煤与瓦斯共采技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤与瓦斯共采技术
近年来,随着开采深度和集约化生产程度的迅速提高,地质条件越来越复杂,煤层瓦斯已
成为制约矿井安全高效生产的关键因素。煤层瓦斯是一种具有强烈温室效应的气体,其大量直接排放将严重污染大气环境,但是,瓦斯又是经济的可燃气体,是一种清洁、方便、高效的能源。因此,如何更有效地开发和利用煤层瓦斯,实现煤与瓦斯两种资源的安全高效共采,一直以来都是广大科研工作者努力的方向和目标。论述了我国煤与瓦斯共采现状、技术理论基础、原理、需解决的关键问题及其研究方向。
煤与瓦斯共采技术的理论基础
限制我国高瓦斯矿井井下瓦斯抽放的原因,主要是煤层的低渗透率和高可塑性,使得沿煤层打钻孔困难,煤层采前预抽效果较差。这一特点决定了我国地面开发煤层气的难度很大。鉴于此,我国煤层气开发生产的重点应放在井下,利用井下的采掘巷道,并尽量利用煤层采动
影响,通过打钻孔和其它各种有效技术强化煤层的瓦斯抽放。同时,应进一步研究和不断完善提高煤层渗透率的技术和钻孔技术,研究提高气体质量的技术,研究井下煤炭与瓦斯的协调开采配套技术以及煤矿瓦斯利用技术,使之与井下煤层气开发产业配套,实现煤与瓦斯的安全共采。现场测定和实验研究表明,不论原始渗透系数怎样低的煤层,在采动影响煤层卸压后,其渗透系数会急剧增加,煤层内瓦斯渗流速度大增,瓦斯涌出量也随之剧增。因此,只要合理布置钻孔位置和其它相关参数,完全能够高效地实现瓦斯抽放。
煤与瓦斯共采需要解决的关键问题
1利用采动卸压场与裂隙场增加煤层瓦斯的解吸速度与煤岩的透气性,实现矿井煤与瓦斯双能源开采的思想提出来已经有几年了,按照这一技术思路,我国相关大学和企业进行了必要的研究和工程实践,取得了一定的成果,但是总体上,理论研究有落后于工程实践的趋势。
2增加和稳定抽放的瓦斯浓度。在原始煤体中进行预抽放的瓦斯体积分数可以达到30%以上,但是由于原始煤岩的透气性低,抽放难度较大,且一般只能抽出煤层瓦斯的20%~30%,煤体中还残留大量瓦斯。在高位裂隙带内抽放的瓦斯体积分数可以达到20%以上,这两部分抽出的瓦斯浓度相对较高,大部分进行了利用,具有利用的前景和可行性。在煤层卸压带内和采空区抽出的瓦斯体积分数一般均低于20%,大部分为13%~15%,这主要是由于卸压带内煤岩破裂、空气渗入,采空区顶板垮落,大量空气混入等原因,对于这些相对浓度较低的瓦斯输送、利用和安全保障技术等还需要进一步研究。
3低浓度瓦斯利用与提纯。除了原始煤层中预抽和高位裂隙带内抽出的瓦斯浓度相对较高外,采空区、卸压带内抽出的瓦斯浓度相对较低,巷道风排的瓦斯浓度更低,但是这些低浓度的瓦斯量很大,一般会占瓦斯总量的50%以上,如何安全利用这些低浓度瓦斯,一直是瓦斯作
为能源开采时的最大障碍之一。目前,在这些方面进行了许多探讨和研究,但是核心问题,如输送与使用的安全问题、提纯的高成本问题等,依然没有解决。
煤与瓦斯共采技术原理
煤层的采动会引起其周围岩层产生卸压增透效应,即引起周围岩层地应力封闭的破坏(地应力降低-卸压、孔隙与裂缝增生张开)、层间岩层封闭的破坏以及地质构造封闭的破坏(封闭的地质构造因采动而开放、松弛),三者综合导致围岩及其煤层的透气性系数大幅度增加,
为卸压瓦斯高产高效抽采创造前提条件。
在进行煤与瓦斯共采技术的研究过程中,应该具体情况具体对待,多提出一些有针对性的瓦斯抽取新技术,同时应该注重将井下瓦斯抽取与地面煤层气开采有机地结合起来,形成一整套属于煤与瓦斯共采的基础理论和技术体系,从而在煤矿区真正实现煤与瓦斯共采,更好地为煤矿绿色开采服务。