第二讲之第4章公钥密码体制案例

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 信息安全技术
第2章 密码技术基础 第3章 对称密码体系 第4章 公钥密码体系 第5章 公钥基础设施PKI 第6章 信息隐藏技术
第四章 内容
4.1公钥密学概述 4.2 Diffie-Hellman 密钥交换算法 4.3 RSA算法
4.1 公钥密码概述
1976年,Diffie 和Hellmann提出了公开密 钥密码体制(简称公钥体制),它的加密 、解密密钥是不同的,也是不能(在有效 的时间内)相互推导。所以,它可称为双 钥密码体制。
1978年由Ron Rivest、AdiShamir和Len Adleman发明。
➢ “A method for obtaining digital signatures and public key cryptosystem”
是一种块加密算法。
➢ 明文和密文在0~n-1之间,n是一个正整数
基于背包问题的Merkle-Hellman背包公 钥体制
基于有限域上离散对数问题的ElGamal 公钥体制
基于椭圆曲线的ECC密码体制
……
公钥密码体制介绍
公钥密码体制加解密过程主要有以下几步 :
不一样的密码
安全的公开密钥密码达到的功能
(1)简化密钥分配及管理问题
➢ 公钥体制用于数据加密时:
在Diffie-Hellman密钥交换算法中的单向函数 是模指数运算。它的逆过程是离散对数问题,其 Diffie-Hellman算法的保密性基于求mod p解离散 对数问题的困难。
离散对数பைடு நூலகம்
定义素数p的原元(原始根)为这样一个 数,他能生成1~p-1所有数的一个数。现 设a为p的原元,则
a mod p, a2 mod p,L , a p1 mod p
2.交换示例(续) (2)交换YA和YB; (3)交换密钥后,A、B分别计算共享的秘密
会话密钥KA、KB: ➢ 用 户A计 算: KA=YB XA mod 47=178 mod
47=4 mod 47
➢ 用户B计算: KB=YA XB mod 47=2810 mod 47=4 mod 47
A和B双方独立地决定采用数据“4”作为 会话密钥。
两两互不相同,构成一个1~p-1的全体数 的一个排列。对于任意数b及素数p的原元 a,可以找到一个唯一的指数 i,满足
b ai mod p , 0<=i<=p-1
则称指数i为以a为底、模p的b的离散对数。
1.基本原理
用户A
公开 YA 秘密 XA
用户B
YB 公开
XB 秘密
计算
计算
会话秘密 KA 密钥交换过程 KB 会话秘密
2.交换示例 为了计算简单,使用很小数字。设P=47和47
的一个原元,a=3。
A选择秘密密钥XA=8,B选择秘密密钥XB=10, 各自计算其公开密钥。
(1)双方各自计算
➢ 用户A计算:YA=3 8mod 47=6561 mod 47=28 mod 47
➢ 用 户 B 计 算 : YB=3 10mod 47= 59049 mod 47=17 mod 47
➢ 用户将自己的公开(加密)密钥登记在一个公 开密钥库或实时公开,秘密密钥则被严格保密 。信源为了向信宿发送信息,去公开密钥库查
一对密钥 找对方的公开密钥,或临时向对方索取公钥, 将要发送的信息用这个公钥加密后在公开信道 上发送给对方,对方收到信息(密文)后,则 用自己的秘密(解密)密钥解密密文,读取信 息。
➢ 对方收到消息后,为了确定信源的真实性,用对方的解密密钥解 密签名消息──称为(签名)验证,如果解密后的消息与原消息 一致,则说明信源是真实的,可以接受,否则,拒绝接受。
4.2 Diffie-Hellman 密钥交换算法
W.Diffie和M.E.Hellman于1976年提出的,让A和B 两个陌生人之间建立共享秘密密钥的公开密钥算 法,称为Diffie-Hellman算法,它定义了公开密 钥密码体制。它的目的是使得两个用户安全地交 换一个密钥以便用于以后的报文加密,这个算法 本身限于密钥交换的用途。许多商用产品都使用 这种密钥交换技术。
应用最广泛的公钥密码算法 只有美国专利,且已于2000年9月到期
1.RSA算法要点
算法产生一对密钥,一个人可以用密钥对中 的一个加密消息,另一个人则可以用密钥对 中的另一个解密消息。同时,任何人都无法 通过公钥确定私钥,也没有人能使用加密消 息的密钥解密。只有密钥对中的另一把可以 解密消息。
公开密钥密码体制的产生,是密码学革命 性的发展。一方面,为数据的保密性、完 整性、真实性提供了有效方便的技术。另 一方面,科学地解决了密码技术的瓶颈 ──密钥的分配问题。
公钥体制算法
第一个公钥体制是1977年由Rivest, Shamir,Adleman提出的,称为RSA 公钥体制,其安全性是基于整数的因子 分解的困难性。RSA公钥体制已得到了 广泛的应用。
特征与不足
➢特征:
•(1)仅当需要时才产生密钥,减少储存时间,减 少受攻击的机会; •(2)除对全局参数的约定外,密钥交换不需要事 先存在的基础结构。
➢不足:
➢(1)没有通信双方身份的信息; ➢(2)计算是密集性的,容易受到阻塞性攻击; ➢(3)没办法防止重放攻击; ➢(4)容易受到中间人攻击。
4.3 RSA算法
➢ 可见,这里省去了从秘密信道传递密钥的过程 。这是公钥体制的一大优点。

(2)保护信息机密
➢ 任何人均可将明文加密成密文,此后只有拥有解密密钥 的人才能解密。
(3)实现不可否认功能
➢ 公钥体制用于数字签名时:
➢ 信源为了他人能够验证自己发送的消息确实来自本人,他将自己 的秘密(解密)密钥公布,而将公开(加密)密钥严格保密。与 别人通信时,则用自己的加密密钥对消息加密──称为签名,将 原消息与签名后的消息一起发送.
密钥交换过程
(1)选择一个素数P和它的一个原元a;
(公2)开通密信钥方YAA选: 择自己的秘密密钥XA,并计算自己的 YA=a XA mod P
(3)通信方B选择自己的秘密密钥XB,并计算自己的 公开密钥YB: YB=a XB mod P
(4)通信双方A和B交换YA和YB; (5)A独立计算会话密钥,B独立计算会话密钥KS; (6)通信双方利用会话密钥KS进行通信。
相关文档
最新文档