高等数学课程教学实施方案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉轻工大学《高等数学》(本科)

教学实施方案编制说明

1、课程教学理念:激发学生学习兴趣

2、教学目标:提高学生的自主学习能力,发挥学生的主观能动性,敢于大胆猜测,严格验证,提高学生学习的动力。

3、教学内容、教学组织形式与教学方法:

(1)高等数学教学内容改革:高等数学的教材虽几经变化,但没有质的区别,内容还是两、三百年前形成的。大部分院校还在采用同济大学的教材,我们学校也不例外。现在的教材一个最大的缺陷就是过分强调理论的科学性、严谨性、系统性,而忽视基本概念的物理背景,理论在实际中的应用,忽视了对学生能力的培养。教学内容离实际越来越远,学过的用不上,要用的又没学,学生也感觉到了高等数学用处不大。为了适应培养新世纪人才的需要,高等数学的教学内容必须进行改革。将教材分为两部分:必学部分和提高部分。必学部分是每个大学生必须掌握的数学知识:包括极限与连续、导数与微分、定积分、导数的应用、不定积分、定积分应用、微分方程、空间解析几何和多元函数微积分简介,这部分内容应突出微积分的思想方法,辅之以直观表述,强调实际应用,而弱化推导与技巧,并且例题与习题的量要多且有应用特色;提高部分是针对对数学感兴趣的学生或将来要考研究生的学生而设置的。这部分内容应引入现代数学观点和方法,使学生既掌握基本概念和理论,又掌握一定的运算技巧,还要掌握运用计算机手段进行数据处理等能力,内容包括集合与映射、距离空间、极限理论、导数与微分、中值定理及应用、积分学、微分方程、向量代数与空间解析几何、多元函数微积分、无穷级数等。

(2)高等数学教学方法改革:

a)采用导学与精讲相结合:精讲是少而精,突出重点,详略得当,使教学时间合理分配。“导学”是指导在前,讲解一些关键性的问题,然后以学生自学为主。教师要讲清楚各个知识点的基本思想、方法和知识之间的联系,而对具体的、细化的内容留给学生自己去学习、理解和消化,以增加课堂信息量。

b)教学形式多样化:比如,组织课后讨论小组,教师可提出具体问题,让小组的学生一起来提出解决的办法和方案,并实际求解。或者让学生自己设计问题,然后利用所学的知识加以消化。这个过程是开放式的,最后教师可以就这一问题同时对每个人进行考核。这种方式既可促进学生间的互相学习与帮助,又可增强协作意识,对今后的实际工作是大有益处的。另外也可组织课堂讨论,教师要多提一些问题让学生考虑,或者让学生进行一些归纳和总结。

c)课堂教学尽量运用启发式教学:注意教学的启发性,培养独立思维的习惯,首先,在教师对教材的处理上,杜绝照本宣科。教案、讲稿是教师掌握、讲授教材的结晶,但不是一成不变的。因此,应因时、因学生而变。其次,在教学方法上,让全体学生参与教学,共同探讨。让学生独立思维、主动学习,对同一问题可变换角度提问,让学生进行独立思考;或在讲授时故意引人错误观点,树立对立面,对比激疑,引发学生独立思维的习惯与兴趣,可达到事半功倍的效果。

d)加强平时教学管理,组织滚动考试,大大加强平时成绩分量。杜绝突击式学习,端正学风,让学生养成良好的学习习惯。

4、课程考核标准:期末考试占百分之50,课堂讨论发言和课下自主学习占百分之10(由学习小组组长给出),滚动考试占百分之30,平时作业占百分之10.

5、学生学习成果:对数学不再感觉枯燥乏味,知道数学之美,会和后续课程结合思考学好数学,自我管理和自学能力有了明显提高。

《高等数学》(本科)教学实施方案

一、课程基本信息

课程代码:12110103,12110104

课程英文名称:Higher Mathematics

课程所属单位:数学与计算机学院公共数学教研室

课程面向专业:理工类专业

课程类型:必修课

学分:10.5

总学时数:164 (其中理论学时:164;实验学时:0 )

二、任课教师、教室等情况

(一)任课教师:***,办公室:东八B513公共数学教研室,电话:******,答疑辅导时间:工作日的白天都行,请提前预约,另固定周日晚6:30-8:30,地点在各班自习室。电子邮件:

(二)教室:见各班课表

(三)上课时间:见各班课表

(四)纪律:教师一般不会调课,但所有因公调课都将通过教务处进行,并以恰当方式让每一位同学知道,一旦调课,一定会补上。

每一位同学除非有特殊情况,例如疾病,否则不能以任何借口不来上课。每一位同学都不允许迟到,若迟到,请课间休息时间再入教室。一般情况下不收迟交的作业,每次作业都将登记,作业上交时间为每周一。

三、教材、主要参考书和拓展学习材料

教材:《高等数学》(第六版)同济大学数学教研室高等教育出版社2007.04

主要参考书:

(1)《高等数学·方法与应用》梅顺治科学出版社 1998.8

(2)《高等数学解题方法与技巧》,王景克编,中国林业出版社;

(3)《Calculus of One Variable》,Liu Jinxian Qiu Jiqing Han Xiaobing Higher Education Press.;

(4) 《高等数学学习指导》,刘彬主编, 化学工业出版社;

(5) 《高等数学》,文丽、吴良大编,北京大学出版社,1990年2月第一版;

(6) 《高等数学》,李天林,北京师范大学出版社;

(7) 《高等数学》,陈世兴、莫嘉琪,安徽师范大学出版社;

拓展学习材料:

见武汉轻工大学高等数学网站,网址:/course/ 四、课程性质与目的

高等数学课程是高等学校工科各专业学生的一门必修的非常重要的基础理论课,是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。通过本课程的学习,要使学生系统地获得微积分、向量代数和空间解析几何、无穷级数与常微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的基础。

在传授知识的过程中,要逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,同时还要特别注意培养学生具有比较熟练的运算能力,以及综合运用所学知识去分析问题和解决问题的能力。

五、课程教学内容与要求

说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。

(一)函数、极限、连续

1、教学内容与要求

(1)理解函数、区间、邻域等概念。

(2)了解函数的有界性、单调性、周期性、奇偶性以及这些特性各自反映在图形上的特点。

(3)了解反函数的概念及其图形,掌握基本初等函数的性质及图形。

(4)理解复合函数、初等函数的概念,并了解分段函数、双曲函数。

(5)会建立简单实际问题中的函数关系式。

相关文档
最新文档