液压系统的特点

液压系统的特点
液压系统的特点

液压系统的特点

液压的优点

与机械传动、电气传动相比,液压传动具有以下优点:

1、液压传动的各种元件,可以根据需要方便、灵活地来布置。

2、重量轻、体积小、运动惯性小、反应速度快。

3、操纵控制方便,可实现大范围的无级调速(调速范围达2000:1)。

4、可自动实现过载保护。

5、一般采用矿物油作为工作介质,相对运动面可自行润滑,使用寿命长;

6、很容易实现直线运动/

7、很容易实现机器的自动化,当采用电液联合控制后,不仅可实现更高程度的自动控制过程,而且可以实现遥控。

液压的缺点

1、由于流体流动的阻力和泄露较大,所以效率较低。如果处理不当,泄露不仅污染场地,而且还可能引起火灾和爆炸事故。

2、由于工作性能易受到温度变化的影响,因此不宜在很高或很低的温度条件下工作。

3、液压元件的制造精度要求较高,因而价格较贵。

4、由于液体介质的泄露及可压缩性影响,不能得到严格的传动比。

5、液压传动出故障时不易找出原因;使用和维修要求有较高的技术水平。

液压系统的三大顽疾1、发热由于传力介质(液压油)在流动过程中存在各部位流速的不同,导致液体内部存在一定的内摩擦,同时液体和管路内壁之间也存在摩擦,这些都是导致液压油温度升高的原因。温度升高将导致内外泄漏增大,降低其机械效率。同时由于较高的温度,液压油会发生膨胀,导致压缩性增大,使控制动作无法很好的传递。解决办法:发热是液压系统的固有特征,无法根除只能尽量减轻。使用质量好的液压油、液压管路的布置中应尽量避免弯头的出现、使用高质量的管路以及管接头、液压阀等。

2、振动液压系统的振动也是其痼疾之一。由于液压油在管路中的高速流动而产生的冲击以及控制阀打开关闭过程中产生的冲击都是系统发生振动的原因。强的振动会导致系统控制动作发生错误,也会使系统中一些较为精密的仪器发生错误,导致系统故障。解决办法:液压管路应尽量固定,避免出现急弯。避免频繁改变液流方向,无法避免时应做好减振措施。整个液压系统应有良好的减振措施,同时还要避免外来振源对系统的影响。

3、泄漏液压系统的泄漏分为内泄漏和外泄漏。内泄漏指泄漏过程发生在系统内部,例如液压缸活塞两边的泄漏、控制阀阀芯与阀体之间的泄漏等。内泄漏虽然不会产生液压油的损失,但是由于发生泄漏,既定的控制动作可能会受到影响,直至引起系统故障。外泄漏是指发生在系统和外部环境之间的泄漏。液压油直接泄漏到环境中,除了会影响系统的工作环境外,还会导致系统压力不够引发故障。泄漏到环境中的液压油还有发生火灾的危险。解决办法:采用质量较好的密封件,提高设备的加工精度。

另:对于液压系统这三大顽疾,有人进行了总结:“发烧、拉稀带得瑟”(这位总结者是东北人)。液压系统用于升降机,挖掘机,泵站,强夯机,起重机,等等大型工业,建筑,工厂,企业,还有升降机,升降平台,登车桥等等行业。

典型液压系统.(20200919190802)

第八章典型液压系统 近年来,液压传动技术已经广泛应用于很多工程技术领域,由于液压系统所服务的主机的工作循环、动作特点等各不相同,相应的各液压系统的组成、作用和特点也不尽相同。以下通过对几个典型液压系统的分析,进一步熟悉各液压元件在系统中的作用和各种基本回 路的组成,并掌握分析液压系统的方法和步骤。 阅读一个较为复杂的液压系统图,大致可按以下步骤进行: (1) 了解设备的工艺对液压系统的动作要求; (2) 初步游览整个系统,了解系统中包含有哪些元件,并以各个执行元件为中心,将系统分解为 若干子系统。 (3) 对每一子系统进行分析,搞清楚其中含有哪些基本回路,然后根据执行元件的动作要求,参 照动作循环表读懂这一子系统。 (4) 根据液压设备中各执行元件间互锁、同步、防干涉等要求,分析各子系统之间的联系。 (5) 在全面读懂系统的基础上,归纳总结整个系统有哪些特点,以加深对系统的理解。 第一节组合机床液压系统 、组合机床液压系统 组合机床液压系统主要由通用滑台和辅助部分(如定位、夹紧)组成。动力滑台本身不带传动装置,可根据加工需要安装不同用途的主轴箱,以完成钻、扩、铰、镗、刮端面、铳削及攻丝等工序。 图8—1液压系统工作原理 所示为带有液压夹紧的他驱式动力滑台的液压系统原理图,这个系统采用限 压式变量泵供油,并配有二位二通电磁阀卸荷,变量泵与进油路的调速阀组成容积

节流调速回路,用电液换向阀控制液压系统的主油路换向,用行程阀实现快进和工进的速度换接。它可实现多种工作循环,下面以定位夹紧一快进一工进一二工进一死挡铁停留一快退一原位停止松开工件的自动工作循环为例,说明液压系统的工作原理。 1. 夹紧工件夹紧油路一般所需压力要求小于主油路,故在夹紧油路上装有减压阀6,以减低夹紧缸的压力。 按下启动按钮,泵启动并使电磁铁4DT通电,夹紧缸24松开以便安装并定位工件。当工件定好位以后,发出讯号使电磁铁4DT断电,夹紧缸活塞夹紧工作。其油路:泵1f单向阀5—减压阀6—单向阀7—换向阀11^左位夹紧缸上腔,夹紧缸下腔的回油—换向阀11左位回油箱。于是夹紧缸活塞下移夹紧工件。单向阀7用以保压。 2. 进给缸快进前进当工件夹紧后,油压升高压力继电器14发出讯号使1DT通电,电磁换向阀13和液动换向阀9均处于左位。其油路为: 进油路:泵1—单向阀5—液动阀9—左位行程阀23右位—进给缸25左腔回油路:进给缸25 右腔—液动阀9左位—单向阀10—行程阀23右位—进给缸25 左腔。 于是形成差动连接,液压缸25 快速前进。因快速前进时负载小,压力低,故顺序阀4 打不开(其调节压力应大于快进压力),变量泵以调节好的最大流量向系统供油。 3. 一工进当滑台快进到达预定位置(即刀具趋近工件位置),挡铁压下行程阀23,于是调速阀12接入油路,压力油必须经调速阀12才能进入进给缸左腔,负载增大,泵的压力升高,打开液控顺序阀4,单向阀10 被高压油封死,此时油路为: 进油路:泵 1 —单向阀5—换向阀9 左位—调速阀12—换向阀20 右位—进给缸25 左腔 回油路:进给缸25 右腔—换向阀9 左位—顺序阀4—背压阀3—油箱。一工进的速度由调速阀12调节。由于此压力升高到大于限压式变量泵的限定压力P B,泵的流量便自动减小到与调速阀的节流量相适应。 4. 二工进当第一工进到位时,滑台上的另一挡铁压下行程开关,使电磁铁3DT 通电,于是阀20左位接入油路,由泵来的压力油须经调速阀12和19才能进入25的左腔。其他各阀的状态和油路与一工进相同。二工进速度由调速阀19来调节,但阀19的调节流量必须小于阀12的调节流量,否则调速阀19将不起作用。 5. 死挡铁停留当被加工工件为不通孔且轴向尺寸要求严格,或需刮端面等情况 时,则要求实现死挡铁停留。当滑台二工进到位碰上预先调好的死挡铁,活塞不能再前进,停留在死挡铁处,停留时间用压力继电器21 和时间继电器(装在电路上)来调节和控制。 6. 快速退回滑台在死挡铁上停留后,泵的供油压力进一步升高,当压力升高到压力继电器21 的预调动作压力时(这时压力继电器入口压力等于泵的出口压力, 其压力增值主要决定于调速阀19的压差),压力继电器21发出信号,使1DT断电,2DT通电,换向阀13和9均处于右位。这时油路为: 进油路:泵 1 —单向阀5—换向阀9 右位—进给缸25 右腔。回油路:进给缸 25 左腔—单向阀22—换向阀9 右位—单向阀8—油箱。 于是液压缸25 便快速左退。由于快速时负载压力小(小于泵的限定压力P B), 限压式变量泵便自动以最大调节流量向系统供油。又由于进给缸为差动缸,所以快

轧机液压辊缝控制系统的原理及应用

轧机液压辊缝控制系统的原理及应用 许战军 (河北钢铁集团 邯钢公司 西区冷轧厂 河北 邯郸 056002) 摘 要: 介绍邯宝公司2080冷轧酸轧联合机组轧机液压辊缝控制,通过分析HGC液压缸可以在位置控制模式和轧制力控制模式下运行的模式,由液压辊缝控制(HGC)系统调节轧机对带钢的压下量,直接影响到板型效果。 关键词: 轧机;液压辊缝控制;压下量 中图分类号:TG333 文献标识码:A 文章编号:1671-7597(2012)1110010-02 用。在咬钢的瞬间从位置控制转换到轧制控制,反过来也一 0 前言 样。由于控制模式转换必须在任何时候都可用,所以控制回路邯钢新区冷轧厂采用德国SMS集团最新的轧制技术,5架串 必须时刻调整输出来平衡设定值和实际值。位置控制和轧辊轧列式6辊轧机,通过弯辊系统、窜辊系统和螺旋压下系统来轧制 制力控制从属于更高一级的控制如厚度控制或秒流量控制。 带钢改善板型。螺旋压下系统主要靠液压辊缝控制(HGC)系 同步/倾斜控制系统是建立在位置控制和轧制力控制上统来调节轧机对带钢的压下量。冷轧就是带钢在再结晶温度进 的,以确保两个调节液压缸平行动作,这样可使轧机的上支承行轧制,所以液压辊缝控制的精度直接影响产品的厚度,液压 辊保持在轧机中心线上,并可变化。伺服阀的电源由UPS来提辊缝控制的倾斜控制配合弯辊和窜辊直接影响板型效果。 供,下表是伺服阀在各种模式下的电流值。 1 液压辊缝机械和液压系统结构 轧机机架配备了两个HGC液压缸。液压缸安装在轧机机架 上部。 HGC液压缸是用伺服阀进行闭环控制的,伺服阀仅控制液 压缸塞侧的压力。其中液压缸的油压必须是由轧机区高压液压 系统提供的。轧机机架的畜能器,直接在伺服阀之前,确保持 续的缓冲油量。 液压缸的杆侧是用一个独立的低压缓冲畜能器管路联结 的,可以尽心润滑并且避免真空。做打开动作时,例如当换辊 时HGC液压缸打开,杆侧管路压力会上增加,以提升辊缝开张 速度。 HGC液压系统图如下: 2.1 位置控制系统 位置控制用来控制液压缸位置,在操作侧和驱动侧都有位 置控制和倾斜控制。位置控制的输出限制值是可调节的,其大 小随倾斜量变化,最大约为伺服阀全开度的70%。 位置实际值是由2个HGC缸上的2个位置传感器(sony磁 尺)测量的,其精度可达1μm。每个传感器都安装在每个液压缸 中心,测量的是液压缸中心的高度。 当传感器错误时,HGC缸将停止运动。“传感器错误”信 号是通过对传感器系统里面的传感信号实时监测,监测电源和 位置差最大差异位置检测来实现的。液压缸完全收回的缸程是 由位置传感器侧量得。 2.2 轧制力控制 轧制压力控制是对驱动侧和操作侧的单独轧制力进行求和 并通过倾斜控制来修正而得来的。轧制力控制的输出限制值是 2 液压辊缝电气控制原理 可调节的,其大小随倾斜量变化,最大约为伺服阀全开度的HGC液压缸可以在位置控制模式和轧制力控制模式下运 70%。 行,当辊缝张开时液压缸一般是在位置控制模式下运行的。 轧制力是由安装在HGC缸塞侧的压力传感器测量得。一旦HGC缸的轧制力控制模式只有在辊缝关闭时才有可能 使

棒材轧机液压系统设计说明

棒材轧机液压系统设计说明

毕业设计 棒材轧机液压系统设计说明书

目录 1.前言 (1) 2.绪论 (2) 2.1液压技术概况 (2) 2.2本课题主要研究内容 (2) 2.3设计步骤 (3) 3.液压系统的工作要求 (5) 3.1液压系统的组成 (5) 3.2棒材轧机液压系统工作原理 (5) 3.3液压系统参数计算 (5) 3.3.1确定液压缸负载 (5) 3.3.2液压缸主要尺寸的确定 (6) 3.3.3确定液压泵的流量、压力和选择泵的规格 (7) 3.3.4与液压泵匹配的电动机的选定 (8) 4.确定液压系统方案、绘制液压系统原理图 (9) 4.1确定液压系统方案 (9) 4.1.1液压基本回路 (9) 4.1.2选择液压回路 (9) 4.2绘制液压系统图 (10) 4.2.1将基本回路组成系统原理图 (10) 4.2.2液压元件选择 (11) 4.3液压系统的验算 (11) 4.3.1系统压力损失计算 (12) 4.3.2系统效率计算 (13)

5.液压站的设计 (15) 5.1液压站简介 (15) 5.2油箱设计 (15) 5.2.1油箱有效容积的确定 (16) 5.2.2油箱的结构设计 (17) 5.3油箱结构 (20) 5.4液压站的结构设计 (21) 5.4.1液压泵的安装方式 (21) 5.4.2液压泵与电动机的连接 (22) 5.5辅助元件 (24) 5.5.1滤油器 (24) 5.5.2空气滤清器 (24) 5.5.3液压油 (24) 5.5.4液压控制装置的集成 (24) 5.6绘制装配图 (25) 5.7液压系统清洗、使用与维护 (26) 5.7.1清洗液压系统 (26) 5.7.2系统的使用和维护 (27) 6.结论 (29) 谢辞 (30) 参考文献 (31) 外文资料 (32)

(完整版)液压系统施工方案

液压系统施工方案 一、工程概况 攀钢集团成都钢铁有限公司①177精密轧管机组搬迁改造液压系统安装工程,由华夏建设公司承建。该工程液压系统设计(……),系统制造为(……),施工图设计为中 冶赛迪技术股份有限公司。 液压管道为碳钢(20#)无缝钢管。 系统液压介质为L-HM46抗磨液压油 系统管线压力及清洁度要求 编制依据 (1)H1连铸机管道

(6) H4主轧线管道 施工方法、技术措施 2.施工的重点、难点

液压系统的设备、元件精密,重要设备设备、元件均为进口件,其订货周期长,因此,运输、安装液压设备,保护设备不被损坏为工作的重点之一。液压系统清洁度要求为NAS7级,因此,现场设备安装、管道切割、焊接、连接、加油、循环清洁,应以确保清洁度为工作中心;液压系统的使用压力最高达到30 Mpa,如何确保焊接质量,密圭寸件的正确使用、安装,密圭寸面的紧固,成为减少泄漏的重要环节。 3. 设备的开箱验收 设备在运输至现场后,确认设备的规格、型号、数量,以及设备的外观是否完好,并作好开箱验收记录。暂时不能安装的设备,应作好保管、存放工作。现场的存放工作应有专人看护,防日晒雨淋,同时避免其它专业施工时对设备造成损坏。所有外露口均应包扎好,以免对设备造成污染。 4. 油箱、油泵、阀站等设备安装 (1) 设备安装前应根据设备图纸要求对设备的基础进行验收,校对基础的标 高,中心线及安装用的中心预埋件(如地脚螺栓、钢板等)位置是否正确和 齐全。 (2) 将放垫铁的基础面铲平,安放垫铁。 (3) 在运输、搬运设备,应注意对液压元件进行保护,无起重设备的地点搬运 时,应垫以枕木、滚筒,辅以葫芦牵引;起吊、牵引的受力点应在支架、 底座部位,不得使阀台、泵体等受力。 (4) 设备就位后,用检测精度为0.05mm的条式水平仪检查,允许误差为 0.5mm/m。 (5) 室内设备安装,应注意按先里后外的顺序进行。 (6) 设备调整完后,须紧固地脚螺栓,将垫铁间点焊。 (7) 以上工作完成后,填写《二次灌浆通知书》交由土建进行二次灌浆作业。5. 管道酸洗 本次工程使用的管材为20#碳无缝钢管,酸洗采用特制四合一磷化液酸

轮式压路机液压系统毕业设计

摘要 设计中介绍了结晶器液压振动系统,系统通过输入正弦电信号给伺服阀,进而控制液压缸的正弦振动。设计过程中系统的分析了系统的工作状况,以及在该工作状况下所系统所要达到的工作要求。设计中针对系统中的液压泵,伺服阀,液压缸等主要元件的选型经行了详细的计算与校核。 在泵站的设计中,核心部分是泵,油箱以及蓄能器的设计计算与选型,三者的关系是相互影响的,同时,液压系统也受外在因素的诸如工作环境和工作温度的影响,这些影响对系统的影响是非常大的,这个因素考虑的不全面直接影响到系统的工作性能。 在系统的各个参数计算中,根据设计内容所给出的条件,计算出系统液压缸的位移振动曲线。根据振动曲线方程可以求解出系统所需的最大流量,根据计算的结果确定整个系统的工作状况。 系统泵的驱动功率的计算,按照在系统振动过程中各个工况条件下所需功率的平均值,正弦振动的平均速度可以通过正弦振动方程计算出。 设计中的大部分元件都是通过相关参数的计算,根据产品的样本经行选型,以达到系统的要求。 关键词:结晶器;液压伺服系统;激振;正弦振动

Abstract The system of hydraulic vibration system for crystallizer was introduced in the design,To control the sinusoidal vibration of the cylinder, the sinusoidal signal is input into the servo valve by the computer .In the design, the working conditions is analysed,and the requirements of the system under this conditions is also analysed. For the design of the hydraulic system, the pump,servo valves, hydraulic cylinders and other major components of the Selection are detailed calculated and checked. In the design of the pumping station, the core are calculation of the pump, storage tank of the design and selection, the relations among each other are impacted, at the same time, The hydraulic systems are also impacted by external factors such as the working environment and temperature The impact of these effects on the system is very great, if this factor is not taken into consideration, There will be direct impact on the performances of the system. The various parameters of the system is calculated according to the contents of the conditions, and we can calculate the displacement vibration curve of the hydraulic cylinder of the system. According to vibration curve equation,we can work out the most flow of the system , And determine the working conditions according to the results of the whole system. The calculation of the pump-driven power of the system is the average of the power required in the vibration of the system under the working conditions. And the sine vibration equation can be calculated. The most components are selected through the calculation of the relevant parameters, based on a sample of the products selection, to meet the system requirements. Key words: Crystallizer; Hydraulic servo system; Exciting vibration; Sinusoidal vibration

板带轧机换辊液压系统设计

1绪论 液压传动是一门较新的技术,是有很多其他传动所不能比拟的独特优点。因此,近年来,各种机械设备应用液压技术越来越普遍。世界各国对液压机械装置的需求量也急速上升。目前,液压技术不仅应用于一般机械、高精密机械和超大型设备,而且还应用于航海与海洋技术开发技术中。同时,也正应用于各种生活设施中。总之,液压技术已经广泛地深入到各个领域。我国的液压技术发展的也很快。特别是在工程机械、锻压机械、金属切削机床、采掘设备、轧钢设备、农业机械等机械制造和国防工业等一些部门。液压技术的应用日益增多。现在,我国已经制定了一些液压传动的技术标准,自行设计了各种液压元件,在标准、系列化、通用花方面做了大量工作。在液压技术的研究方面也取得了可喜的成果。 1.1 液压传动技术的发展和趋势 远在17世纪至19世纪,欧洲人对液体力学、流体传动、机构学及控制理论与机械制造就做出了主要贡献。其中包括1648年法国的B.帕斯卡提出的液体中压力传递的基本规律。1850年英国工程师William George Armstrong关于液压蓄能器的发明以及1895年英国人约瑟夫·布瑞玛的第一台液压机的英国专利。这些贡献与成就为20世纪的液压传动与控制技术的发展奠定了科学与工艺基础。 19世纪,工业上所使用的液压传动装置是以水作为介质,因其密封问题一直未能很好的解决以及电器传动技术的发展竞争,曾一度导致液压技术停滞不前。 20世纪30年代后,由于车辆、航空、船舶等功率传动的推动,相继出现了斜轴式及弯轴式轴向柱塞泵、径向和轴向液压马达。1936年Harry Vickers发明了先导控制阀为标志的管式系列液压控制元件。第二次世界大战期间,由于军事上的需要,出现了以电液伺服系统为代表的响应快、精度高的液压元件和控制信号。从而使液压技术得到迅猛发展。 20世纪50年代,随着各国经济的恢复和发展,生产过程自动化的不断增长,使液压技术很快转入民用工业,在机械制造、其中运输机械及各类施工机械、船舶、航空等领域得到广泛发展。 20世纪60年代以来,随着原子能、航空航天技术、微电子技术的发展液压技术在

轧机AGC液压系统常见故障及处理

轧机AGC系统故障及处理 河北邯钢冷轧薄板有限公司目前拥有一条1550单机架六辊可逆轧机,设计年产量20万吨,轧机采用液压压上方式,实现AGC自动控制,本文主要结合在实际生产中出现的故障进行分析和总结。 1 AGC系统原理 AGC系统又称为自动辊缝控制系统(automatic roll gauge control),AGC系统在轧机应用领域中的工作原理是当轧机的轧制力发生变化就会实现轧机的自动补偿和调整动作,用测厚仪测得板材实际厚度与给定厚度比较,将偏差以电压的形式通过伺服阀达到控制液压缸的动作,调整轧机的轧辊辊缝,从而使出口板厚恒定,保证产品的目标厚度,同板差、异板差达到性能指标要求。 该轧机有2个压上缸,分别位于操作侧和驱动侧,每个压上缸各有1个压力传感器、伺服阀和电磁溢流阀。伺服阀的供油管路前后各有1个液控单向阀。压上缸压上时2个单向阀处于开通状态,电磁溢流阀做溢流阀用(压上缸的进油口压力大于调定压力时溢流)。压上缸下降时电磁溢流阀换向进行卸荷,液控单向阀关闭油路对伺服阀进行保护。 2 AGC系统故障分析及处理 2.1两侧AGC液压缸从快抬位置(228mm)快速上升到10mm辊缝位置的过程中,一侧无动作导致倾斜超限。可能引起该现象的原因有: 2.1.1电磁溢流阀阀芯卡死,一直在进行卸荷。判断是否卡死的

依据有电磁溢流阀是否异常发热和是否有卸荷的声音。处理方法--更换电磁溢流阀,需要注意的是更换完成后需要调节新阀至指定的溢流压力值; 2.1.2 伺服阀航空插头里的信号线发生脱落,表现为伺服阀给定值和反馈值相差超过5%,处理方法更换航空插头; 2.1.3 伺服阀内泄严重,更换伺服阀; 2.2 换辊后在校辊过程中到轧制力差清零步骤时,两侧液压缸位置倾斜大于0.7mm报警无法正常校辊,可能的原因有: 2.2.1 中间辊或工作辊安装偏差大。通过观察在压上至标定轧制力过程中轧制力和两侧AGC缸位置变化,如位置变化同步,完成后轧制力差大于200KN,处理方法换辊;或者压力传感器异常,更换压力传感器; 2.2.2 如AGC缸位置变化不同步,观察哪一侧与辊缝变化相差大,更换伺服阀 此外在生产中还出现过因伺服阀零位磨损较大引起的液压缸轻 微跳动、电磁溢流阀插头虚接引起的液压缸卡顿等现象。 3 结语 AGC系统是将自动控制、机械、轧制工艺、液压等多种专业紧密结合在一起的一种综合控制系统。系统运行的好坏直接影响着板材成材率和产品形成质量,系统故障甚至还会给设备带来损坏。因此要保证系统稳定、低耗、可靠的运行,提高钢材成材率和产品质量,用最小的成本实现效益的最优化。

轧机升降台液压系统设计

摘要 轧钢生产在国民经济中所起的作用是十分显著的。钢铁工业生产中,除少量的钢用铸造或铸造方法制成零件外,炼钢厂生产的钢锭与连铸坯有85~90%以上要经过轧钢车间轧成各种钢材,供应国民经济各部门。可见在现代钢铁企业中,作为使钢成材的轧钢生产,在整个国民经济中占据着异常重要的地位,对促进我国经济快速发展起十分重要的作用。 轧机液压升降台是用于升降和输送轧件,本文主要对三辊轧机液压升降台液压系统设计,包括液压系统的拟定,齿轮齿条油缸的设计,液压站的设计。 关键词:轧机液压升降台,齿轮齿条油缸,液压系统

Abstract Steel rolling production plays a role in the national economy is very significant. The production of iron and steel industry, in addition to the casting or casting method with a small amount of parts made of steel, steel ingot and casting factory production of steel 85 ~ 90% more to go through the mill rolling into various steel products, supply of various sectors of the national economy. In modern iron and steel enterprise, as the steel plate rolling production, occupies a very important position in the whole national economy, to promote China's rapid economic development plays an important role in. Hydraulic lifting platform is used for lifting and conveying workpiece, this paper focuses on the design of the three rolling mill hydraulic system hydraulic lifting platform, including the design of hydraulic system, gear and rack cylinder, the design of hydraulic station. Keywords: hydraulic lifting platform, the gear rack cylinder, hydraulic system

板带轧机电动及液压压下联合控制系统(最新版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 板带轧机电动及液压压下联合控 制系统(最新版)

板带轧机电动及液压压下联合控制系统(最 新版) 导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 随着科学技术的进步,我国经济得到了快速的发展,汽车、电子等行业对板带钢材的质量要求越来越高。厚度是板带材最重要的质量指标之一,厚度自动控制AGC控制性能的优劣将直接影响轧制产品的质量。本文对该轧机采取的改造方案为电动压下和液压压下联合控制板厚,由电动压下进行辊缝粗调,液压压下系统负责辊缝精调。 板带轧机厚度控制理论 1.1.影响轧制产品厚度的因素 轧制过程中,影响轧制产品厚度的因素很多,根据弹跳方程,生产实际中影响轧制产品厚度的因素主要如下: 1.1.1.轧机的机械装置和液压装置 在轧机加工装配过程中,零部件之间的误差对轧机的刚度和空载辊缝造成直接影响,从而使得轧制产品的厚度偏离目标值。轧机开始运作之后,其零部件会发生变形或扭曲,这都会改变轧机辊缝的大小

液压振动压路机技术状况的判定及分析示范文本

液压振动压路机技术状况的判定及分析示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

液压振动压路机技术状况的判定及分析 示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 压路机是路桥施工中必不可少的压实设备,其技术状 况的好坏直接影响着工程的质量和进度,对现有已使用一 定年限的液压振动压路机的技术状况进行分析判定,利于 管好、用好压路机。液压振动压路机可以从以下几个主要 系统对其技术状况进行分析判定:发动机;液压驱动系统;液压 振动系统;液压转向系统;振动轮;其他系统。其中发动机、液 压驱动系统、液压振动系统和振动轮是决定液压振动压路 机技术状况的主要因素,直接影响着压实效果。 1 发动机 发动机是动力源,为压路机液压系统提供驱动力。发

动机技术状况包括动力性、燃料使用经济性、润滑性能和散热性能等。动力性好能保证发动机具有足够的功率输出;润滑性能则保证发动机内部的良好润滑,确保发动机正常运转;散热性能则保证发动机的热量被及时带走而能正常工作;燃料使用经济性则表明发动机使用成本。 1.1发动机动力性的判定 对发动机动力性的判定可用测功仪器测定发动机的功率输出性能,但一般施工企业没有测功仪器,可通过测量发动机各汽缸压缩压力、机油消耗等进行判定。 1)汽缸压缩压力。分别测量发动机各缸的压缩压力,若各汽缸压缩力在发动机标准值内,说明发动机缸套、活塞、活塞环以及进、排气门等密封组件密封性能良好,发动机动力性能良好,若汽缸压力过低则可能是活塞、活塞环、缸套等部件磨损,或进排气门密封不严,导致发动机动力性能下降。

650五机架冷连轧机液压压上系统设计

1450五机架冷连轧机工作辊液压压下系统 摘要 本设计系统为1450五机架冷连轧机工作辊液压压下系统,针对钢板轧机的轧辊的位置偏差进行反馈纠正。主要介绍了目前国内外轧机液压AGC控制的发展状态和发展趋势以及现存的一些问题,本设计主要包括系统原理的设计、元件选择、阀组装配体设计、油箱设计等。本着合理并存有一定裕量、保证工艺要求、降低成本的原则设计本系统。通过这套伺服控制系统,可以精确控制轧机轧制钢板的厚度。 设计中参数的计算、系统原理的设计、元件的选择、油箱的设计等有关问题在说明书中进行了详细的阐述。 关键词冷轧机液压AGC 油箱

Abstract The design system for the1450 five stand cold rolling mill hydraulic AGC control system for steel mill roll position feedback error correction is a servo control system. Mill at home and abroad are introduced the development of hydraulic AGC control of the state and development trends and existing problems. The design principles include system design, component selection, Manifold Design, valve assembly design, tank design and pump station design, the spirit of reasonable co-exist with a certain margin to ensure the process requirements, the principles of the design cost of the system . Through this servo control system can precisely control the thickness of steel plate rolling mill. The calculation of the design parameters, system design principles, component selection, integrated block design, the design of pumping stations in the prospectus for the issue in details. Keywords Cold Rolling Mill Hydraulic AGC Pumping Station

振动压路机行走液压系统的故障诊断与排除

振动压路机行走液压系统的故障诊断与排除 1、液压系统故障 1.1压路机不能行走。1) 检查油箱内的铜心吸油滤清器,再检查行走泵壳体上的压力油滤清器。如堵塞,则清洗或更换滤心。2)检查补油压力。在补油泵测压口接一个4MPa的压力表,然后启动采油机并以怠速运转,观察表读数,其标定值为1.8MPa- 2.4MPa。3)若表的读数不正常, 应先检查补油泵滤清器,再查进油管、液压油箱的进、排气口及柴油机与液压泵之间的连接盘等。4) 检查高压系统的压力和补油压力。先将前后轮用模块挡住,再在行走泵高压测压口装上60MPa的压力表,起动采油机并使行走泵高速旋转,然后将行走操纵手柄短时间推到全载位置,观察高压值是否在38MPa42MP之间。 1.2驱动功率太低。1) 首先要排除因制动部分装配不当引起的故障原因。然后检查液压系统的高压、补油压力的标定值是否波动,若无波动,则应检查行走泵,修理其随动元件。2) 如高压、补油压力波动,则应检查行走泵的泵壳腔压力,即在泵壳腔测压口上接一个4MPa的测压表(发动机处于最大转速运转、压路机处l于轻载状态),若此时的标定压力升高并超过0.15MPa,则应修理或更换行走泵。3)如标定压力不超过 0.15MPa,则应检查行走马达,堵住高压管,重做高压和补油压力的检查。若补油压力正常,则应修理或更换行走马达。4) 若补油压力不正常,则应检查行走泵:拆下高压连接部位,然后用钢板封住高压管端面再与行走泵连接好,压路机向后行驶(行走泵做反向旋转),重做压力测试

(不超过3min)。如补油压力不正常,应修理或更换行走泵。 2、振动压路机无振动故障的诊断与排除 2.1 由振动液压回路引起无振动振动液压回路原理(见图1) 1)液压泵吸油管堵塞、液压泵的啮合齿轮之间及齿轮与端盖、侧板之间因磨损严重造成齿轮泵的高、低油腔之间串通(即内泄漏严重),或液压油温升过高等均可导致液压泵泵不出油液,于是液压马达停转,偏心轴不能产生振动。2)液压马达输出轴折断或液压马达的侧板和齿轮两侧面磨损,可使液压马达不能将扭矩传递给振动偏心轴,从而导致无振动故障。3)溢流阀的调压弹簧失效,致使液压油直接回油箱而无油液驱动液压马达,从而导致无振动故障。4)液压油管破裂、油管接头松脱或液压油箱缺油均可引起无振动故障。5)电液换向阀组由电磁换向阀和液动换向阀组成,前者作先导阀,后者作丰换向阀。当电磁换向阀因电磁衔铁与套筒之间有污物、锈蚀严重而卡死,或电磁线圈进、出导线连接松脱和线圈烧坏,或电磁换向阀的阀心磨损严重、被污物卡死,或复位弹簧失效等,均可导致电磁换向阀的阀心处于中位不能换向,从补油泵来的控制压力油直接回油箱,不能推动主换向阀的阀心换向,致使液压振动马达不能工作,从而导致无振动故障发生。同样,液动换向阀的阀心被污物卡死在中位或者阀心磨损严重等也可导敛振动压力油直接同油箱, 从而产生无振动故 障。 2.2由振动控制电路引起无振动振动控制电路原理见图3。 1) 控制电路中的点火开关2、振动开关继电器4、延时继电器8、振

振动压路机液压系统常见故障分析与排除正式样本

文件编号:TP-AR-L8066 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 振动压路机液压系统常见故障分析与排除正式样 本

振动压路机液压系统常见故障分析 与排除正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 振动压路机前轮的振动是依靠液压马达转动时带 动失去静平衡的一个激振转子转动(就像我们常见的 蛙式打夯机),使前轮振动,以增强压实能力和影响 深度。其液压系统主要由液压油泵、电磁控制阀、调 节阀、液压马达、辅助元件等组成。 振动压路机的液压系统工作好坏,集中地表现在 振动频率和振幅。如果振动轮不振动或振动频率和振 幅低于初始值,说明是液压系统发生了故障。 一、振动轮不振动 1.现象

接通电磁阀的电路时,振动轮不振动。 2.原因分析 振动压路机激振液压马达的油路是通过电磁阀的电磁线圈通电后产生磁力,驱动铁芯使控制阀的滑阀移动,以接通液压马达与油泵的压力油路和回油路。液压马达在压力油的作用下转动,并带动振子激振。如果接通电路开关后振轮不振动,可能是液压马达的压力油路没有接通之故,其原因是: (1)电路故障 电磁阀的电源电路断路或电磁线圈损坏,不能驱动换向阀的滑阀与阀体相对滑移,故不能接通液压马达的压力油路而不振动。 (2)换向阀故障 滑阀被机械杂质卡死在关闭位置,使电磁阀难以驱动,造成液压马达不能将油路接通,则压路机不振

轧机液压站说明书

总目录 第一章系统主要性能参数 (2) 第二章系统工作原理 (3) 第三章系统安装说明 (3) 第四章系统调试运行 (4) 第五章系统维护保养 (5) 第1节系统油液的保养 (5) 第2节过滤器的清洗 (5) 第3节螺钉的再次紧固 (5) 第4节系统维护保养项目 (6) 第六章注意事项: (8) 第七章常见故障的诊断与处理 (8) 第1节产生噪声 (8) 第2节压力损失 (9) 第3节液压站运转故障 (9)

第一章系统主要性能参数 电机1额定功率:11KW 额定转速:1460r/min 工作压力:12MPa 额定流量:48.7L/min 电机2额定功率:3Kw 额定转速:1430r/min 工作压力:11MPa 额定流量:10L/min 继电器压力:上限12MPa,下限10MPa 油箱容积:500L 电机工作电压:380V AC,50Hz 控制电压:DC24V 液压油型号:N46#抗磨液压油 油液清洁度:NAS9级 系统工作温度范围:30~55度 控制方式:手动,自动

第二章系统工作原理 系统工作原理图、装配图、端子接线表见附录。 系统温度的控制: 本液压系统正常工作时液压油所需温度为30~55℃。 油温低于15℃时,低温报警;油温高于55℃时,高温报警;油温过高(超过60℃),应立即关闭系统,直到油温回到正常。 系统压力的控制: 本系统所用泵为美国伊顿公司产定量叶片泵。系统压力由溢流阀(序号25,对应泵1;序号13对应泵2)调定。 执行机构的控制: 通过电磁换向阀的电磁铁通断电来控制油缸的伸出和缩回,详见原理图。 第三章系统安装说明 为保证系统散热,系统应安装在通风良好、远离热源的环境中。 主回路电机为三相380V AC,三角型接法。接线确认无误后点动,判断电机转向是否与电机上的转向标记相符,如不符,换接电线中的任意两相就可以改变电机的旋转方向。 换向阀工作电压为DC24V。 系统需良好接地。 向油箱内加油时应使用带滤油功能的加油机,保证系统的清洁度,使油液加到油标上限。

振动压路机液压系统常见故障分析与排除详细版

文件编号:GD/FS-4122 (解决方案范本系列) 振动压路机液压系统常见故障分析与排除详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

振动压路机液压系统常见故障分析 与排除详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 振动压路机前轮的振动是依靠液压马达转动时带动失去静平衡的一个激振转子转动(就像我们常见的蛙式打夯机),使前轮振动,以增强压实能力和影响深度。其液压系统主要由液压油泵、电磁控制阀、调节阀、液压马达、辅助元件等组成。 振动压路机的液压系统工作好坏,集中地表现在振动频率和振幅。如果振动轮不振动或振动频率和振幅低于初始值,说明是液压系统发生了故障。 一、振动轮不振动 1.现象 接通电磁阀的电路时,振动轮不振动。

2.原因分析 振动压路机激振液压马达的油路是通过电磁阀的电磁线圈通电后产生磁力,驱动铁芯使控制阀的滑阀移动,以接通液压马达与油泵的压力油路和回油路。液压马达在压力油的作用下转动,并带动振子激振。如果接通电路开关后振轮不振动,可能是液压马达的压力油路没有接通之故,其原因是: (1)电路故障 电磁阀的电源电路断路或电磁线圈损坏,不能驱动换向阀的滑阀与阀体相对滑移,故不能接通液压马达的压力油路而不振动。 (2)换向阀故障 滑阀被机械杂质卡死在关闭位置,使电磁阀难以驱动,造成液压马达不能将油路接通,则压路机不振动。

(完整版)液压系统基础知识大全液压系统的组成及其作用一个完整的液压系统

液压系统基础知识大全 液压系统的组成及其作用 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。 动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。 执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。 控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为村力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。 辅助元件包括油箱、滤油器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、油位油温计等。 液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。 液压系统结构

液压系统由信号控制和液压动力两部分组成,信号控制部分用于驱动液压动力部分中的控制阀动作。 液压动力部分采用回路图方式表示,以表明不同功能元件之间的相互关系。液压源含有液压泵、电动机和液压辅助元件;液压控制部分含有各种控制阀,其用于控制工作油液的流量、压力和方向;执行部分含有液压缸或液压马达,其可按实际要求来选择。 在分析和设计实际任务时,一般采用方框图显示设备中实际运行状况。空心箭头表示信号流,而实心箭头则表示能量流。 基本液压回路中的动作顺序—控制元件(二位四通换向阀)的换向和弹簧复位、执行元件(双作用液压缸)的伸出和回缩以及溢流阀的开启和关闭。对于执行元件和控制元件,演示文稿都是基于相应回路图符号,这也为介绍回路图符号作了准备。 根据系统工作原理,您可对所有回路依次进行编号。如果第一个执行元件编号为0,则与其相关的控制元件标识符则为1。如果与执行元件伸出相对应的元件标识符为偶数,则与执行元件回缩相对应的元件标识符则为奇数。不仅应对液压回路进行编号,也应对实际设备进行编号,以便发现系统故障。 DIN ISO1219-2标准定义了元件的编号组成,其包括下面四个部分:设备编号、回路编号、元件标识符和元件编号。如果整个系统仅有一种设备,则可省略设备编号。 实际中,另一种编号方式就是对液压系统中所有元件进行连续编号,此时,元件编号应该与元件列表中编号相一致。这种方法特别适用于复杂液压控制系统,每个控制回路都与其系统编号相对应 国产液压系统的发展 目前我国液压技术缺少技术交流,液压产品大部分都是用国外的液压技术加工回来的,液压英才网提醒大家发展国产液压技术振兴国产液压系统技术。 其实不然,近几年国内液压技术有很大的提高,如派瑞克等公司都有很强的实力。 液压附件: 目前在世界上,做附件较好的有: 派克(美国)、伊顿(美国)颇尔(美国) 西德福(德国)、贺德克(德国)、EMB(德国)等 国内较好的有: 旭展液压、欧际、意图奇、恒通液压、依格等 液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。 1795年英国约瑟夫·布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。

相关文档
最新文档