直读光谱仪斯派克直读光谱仪操作手册
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直读光谱仪操作手册
第一章光电光谱分析的基本原理
一、 光谱分析简介
1、电磁辐射的基本特征
光谱是按照波长(或波数、频率)顺序排列的电磁辐射。天空的彩虹、自然界的极光等均是人们早期观察到的光谱,但它们仅是电磁辐射的很小的一部分可见光谱。还有大量的不能被人们直接看到的和感觉到的光谱,如γ射线、x射线、紫外线、红外线、微波及无线电波等,这些也都是电磁辐射,它们只是频率或波长不同而已。
电磁辐射实际是一种以巨大速度通过空间而传播的能量(光量子流),具有波动性和微粒性。
就波动性而言,电磁辐射在空间的传播具有波的性质,如同声波、水波的传播一样,可以用速度、频率、波长和振幅这样一些参数来描述,并且传播时不用任何介质,且易于通过真空。在真空中所有电磁辐射的速度相同,常用光速(c)来表示,c的数值为:2.99792*103米/秒。
在一定的介质中,它们之间的关系为
δ=V/C=1/λ
式中:V-------频率,单位时间内的波数;λ…………波长,为沿波的传播方向、相邻两个波间相位相同的两点之间的距离;δ…………波数,单位长度内波长的个数。C是光速。
就电磁辐射的微粒性来说,每个光量子均有其特征的能量ε,它们与波长或频率之间的关系可以用普朗克(Planck)公式表示:
ε=hv=h(c/λ)波长是相邻间相位相同的两点之间的距离
式中:h是普朗克常数,其值为6.626*10-34 焦耳/秒
2、电磁波谱区域
电磁辐射按波长顺序排列称磁波谱。他们是物质内部运动的一种客观反映,也就是说任一波长的光量子的能量ε与物质的内能变化△E=E2-E1=ε=hv=h(c/λ)
如果已知物质由一种状态,E2过渡到另一种状态E1时,其能量差为△E=E2-E1
便可按照公式计算出相应的光量子的波长。下表列出了各辐射区域、波长范围及相应的能及跃迁类型。
对于成分分析主要应用近紫外及可见光区。
表一电磁波谱区域
辐射区域波长范围跃迁类型
γ射线区5-140皮米核能级跃迁
Х射线区0.01-10.0纳米内层电子能跃迁
远紫外区10-200纳米原子及分子
近紫外区200-380纳米外层电子
可见区380-780纳米能级跃迁
近红外区0.78-3微米分子振动
中红外区3-30微米能级跃迁
远红外区30-300微米分子转动能级跃迁
微波区0.3毫米-1米电子自旋和核子旋
射频区1-1000米能级跃迁
注:1米=103毫米=106微米=109纳米=1012皮米
3、光谱分析内容
光谱分析是根据物质的特征光谱来研究化学组成、结构和存在状态的一类分析领域。可细分为原子发射光谱分析、原子吸收光谱分析、分子发射光谱分析、分子吸收光谱分析、X 射线荧光光谱分析、红外和拉曼光谱分析等各类分析方法。
原子发射光谱分析是根据试样物质中气态原子(或离子)被激发以后,其外层电子辐射跃迁所发射的特征辐射能(不同的光谱),来研究物质化学组成的一种方法。常称为光谱化学分析,也简称为光谱分析。光电光谱分析方法是用光电转换器件进行测量的发射光谱分析。在光电光谱分析中,计算机的应用已很普遍。
二、光电光谱分析的基本原理和发展情况
1、基本原理
测定物质的组成,是人类认识自然,改造自然必要的。物质系由分子或原子所组成。欲测定物质的组成,通常用化学分析法,但光谱分析也是广泛采用的方法。
物质都有其属性,通过属性可以区别不同的物质。由于物质的组成不同,在一定条件下物质能发射其特征的光谱。我们就是利用光谱这个属性来测定物质的组成。
由于光具有波动物质,所以光的一个标志是它的波长。不同颜色的光彩表明它们的波长不同。由短波的紫光到长波的红光组成全部可见光。按照波长分开而排列的一系列不同波长的光就组成所谓光谱。广义而言,可用于分析工作的光谱的范围可以包括更大电磁波的范围,大约波长范围由10-10至10厘米。但发射光谱分析工作的光谱范围只是紫外光域的一部分,波长约为1600埃-8500埃(可见光域的波长范围约为4000埃-7000埃)。
物质能发射光谱,物质对光且有吸收、散射等作用。这些现象都可以利用来作物质的测定。这里讨论的限于发射光谱分析,或者说的严密一些,应称作发射光谱化学分析。但为简单起见,我们就称之为光谱分析。
物质发射的光谱有三种,线状光谱、带状光谱及连续光谱。线状光谱系由原子或离子被激发而发射,因此只有当物质在离解成原子或离子时(一般气态或高温下)才发射线状光谱。带状光谱系由分子被激发而发射,而连续光谱系由炙热的固体或液体所发射。在通常进行光谱分析所用的激发光源火焰、电弧或电火花的作用下,分析的物质处在高温的气态下,一般都离解为原子或离子,因而被激发后发射的是线状光谱。所以光谱分析所利用的是线状光谱中的谱线,并且所得结果只能给出组成元素的种类及含量,而不显示物质的分子结构。
每一种元素的原子被激发后,可以产生一组其特征的光谱,而特征光谱的出现就能证明此种元素在辐射源中存在。。原子或离子被激发而产生十数万条光谱的谱线已经测定它们的波长。由于测定波长能达很高的准确度,光谱中的大部分谱线都可以无误地确定其由哪一种元素产生。所以光源定性分析是很可靠的办法,即灵敏、快速又简单。周期表上约七十个元素,可以用光谱方法,较容易地定性测定。
一般当试样中某一元素的含量不太高时,该元素发射的光谱谱线强度是和它的含量成正比。这个关系成为光谱定量分析的基础,并使光谱定量分析成为非常方便的方法。凡是光谱定性分析能测到的元素,一般都可以做定量分析。光谱定量分析,一般比化学快,并且用较少的试样即可进行。
物质发射的光谱需用分光仪器进行观测。分光仪器需有三个元件:狭缝、能将不同波长的光按波长分开和排列成序的三棱镜或光栅和能聚焦成像以形成谱线的光学系统(谱线即为狭缝的像)。
谱线落在焦面上,可用感光板摄取,或用目镜观测(限于可见光),或用一出口狭缝接收(使与近旁其它谱线区分)。前一种方式即为一摄谱仪,其次一种方式则为看谱镜,而第三种方式则为单色仪。如在许多谱线处装上出口狭缝,并在出口狭缝后面设置光电接收装置,即成为光电直读光谱议。
2、电法光谱分析的发展情况
在近代科学技术的发展中,光谱分析的应用在成分分析、结构分析及科学研究中均起到重要的作用。其中原子发射光谱这一分析方法不仅对金属、合金、矿物成分的测定,也对生产过程的控制有着重要的作用,而且已广泛应用于高分子材料、石油化工、农业、医药、环境科学以及生命科学等领域。
发射光谱分析根据接收光谱辐射方式的不同而分成三种:看谱法,摄谱法和光电法。由图1可以看出这三种方法基本原理都相同:都是把激发试样获得的复合光通过入射狭缝射在分光元件上,被色散成光谱,通过测量谱线强度而求得试样中分析元素的含量。三种方法的区别在于看谱法用人眼去接收,射谱法用感光板接收,而光电法则使谱线通过放在光谱焦面处的出射狭缝,用光电倍增管接收光谱辐射。
光电法是由看谱法及摄谱法发展而来的,主要用来作定量分析。摄谱法的光谱定量分析