神奇的有机电化学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神奇的有机电化学

新能源材料与器件班

学号:1303230004

姓名:陈胜皇

摘要:

有机电化学合成具有许多优点,近二十年来,有关有机电化学合成的研究和工业应用进展迅速,已成为一门新的热点学科。医药品、香料、农药等称为精细化学品。这类产品一直用有机合成和发酵法生产,后来才认识到对这些精细化学品采用电解合成的过程是极为有效的。即有机电合成方法可以在温和的条件下制取许多高附加值的有机产品;而且用电子这一干净的试剂去代替会造成环境污染的氧化剂和还原剂,是一种环境友好的洁净合成,代表了新世纪化学工业发展的一个方向,近30年来的有机电合成在许多国家得到了迅速发展。围绕电化学合成有机物和化学法合成有机物的优点进行对比,总结有机电合成的优点与不足,以及工业生产应用上的问题。

Organic electrochemical synthesis has many advantages Over the past twenty years On the research and industrial application of organic electrochemical synthesis rapidly Has become a new hot subject Pharmaceuticals spice called fine chemicals such as pesticides This kind of product has been produced with organic synthesis and fermentation Then did I realize the fine chemicals with electrolytic synthesis process is extremely effective Organic synthesis method can under mild conditions for making many organic products with high added value And with electronic this clean reagent to replace will cause environmental pollution of oxidant and reducing agent Is a kind of environmental friendly clean synthesis Represents a direction of the development of the chemical industry in the new century For nearly 30 years of organic synthesis in many countries has been developing rapidly Around the advantages of electrochemical synthesis of organic and chemical synthesis of organic compounds were compared Summarize the advantages and shortcomings of organic synthesis The problems of the

application and industrial production

关键词:电化学有机电解合成、电化学的有机化学合成

Electrochemical organic electrolytic synthesis、Electrochemical synthetic organic chemistry

正文:

早在19世纪初期,雷诺尔德(Rheinold)和欧曼(Erman)发现电是一种强有力的氧化剂和还原剂,那时他们就已经用醇稀溶液进行过电解反应的研究。1934年,法拉第首先使用电化学法进行了有机物的合成和降解反应研究,发现在醋酸盐水溶液中电解时,阴极上会析出CO。并生成烃类化合物。后来,柯尔贝(Kolbe)在法拉第工作的基础上,创立了有机电化学合成(又称有机电解合成,下简称有机电合成)的基本理论。虽然有机电合成的研究早在19世纪初就已经开始,但是限于理论和工艺复杂性及有机催化合成迅速发展带来的竞争,有机电合成在很长一段时间内进展缓慢,只是作为有机化学家们在实验室中制备有机化合物的一种常用方法,并未在工业化上迈出步伐。

直到20世纪50年代,电化学理论、技术、新材料的发展为有机合成的工业应用奠定了基础。有机电合成真正取得实质性进展开始于1960年,美国孟山都(Monsanto)公司电解丙烯酸二聚体生产己二腈获得了成功,并建成年产1.45万吨的己二腈生产装置,这是有机电合成走向大规模工业化的重要转折点。从此,有机化合物的电化学性质和有机电化学反应机理的研究得到了快速发展,以有机电合成为基础的工业领域不断出现。

由于有机电合成具有污染少(甚至无污染)、产物收率和纯度高、工艺流程较短、反应条件温和等优点,近20年来,世界工业先进国家有机电合成的发展非常迅速,目前已有上百种有机化工产品通过电化学合成实现了工业化生产或者进入了中试阶段。近年来每年发表的有关有机电化学合成方面的研究论文几百篇,有关的专利发明每年平均有504 70项之多,这些数字表明有机电合成工业已引起人们的足够重视,并在高科技领域内崭露头角。我国电

合成方面的研究起步较晚。

近几十年来,我国已有许多研究者涉足这一领域,做了大量研究开发工作。近10年来,我国有机电合成领域得到了较大的发展,有10多个产品实现了工业化,研究的品种也日趋增多,我国有机电合成科学和技术与世界的差距正在逐步缩小。

1.电化学合成工艺:

电化学合成最基本的研究对象,是各类电化学反应在“电极/溶液”界面上的热力学与动力学性质,证实这些反应在电化学体系内的反应可能性及其机理。化学反应的本质是反应物外层电子的得失,故任何一个氧化还原反应理论上都可以按照化学和电化学两种本质不同的反应机理来完成。对于任何一个如下式所示的氧化还原反应A + B →C + D

(1)如果通过化学反应实现上列反应,则可表示为A + B →[AB] =C+D

(2)化学反应过程中A粒子和B粒子通过相互碰撞形成一种活化配合物中间态[AB],然后转变成产物。电极反应在电极与溶液之间形成的界面上进行。对于单个电极而言,电极过程由下列步骤串联而成:

①反应物粒子自溶液本体向电极表面传递;

②反应物粒子在电极表面或电极表面附近液层中进行某种转化,例如表面吸附或发生化

学反应;

③在电极与溶液之间的界面上进行得失电子的电极反应;

④电极反应4 物在电极表面或电极表面附近液层中进行某种转化,例如表面脱附或发生化学反应;

⑤电极反应产物自电表面向溶液本体传递。任何一个电极过程都包括上述(1)(3)(5)三步,某些电极过程还包括(2)、(4)两步或其中一步。电极过程各步进行的速度存在差别,整个过程由其中最慢的一步控制,称为“控制步骤”。无机电化学合成工艺流程通常包括电解合成前

相关文档
最新文档