求来选用。

珩磨工基础知识

珩磨工基础知识

珩磨工基础知识:让你深入了解珩磨工的工
作原理和技术要点
珩磨工作为一种常见的表面加工技术,其在工业生产中有着广泛的应用。

那么,你对于珩磨工的工作原理和技术要点了解多少呢?本文将为你详细介绍珩磨工的基础知识。

一、珩磨工作原理
珩磨工的工作原理是利用珩磨头在工件表面进行滚动、转动和磨削,利用一定的压力和摩擦力将工件表面加工成一定的形状和尺寸。

二、珩磨工作方法
珩磨工的作业过程通常分为三个步骤:准备工作、夹紧和磨削。

准备工作主要包括清洗、检查和准备备件等。

夹紧是将工件固定到机床上,确保工件在加工过程中的稳定性和精度。

磨削是完成加工过程的主要环节。

三、珩磨工的技术要点
1、珩磨头的选择
珩磨头的选择应根据加工工件的材料、形状和要求来决定,一般应先进行试验,确定合适的珩磨头。

2、夹紧力的控制
夹紧力过大会造成工件变形,夹紧力过小则会影响工件的加工精度。

因此,夹紧力的控制十分关键,应根据工件的要求和加工条件进行调整。

3、磨削参数的选择
磨削参数的选择应根据工件材料、形状、要求以及加工目的来确定。

对于不同的工件和加工要求,应灵活调整磨削参数。

四、珩磨工的应用
珩磨工在机械、汽车、航空等领域都有着广泛的应用。

在零部件的制造、表面处理、修复、翻新等方面都有着重要的作用。

总之,珩磨工是一种高效、精度高、成本低的表面加工方法,它的应用范围十分广泛。

通过学习本文所介绍的知识点,相信大家已经对珩磨工的工作原理、方法和技术要点有了更深入的了解,能够更好地应用于实际工作中。

珩磨

珩磨

一、珩磨加工原理:珩磨是利用安装于珩磨头圆周上的一条或多条油石,由涨开机构(有旋转式和推进式两种)将油石沿径向涨开,使其压向工件孔壁,以便产生一定的面接触。

同时使珩磨头旋转和往复运动,零件不动; 或珩磨头只作旋转运动,工件往复运动,从而实现珩磨。

二、珩磨工艺;珩磨是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法。

这种工艺不仅能去除较大的加工余量,而且是一种提高零件尺寸精度、几何形状精度、表面粗糙度的有效加工方法。

三、珩磨油的作用:1、润滑作用:有利于油石与缸筒壁更好的接触、减少油石的损伤。

2、冷却作用:缸筒发热后不易珩磨,有利于珩磨效率。

3、冲渣作用:能够及时冲走磨下的铁泥,使缸筒光洁、光滑。

4、防锈作用:缸筒存放不易起锈。

四、珩磨流程1、检查珩磨机有无异常现象,开启电源。

2、准备珩磨所需的量具、灯具、工具及珩磨记录表等。

3、根据不同缸筒的直径大小来调整珩磨机上固定缸筒的V型架高度、珩磨杆及珩磨头的大小,(1)V型夹具调整A型夹具调整范围调整参考表:此表为理论数据,仅供参考A D 50 80 110 140 170 200 230 260 290 320 350 3800 315.6 298.3 281 263.7 246.3 229 211.7 194.4 177.1 159.7 142.4 125.1 3 313.9 296.6 279.3 262 244.6 227.3 210 192.7 175.3 158 140.7 123.4 6 312.2 294.8 277.5 260.2 242.9 225.6 208.2 190.9 173.6 156.3 139 121.6 9 310.4 293.1 275.8 258.5 241.2 223.8 206.5 189.1 171.9 154.5 137.2 120 12 308.7 291.4 274.1 256.7 239.4 222.1 204.8 187.5 170.1 152.8 135.5 118.2 15 307 289.7 272.3 255 237.7 220.3 203.1 185.7 168.4 151.1 133.8 116.4 18 305.2 287.9 270.6 253.3 236 218.6 201.3 184 166.7 149.3 132 144.7 21 303.5 286.2 268.9 251.5 234.2 216.9 199.6 182.3 165 147.6 130.3 113 24 301.8 284.5 267.1 249.8 232.5 215.2 197.8 180.5 163.2 145.9 128.627 300 282.7 265.4 248.1 230.8 213.4 196.1 178.8 161.5 144.2 126.8注:A为加值,单位为(mm),D为基本尺寸。

珩磨孔

珩磨孔

二、珩磨孔1.珩磨原理及珩磨头珩磨是利用带有磨条(油石)的珩磨头对孔进行精整、光整加工的方法。

珩磨时,工件固定不动,珩磨头由机床主轴带动旋转并作往复直线运动。

在相对运动过程中,磨条以一定压力作用于工件表面,从工件表面上切除一层极薄的材料,其切削轨迹是交叉的网纹。

为使砂条磨粒的运动轨迹不重复,珩磨头回转运动的每分钟转数与珩磨头每分钟往复行程数应互成质数。

2.珩磨的工艺特点及应用范围1)珩磨能获得较高的尺寸精度和形状精度,加工精度为IT7~IT6级,孔的圆度和圆柱度误差可控制在3~5μm的范围之内,但珩磨不能提高被加工孔的位置精度。

2)珩磨能获得较高的表面质量,表面粗糙度Ra为0.2~0.025μm,表层金属的变质缺陷层深度极微(2.5~25μm)。

3)与磨削速度相比,珩磨头的圆周速度虽不高,但由于砂条与工件的接触面积大,往复速度相对较高,所以珩磨仍有较高的生产率。

珩磨在大批大量生产中广泛用于发动机缸孔及各种液压装置中精密孔的加工,孔径范围一般为φ15~500㎜或更大,并可加工长径比大于10的深孔。

但珩磨不适用于加工塑性较大的有色金属工件上的孔,也不能加工带键槽的孔、花键孔等断续表面。

珩磨工艺(图)作者:邦得资讯 | 来源:互联网 | 日期:2007-04-09 21:09 | 点击84 次用镶嵌在珩磨头上的油石(也称珩磨条)对精加工表面进行的精整加工(见切削加工)。

珩磨主要用于加工孔径为5~500毫米或更大的各种圆柱孔﹐如缸筒﹑阀孔﹑连杆孔和箱体孔等﹐孔深与孔径之比可达10﹐甚至更大。

在一定条件下﹐珩磨也能加工外圆﹑平面﹑球面和齿面等。

圆柱珩磨的表面粗糙度一般可达R0.32~0.08微米﹐精珩时可达R0.04微米以下﹐并能少量提高几何精度﹐加工精度可达IT7~4。

平面珩磨的表面质量略差。

珩磨一般采用珩磨机﹐机床主轴与珩磨头一般是浮动联接﹔但为了提高纠正工件几何形状的能力﹐也可以用刚性联接。

珩孔时﹐珩磨头外周一般镶有2~10根油石﹐由机床主轴带动在孔内旋转﹐并同时作直线往复运动﹐这是主运动﹔同时通过珩磨头中的弹簧或液压力控制油石均匀外涨﹐对被加工的孔壁作径向进给。

珩磨及珩磨工艺

珩磨及珩磨工艺

珩磨及珩磨工艺珩磨是一种常见的机械加工工艺,它能够对工件进行精密的加工和修整,以获得高精度和高表面质量的成品。

珩磨工艺的应用非常广泛,涉及到多个行业和领域,例如航空航天、汽车制造、模具加工等。

本文将从珩磨的原理、工艺流程和应用领域等方面进行介绍。

一、珩磨的原理珩磨是利用磨粒在工件表面进行滚动、滑动和切削,以去除工件表面的杂质和不规则部分,从而获得更加光滑和精确的表面。

它主要通过磨头和工件之间的相对运动来实现磨削作用。

珩磨的磨头通常由磨粒、结合剂和孔径等组成,磨粒的大小和形状对珩磨效果有着重要的影响。

二、珩磨的工艺流程珩磨的工艺流程通常包括准备工作、装夹和调整、珩磨加工和检测等步骤。

1. 准备工作:包括选择合适的磨头、磨粒和磨削液,并对设备进行检查和保养。

2. 装夹和调整:将工件装夹在珩磨机床上,并进行调整,以确保磨头与工件的接触面积和力度适当。

3. 珩磨加工:根据工艺要求,控制好磨削参数,如磨头的转速、进给量和磨削液的供给等,开始进行珩磨加工。

4. 检测:在加工完成后,对工件进行表面质量和尺寸的检测,以确保达到要求。

三、珩磨的应用领域珩磨广泛应用于各个行业和领域,其中一些典型的应用包括:1. 航空航天:在航空发动机的制造过程中,珩磨可以用来加工涡轮叶片、轴承座和涡轮盘等关键部件,以提高其精度和表面质量。

2. 汽车制造:在汽车零部件的加工过程中,珩磨可以用来加工曲轴、凸轮轴和传动齿轮等关键零部件,以提高其精度和寿命。

3. 模具加工:在模具制造过程中,珩磨可以用来加工模具的凹模、凸模和滑块等关键部件,以提高其精度和表面质量。

4. 钢铁冶金:在钢铁冶金过程中,珩磨可以用来修整轧辊和铸件等关键部件,以提高其表面质量和使用寿命。

珩磨作为一种重要的机械加工工艺,具有精度高、效率高和适应性强的特点,被广泛应用于各个行业和领域。

随着科技的不断进步和创新,珩磨工艺也在不断发展和完善,为各行各业提供了更加高效和优质的加工解决方案。

珩磨资料

珩磨资料

珩磨资料SV-310立式珩磨机SV-310结合动力、精度、耐用性和技术使每个孔珩磨费用达到最小,适合中、大批量生产!配备有一个全新的冲程系统(专利技术),这系统可以实现完全的垂直冲程,也能在孔的任意位置进行停顿或进行短冲程珩磨以达到最佳的圆度和直线度。

另外,创新的冲程控制系统可以达到整个孔内所有部位的平台和网纹都一致,在这以前是没有机器可以做到的。

SV-310配备了调整手轮,可以让操作者对冲程控制和油石进给位置进行轻松调节。

通过一个可选的伺服驱动装置,该手轮还可以对“X”方向上进行调整。

对于X方向上多孔进行珩磨(如直列式缸体),可以利用此功能进行程序设置,设定多个珩磨位置。

SV-310机床使得立式珩磨更快、更容易、更精确、更经济也更高效。

性能特点:·美观、耐用、低维护性的不锈钢外壳提供了一个整洁的工作环境并确保了操作者的安全。

·可选的X轴向(左右方向)的伺服控制允许程序多孔定位,可以运用在生产线的多孔珩磨中。

·具有孔型显示功能,可在珩磨中观察孔型。

·可选的气动测量回馈系统可以保证孔的尺寸一致。

·高扭矩的皮带输出和精密的主轴保证了孔的优质质量。

·免维护终身润滑立式和卧式导轨确保机床优良性能。

·旋转或直线进给系统通过不同的工具(GHSS、GHTS、CV/CK、P20/P28、MPS)确保精确切削。

·前敞开式推进门,可方便在工作区进行手动或自动装载工件,对于大型或异型工件,操作人员可进入机床工作区进行工件安装。

·先进的冲程伺服控制保证了内部网纹一致,能精确控制网纹的角度。

并能在孔的任意位置实现短冲程和停顿,孔的端部也能达到高精度的珩磨。

·自动停顿功能可以自动纠正孔的直线度(特别适用于盲孔)·珩磨长孔的垂直冲程长度可达到762mm(30in.)·可选择的冷却系统:纸过滤、磁性分离过滤或中央过滤系统。

浅析发动机零部件加工中的珩磨技术

浅析发动机零部件加工中的珩磨技术

浅析发动机零部件加工中的珩磨技术论文导读:珩磨工艺是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法。

发动机汽缸体缸孔珩磨是平台珩磨最典型的应用。

平台珩磨后可在缸孔(或缸套)表面形成一种特殊的结构,这种结构由具有储油功能的深槽及深槽之间的微小支承平台表面组成。

铰珩工艺是在传统珩磨工艺的基础上发展起来的新工艺,其加工过程中融入了铰孔的特点,目前在缸体曲轴孔、连杆大小头孔的精整加工中广泛应用。

发动机缸孔表面的微观质量,决定了发动机运转时的磨合性能、运转可靠性和润滑油消耗,通过刷珩工艺可以缩短发动机的磨合时间和显著降低润滑油消耗。

在这种情况下进行的珩磨称作模拟珩磨,工件的珩磨质量可显著提高,工件的宏观形状精度可提高五至十倍。

关键词:珩磨,平台珩磨,铰珩,刷珩,模拟珩磨,缸孔珩磨工艺是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法。

这种工艺不仅能去除较大的加工余量,而且是一种提高零件尺寸精度、几何形状精度和表面粗糙度的有效加工方法,在发动机零部件的制造中广泛应用。

珩磨加工原理珩磨是利用安装于珩磨头圆周上的一条或多条油石,由涨开机构(有旋转式和推进式两种)将油石沿径向涨开,使其压向工件孔壁,以便产生一定的面接触。

同时使珩磨头旋转和往复运动,零件不动;或珩磨头只作旋转运动,工件往复运动,从而实现珩磨。

在大多数情况下,珩磨头与机床主轴之间或珩磨头与工件夹具之间是浮动的。

这样,加工时珩磨头以工件孔壁作导向。

因而加工精度受机床本身精度的影响较小,孔表面的形成原理基本上类似两块平面运动的平板相互对研而形成平面的原理。

珩磨加工特点加工精度高:中小型的通孔加工,其圆柱度可达0.001mm 以内。

一些壁厚不均匀的零件,如连杆,其圆度能达到0.002mm。

对于大孔(孔径在200mm以上),圆度也可达0.005mm,如果没有环槽或径向孔等,直线度可达到0.01mm/m以内。

表面质量好:珩磨速度低(是磨削速度的几十分之一),且油石与孔是面接触,因此每一个磨粒的平均磨削压力小,这样珩磨时,工件的发热量很小,工件表面几乎无热损伤和变质层,变形小,珩磨加工面几乎无嵌砂和挤压硬质层。

珩磨加工参数设定参考资料

珩磨加工参数设定参考资料

珩磨加工参数设定参考资料一、珩磨机相关技术规格:1.2MK228A/12.2MK225/13.加工参数1) P1:对刀点。

单位:mm2)P2:工进量。

单位:㎜。

顶杆的移动量。

最小设定值0.001㎜。

3)P3:工进速度。

单位:㎜/min(毫米/每分钟)。

此值可在0~2㎜/ min之间连续设定。

4)P4:刀具磨损补偿量。

单位:㎜。

根据刀具的磨损值设定此参数,并于P6和P7配合使用。

5)P6:补偿次数。

单位:次。

根据加工多少件补偿一次设定此值。

设定为0,表示不补偿;设定为1.则每加工一件补偿一次;设定为2,表示第一件不补偿,第二件补偿;以此类推。

6)P7:有无补偿。

若设定为0,表示没有补偿;若设定其他值,则表示有补偿。

7)精珩时间:单位:S(秒)。

精珩时间最长可设定为99秒。

二、珩磨前的准备工作:1.工装调整:1)选择适用的珩磨杆、瓦,将其装在主轴上面。

2)将定位盘装在工装上面。

3)根据产品的顶深调整珩磨深度。

2.产品分类要求:(采用分组珩磨的方法)1)磨后成品尺寸要求¢D 0/+0.03的内孔分组要求:珩磨前把镀后内孔尺寸进行分组,0.01㎜为一组,即¢D-0.01~0、0~+0.01、+0.01~+0.02三组,尺寸在-0.01~-0.02㎜的检出,单独设定珩磨参数加工。

尺寸大于+0.02㎜的退电镀返镀。

2)磨后成品尺寸要求¢D 0/+0.025的内孔分组要求:珩磨前把镀后内孔进行分组,即¢D-0.01~0、0~+0.015两组,尺寸在-0.01~-0.02㎜的检出,单独设定珩磨参数加工。

尺寸大于+0.015㎜的退电镀返镀。

3)将内孔返镀产品与内孔第一次电镀产品区分,上述分组要求是针对内孔第一次电镀的产品。

为避免内孔珩磨不光,返镀(内孔粗糙)的产品直径尺寸应控制在¢D -0.03/0,这类产品检出后单独设定珩磨参数加工。

三、加工参数的设定:(以缸径¢40为例)1.对刀点的设定:(分组对刀)1)珩磨杆、瓦装好后,将工作台落下,将缸体内孔套在珩磨瓦上,点动膨胀键。

史上最全珩磨工艺及珩磨工具,收藏这个,基本珩磨知识都会了!

史上最全珩磨工艺及珩磨工具,收藏这个,基本珩磨知识都会了!

珩磨简介珩磨或称搪磨,其加工方法是:机床主轴带动珩磨工具(珩磨头)一面旋转,一面作直线上下往复运动,珩磨头上的油石(磨条)在一定的向外胀出压力作用下,在工件表面上去除磨屑,磨出螺旋形交叉网纹磨痕,它主要用于精密孔的加工,如发动机缸孔、压缩机缸孔、连杆、泵体及控制块等。

图1所示是珩磨加工中油石的运动轨迹,其中,l w为工件长度,π dw为工件孔的周长,θ为磨痕交叉角。

Ⅰ、Ⅱ、Ⅲ是油石在一个往复行程中折返时顺次的位置。

为了不让磨痕重复,回程位置Ⅲ应偏离起始位置Ⅰ有S的距离。

早期使用靠弹簧力推圆锥斜面胀出油石的珩磨头,如图2所示。

目前新型珩磨头主要均靠液压胀出,图2中的1为油石(磨条),油石是由磨料加结合剂构成的条形磨具,根据被加工材料的不同,可选择相应油石中的磨料,形状、种类、粒度、结合剂、硬度、组织和性能。

珩磨头通常由多块油石均布构成,可同时对孔的多处进行加工。

图1 加工中油石的运动轨迹图2 早期的珩磨头结构珩磨原理及特点1.珩磨能够精加工的原理把珩磨油石和工件看成两个互研的表面,为达到高的加工质量,应使它们在相对的往复运动中,油石上每一颗磨粒在孔壁上的运动轨迹都不重复。

加工时,油石和工件在面接触状态下,以较低的切削速度和压力,可靠地磨除工件较小的加工余量(一般为0.01~0.08mm,需根据不同加工材料、加工批量及加工要求而定)。

珩磨能显著地提高工件的尺寸精度(小孔达1~2μm,中等孔达10μm,二者甚至更小)和形状精度(小孔圆度达0.5μm,圆柱度达1μm,中等孔圆度达3μm以上甚至更小;孔长300~500mm时,圆柱度达5μm以下,加工误差分散范围小,仅为1~3μm,加工表面质量高,其表面粗糙度值R a仅约为0.4~0.04μm,甚至更小),一般因油石对工件平均压力P小(约0.4~0.8MPa),故发热量小,加工表面变质层也少,因为珩磨头与工件是面接触,同时参加切削的磨粒多,故也是一种高效的加工方法。

气缸孔珩磨技术简介

气缸孔珩磨技术简介

摘要气缸是内燃机重要零件之一,它与活塞、气缸盖等组成燃烧室。

燃料在气缸内部燃烧,膨胀的气体推动活塞往复移动,通过连杆驱动曲轴转动,将热能转化为机械能。

气缸表面质量较差或长期工作磨损到一定程度,内燃机的动力性能将显著下降,燃润料的消耗急剧增加,使内燃机的经济性变坏。

因此, 内燃机机缸体表面质量将直接影响发动机的技术性能和使用寿命。

平顶珩磨、滑动滚磨与普通珩磨相比,是一种先进的珩磨工艺,具有缸孔表面微观形貌呈光滑的平顶(而不是峰尖),与相对较深的波谷(与普通珩磨相比波谷较深)规律性地间隔分布、发动机的磨合周期短、润滑条件好、生产效率高等优点。

是目前缸孔珩磨工艺的主流。

引进平顶珩磨和滑动滚磨对于提高汽车发动机的缸体质量、提高生产效率有着重要的意义。

本文介绍了国内外缸孔珩磨工艺历程和现状,对普通珩磨。

平顶珩磨、滑动珩磨工艺进行了一些对比研究。

关键字:气缸,珩磨工艺,平顶珩磨,滑动珩磨一、绪论1.1选题背景当代社会,汽车作为城市生活的代步工具,已经进入了大多数家庭当中,他不再是一种奢侈品的象征,而是一种必备的交通工具。

在我国,现在汽车年产销售量已经达到1800万辆,随着人们对汽车使用的普及,人们对它的要求也在不断提高,人们对整车的安全性、动力性乘坐舒适性、操作灵活性、外观设计及环保方面都提出了较高的要求,与此同时对汽车发动机的性能要求也越来越高。

发动机作为汽车的核心部件,其生产、制造技术也在飞速发展,各种全新技术手段及工艺在逐步推广和应用于汽车制造业的各个环节当中。

对承受高温、高压、高负荷工作的缸孔表面来说润滑极为重要,珩磨后形成的微观支撑平台和珩磨网纹的夹角是保证良好润滑的关键。

如果支撑平台过小,发动机磨合期延长,容易造成缸筒早期磨损,支撑平台过大则会造成润滑油量不足而无法形成有效的润滑油膜,不利于活塞环的润滑;如果晰磨网纹夹角太小,发动机趋于无润滑状态,如果珩磨网纹夹角过大,则机油消耗增大。

发动机的这些特殊要求在实际生产中使用普通加工方法是难以实现的,这也是世界各国的汽车制造业无一例外地采用珩磨作为缸孔的最终精加主的原因。

珩磨教材

珩磨教材

《珩磨工艺的关键性技术》——工程师:行心聪第一篇基础参数一、基本术语和定义(一)、表面、轮廓和基准的术语与定义表面粗糙度国家标准GB/T3505—1983规定了有关表面和参数的术语及其定义。

1)、实际轮廓—平面与实际表面相交所得的轮廓线。

2)、横向轮廓—垂直于表面加工纹理方向的平面与实际表面相交所得的轮廓线。

※在评定或测量表面粗糙度时,除非特别指明,通常均指横向轮廓。

3)、基准线—用以评定表面粗糙度参数的给定的线。

4)、取样长度(le)—用于判别具有表面粗糙度特征的一段基准线长度。

规定和选择取样长度是为了限制和减弱表面波纹度对表面粗糙度测量结果的影响。

取样长度应在实际轮廓总的走向上量取。

5)、评定长度(ln)—评定轮廓所必须的一段长度,它可包括一个或几个取样长度。

8)、轮廓的算术平均中心:具有几何轮廓形状,在取样长度内与轮廓走向一致的基准线。

在取样长度内由该线划分使轮廓上、下两边的面积相等。

※规定算术平均中线是为了用图解法近似地确定最小二乘中线。

当轮廓具有明显的周期性,其走向已定时,则“等面积”中线是唯一的。

当轮廓为不规则时,其走向在某一范围内就不确定,则可在该范围内绘出一簇“等面积”,而其中只有一条线与最小而乘中线重合。

9)、轮廓峰:在取样长度内轮廓与中线相交,连接两相邻交点向外(从材料到周围介质)的轮廓部分。

10)、轮廓谷:在取样长度内轮廓与中线相交,连接两相邻交点向内(从周围介质到材料)的轮廓部分。

※在取样长度的始端和终端,轮廓的向外和向内部分,也分别是轮廓峰和轮廓谷。

11)、轮廓峰顶线:在取样长度内平行于基准线并通过轮廓最高点的线。

12)、轮廓谷低线:在取样长度内平行于基准线并通过轮廓最低点的线。

13)、轮廓水平截距(c):轮廓峰顶线和平行于它并与轮廓相交的截线之间的距离,它可用微米或轮廓最大高度Ry的百分数表示。

(二)与微观不平度高度特性有关的表面粗糙度参数1)、轮廓峰高(y p):中线至轮廓峰最高点之间的距离。

珩磨的具体方法

珩磨的具体方法

珩磨的具体方法珩磨是一种机械加工方法,通常用于将材料表面磨平和改善表面光洁度。

这种方法可以在各种不同的材料上使用,例如金属、塑料、玻璃和石材。

以下是十条关于珩磨的具体方法,并展开详细描述:1. 确定珩磨工艺参数:珩磨过程中,工艺参数包括切削速度、进给速度、磨头类型、磨头材料等,需要根据材料的特性以及加工的要求进行确定。

2. 准备实验样品:取得合适的实验材料,并进行必要的清洗和处理,确保表面干净无污渍。

3. 定位和固定样品:将样品放置在珩磨机台上,并在需要的地方进行夹紧和固定,以避免在珩磨过程中发生移动或滑动。

4. 调整砂轮高度:根据样品的几何形状和尺寸,调整砂轮高度,以确保砂轮的工作表面与样品表面平行。

5. 调整磨头角度:根据磨头和样品的特性,调整磨头的角度和方向,以确保磨头与样品表面的最佳接触面,以获得最佳的珩磨效果。

6. 进行预磨:在开始正式珩磨之前,应进行预磨,以去除表面粗糙度和杂质。

通常使用较粗的砂轮和稍微高一些的磨头加工,预磨不应太过强力,以防止对样品造成伤害。

7. 进行正式珩磨:根据预定的珩磨参数,使用适当的工具和设备进行正式珩磨。

珩磨的过程需要对样品进行不断的检查和评估,以保证达到所需的光洁度和表面粗糙度。

8. 检查珩磨效果:使用相关的检测设备对已经珩磨过的样品进行检测和评估,以确保已达到所需的加工精度和表面光洁度。

9. 微调珩磨参数:如果珩磨效果不如预期,需要进行微调珩磨参数,以达到所需的加工效果。

这可能需要多次试验,以找到最佳的参数组合。

10. 表面处理和保养:加工完成后,应对样品的表面进行适当的处理和保养,例如去除表面污渍、涂层、抛光等。

这样可以保证加工效果持久,并提高样品的耐久性和美观度。

珩磨是一种非常重要的加工方法,可以提高材料表面的精度和光洁度。

正确使用珩磨需要精确的技术和严格的工艺操作,需要根据不同的材料和要求进行合理的参数选择和调整,以确保加工效果最佳,同时保证操作安全和环保。

珩磨简介

珩磨简介

珩磨简介珩磨工艺(Honing Process)是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法,属于光整加工,需要在磨削或精镗的基础上进行。

这种工艺不仅能去除较大的加工余量,而且是一种提高零件尺寸精度、几何形状精度和表面粗糙度的有效加工方法。

珩磨加工范围比较广,特别是在大批量生产中采用专用珩磨机珩磨更为经济合理,对于某些零件,珩磨已成为典型的光整加工方法,如发动机的气缸套,连杆孔和液压缸筒等。

珩磨加工原理珩磨是利用安装于珩磨头圆周上的一条或多条油石,由涨开机构(分旋转式和推进式两种)将油石沿径向涨开, 使其压向工件孔壁,以便产生一定的面接触。

同时使珩磨头旋转和往复运动,零件不动;或珩磨头只作旋转运动,工件往复运动,从而实现珩磨。

在大多数情况下,珩磨头与机床主轴之间或珩磨头与工件夹具之间是浮动的。

这样,加工时珩磨头以工件孔壁作导向。

因而加工精度受机床本身精度的影响较小,孔表面的形成基本上具有创制过程的特点。

所谓创制过程是油石和孔壁相互对研、互相修整而形成孔壁和油石表面。

其原理类似两块平面运动的平板相互对研而形成平面的原理。

珩磨时由于珩磨头旋转并往复运动或珩磨头旋转工件往复运动,使加工面形成交叉螺旋线切削轨迹,而且在每一往复行程时间内珩磨头的转数不是整数,因而两次行程间,珩磨头相对工件在周向错开一定角度,这样的运动使珩磨头上的每一个磨粒在孔壁上的运动轨迹亦不会重复。

此外,珩磨头每转一转,油石与前一转的切削轨迹在轴向上有一段重叠度,使前后磨削轨迹的衔接更平滑均匀。

在整个珩磨过程中,孔壁和油石面的每一点相互干涉的机会差不多相等。

因此,随着珩磨的进行孔表面和油石表面不断产生干涉点,不断将这些干涉点磨去并产生新的更多的干涉点,又不断磨去,使孔和油石表面接触面积不断增加,相互干涉的程度和切削作用不断减弱,孔和油石的圆度和圆柱度也不断提高,最后完成孔表面的创制过程。

为了得到更好的圆柱度,在可能的情况下,珩磨中经常使零件掉头,或改变珩磨头与工件轴向的相互位置。

数控珩磨加工技术研究与应用

数控珩磨加工技术研究与应用

数控珩磨加工技术研究与应用珩磨是磨削加工的一种特殊形式,是随着汽车的诞和生发展应运而生的,在现代汽车制造业和航空航天领域有着广泛的应用。

一、珩磨技术的发展与现状随着现代工业的发展,珩磨技术在航空航天及汽车发动机领域成为发动机气缸、气缸体孔、起落架简体以及工程机械中重要的液压缸等精密零件孔加工不可或缺的工艺技术。

越来越多的各种长短孔、薄壁类孔、盲孔、不均匀壁厚类孔迫切需要珩磨机床对孔进行加工,以保证其表面粗糙度、圆度及尺寸精度要求。

在珩磨技术方面,目前在发动机气缸、工程机械液压系统及飞机起落架液压系统中普遍采用珩磨加工技术,但主要采用进口高精度数控立式珩磨机床,例如,美国善能公司最新推出的高精度数控立式珩磨机床SV-2410.由于采用了计算机控制系统,它比其他机械控制系统更改的保证珩磨加工效率和加工精度要求。

国产珩磨机床近年来有了很大的进步,出现了如宁夏大河机床等优秀的珩磨设备厂商,但无论在加工精度、制造水平还是在控制技术方面,与国外相比都有较大的差距,整体珩磨工艺技术水平较低,对珩磨加工技术的研究仍然局限于珩磨头的制作机沙条的选材上,对珩磨的工艺参数研究几乎是空白,根本无法满足现代航空航天和汽车工业技术要求,目前国内市场上精密高效机床几乎全部为国外品牌垄断。

二、珩磨加工工艺珩磨是磨削加工的一种特殊形式,是能使加工表面达到高精度、高表面适质量、高寿命的高效加工方式。

是一种快速高效的内孔精加工工艺,应用范围十分广泛。

珩磨的定义:是用镶嵌在珩磨头上的油石(也称珩磨条)对精加工表面进行光整加工。

珩磨与孔表面的接触面积较大,加工效率较高。

加工时由涨开机构将油石沿径向涨开,使其压向工件孔壁,从而产生一定的接触面积,同时珩磨头做旋转和往复运动,而零件不动,从而实现珩磨。

珩磨工艺具有以下特点。

(1)珩磨的表面质量好,珩磨后表面粗糙度可达Ra0.8-0.2,甚至更低;(2)加工精度高,圆度、圆柱度可达0.5 μm;轴线直线度可达1μm;(3)交叉网纹有利于贮油润滑,实现平顶珩磨,可获得较好的相对运动摩擦,获得较理想的表面质量,同时改变了内孔的表面结构组织,形成了具有很好的润滑效果润滑油膜表面;(4)珩磨主要用于孔加工,是以原底孔中心为导向,加工孔径范围为5-500mm,深径比可达10,甚至更大;(5)珩磨与研磨相比,珩磨具有可减轻工人体力劳动、生产率高、易实现自动化等特点。

珩磨加工

珩磨加工
三、珩磨头结构及常用形式
(6)镶嵌式多油石珩磨头
用途:用于大径通孔珩磨。
三、珩磨头结构及常用形式
(7)串联孔珩磨头
(8)深孔珩磨头
三、珩磨头结构及常用形式
(9)平顶珩磨头
用途:用于通孔平顶珩磨。
四、珩磨油石的选用
珩磨工艺对油石的主要技术要求:切削能 力应较强,并有良好的自锐性、形状保持性。
五、珩磨夹具设计要求
平面浮动式夹具的浮动量 取决于机床主轴、珩磨 头、夹具的同轴度误差的大小,一般不超过(0.4~ 0.5)mm。万向浮动的角度取决于它们间轴心线倾 斜程度的大小。 浮动夹具的浮动部分 要灵活,惯性小,并要求对 称。当夹持不对称工件时,应安装配重,使其平衡。 万向浮动夹具的转动中心,应与夹具套和工件的重 心重合,或略为高一点,以避免重力对浮动的影响。 夹具应便于观察、调整油石的越程量 夹具下面应 有一定的空间,使珩磨头在工件下端有一定的越程 空间,便于在珩磨过程中排除切屑和珩磨液。
七、珩磨加工对中的要求
工件在珩磨夹具中夹紧后,被珩磨孔的轴心线必须对准 机床主轴心线,称为对中。 对中达到要求,就能保证珩磨后工件的精度。若对中不 好,造成被加工孔的轴心线与机床主轴轴心线偏离过大, 将影响所加工孔的垂直度、圆度和直线性。 孔的加工余量越大,珩磨时间越长、油石长度越短、主 轴转速越高、浮动联接灵活性越差,其影响程度就越大。 在夹具浮动,珩磨头与主轴刚性联结的情况下,允许的 对中偏差量:主轴轴心线与珩磨头的轴心线同轴度误差 与对中偏差之和,应小于夹具允许的最大浮动量。一般 对中偏差为(0.05~0.2)mm。
八、珩磨机
珩磨机珩孔直径为: 25mm、50mm、 100mm、160mm、 200mm、250mm、 400mm、500mm、 630mm、1000mm。

深孔珩磨加工操作工培训资料

深孔珩磨加工操作工培训资料

深孔珩磨加工操作工培训资料珩磨加工是内孔精加工的一种有效方法。

它是利用可涨缩的磨头使珩磨油石条压向内圆工作表面以产生一定的接触面积和相应的压力,在适当的冷却液作用下,珩磨油石条对被加工表面作旋转和往复进给的相对综合运动,从而改善表面质量,改善表面应力状态和提高被加工零件精度的目的。

是一种多忍切削的精加工方法。

一.珩磨机主要结构1.床身:由方管焊接而成。

其上有往复滑座体、主轴箱、底座、滑动导轨、珩磨杆、操控系统、工件安装支架、防护罩等。

2.磨杆箱、磨头扩张顶进机构:磨头箱由液压马达或伺服电机带动减速箱齿轮使珩磨杆旋转,可实现无级变速。

磨头扩张进给顶紧机构由液压油缸或伺服电机加传动机构给珩磨杆内顶杆加力。

可实现定量或定压珩磨。

3.往复机构:由往复油缸或伺服电机和减速箱、齿轮齿条机构等组成,可实现无级变速。

4.冷却机构:由油箱、过滤装置、油泵等组成。

5.夹具:6.电器部件:二.操作规程:1.开机前准备工作:1).检查液压油或冷却油是否满足要求;2).检查各机件是否齐全、牢固可靠;3).检查夹具的中心是否与磨杆中心重合;4).检查各液压系统工作是否正常,液压执行元件是否都正确到位;5).检查电器控制系统工作是否正常有效;6).检查各转动、滑动部位是否润滑良好,运行平稳、可靠;7).检查压力表、指示灯等是否正常良好。

2.珩磨操作程序:1).测量珩磨缸筒的内径尺寸,确定各位置珩磨余量,注意清理缸筒内各种杂物及毛刺等.2).根据缸筒的外径尺寸和长度,输入编码器适合的行程尺寸,选择合适的工装,将缸筒装夹到正确的位置并紧固.3)根据所磨缸筒的内径尺寸,选择相应的珩磨杆和珩磨头及油石,安装好珩磨杆和珩磨头.4).根据所磨缸筒的内孔珩磨余量和珩磨要求,选择合适的往复进给速度、顶出压力、磨杆旋转速度。

一般往复速度设定范围为5-24M/分,开始珩磨时,可选7-8m/分,经过几个往复后可调整到15-24m/分。

主轴转速可见下表。

普通珩磨和超声波振动珩磨(共38张PPT)

普通珩磨和超声波振动珩磨(共38张PPT)

解决办法 a、减小油石粒度 b、选用合适硬度的油石c、 改变粘结剂 d、对油石浸渍处理
a、降低油石压力 b、增加净珩时间 a、提高旋转速度 b、降低往复速度
a、提高粘度 b、增加过滤精度 c、及时更换切削液 d、加大切削液用量
第三十二页,共38页。
六、超声波振动珩磨简介
➢ 超声波振动珩磨在切削领域和已应用的磨削加工领域中表现出
碳化硅
黑碳化硅
表面光滑, 硬度大,韧性较 差,具有自锐作 用;生产率高, 表面光洁度好
绿碳化硅
表面光滑, 硬度大,韧性较 差,具有自锐作 用;生产率高, 表面光洁度好
适合珩磨强度低 和性能脆的材料,如 铸铁,黄铜等某些有 色金属和非金属材料
第二十六页,共38页。
四. 珩磨油石
② 磨料的粒度
③ 粒度是指磨料颗粒的粗细和大小。油石是用 粒度很细的磨粒制成的。
工件有沟槽,沟距不均匀
第三十页,共38页。
a、采用宽油石b、改变切削网纹角 c、控制进给速度
五、珩磨常见问题及解决方法
2. 圆柱度超差
产生原因 横向冲击大 往复位置不准确,横向过程不稳定 行程位置不合适 串孔、间断孔间断距离大
盲孔端偏小
解决办法
a、降低往复速度 b、调整换向时间
a、提高设备的往复精度 b、稳定油温
第三十六页,共38页。
六、超声波振动珩磨简介
超声振动使珩磨油石具有较强的自砺性, 磨粒变得锋利,有利于提高切削效率
2.
珩磨前正确的选择油石,是保证顺利完成珩
磨工艺的重要条件之一。
3.
油石的性能,主要有四个因素来决定:
4.
〔1〕制造油石用的磨料
5.
〔2〕磨料的粒度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档