MRI磁共振扫描技术ppt课件
合集下载
MRI检查技术规范PPT课件
精选ppt2021最新
22
3、扫描技术规范(abdomen)
• SURVEY
• e-THRIVE BH COR
• DWI TRA
• T2W SPIR RT TRA(呼吸触发-呼气末的一个相对 平台期)
• DUAL FFE BH TRA(同反相位)
• C+
• e-THRIVE dyn BH C+ TRA(6期,第一期平扫, 第二期打药后15-20s进行动态扫描)
精选ppt2021最新
8
扫描技术规范
(1)平扫检查 • SURVEY • DWI TRA • SWI TRA • T2W TSE TRA • T1W FFE TRA • T2W FLAIR+SPIR TRA • T2W TSE SAG (注:若平扫发现病灶时,需行增强扫描;若病灶较小,适当调整
层厚) (2)增强检查 (Gd-DTPA,剂量0.2mmol/kg,手推后扫描) • T1W FFE+C TRA • T1W FFE+C COR • T1W FFE+C SAG
• 2、增强扫描 即通过静脉内注射MRI造影 剂后的扫描。
精选ppt2021最新
7
颅脑MR检查技术
• 解剖:颅骨、脑、脑膜、脑室、血管、脑的腔隙及脑脊液共同构成。 • 线圈 选用高分辨率头部专用线圈/头颈联合线圈。 • 体位 仰卧位,头先进,双手自然置于身体两侧,肩部紧靠线圈。
头置于头托架上,使眶耳线与床面垂直,再通过定位灯调整头位, 使矢状定位光标与面部中线重叠,轴位光标平行于双眼外眦,然后 在头部两侧加海绵பைடு நூலகம்,以固定头部防止运动。 • 扫描方法:常规横断位、矢状位
成像序列:TOF_MRA
磁共振成像基本知识PPT课件
波谱成像(Spectroscopic Imaging):通过分析组 织中的化学成分来提供分子层面的信息,有助于肿瘤 和代谢性疾病的诊断。
靶向成像(Targeted Imaging):通过使用特异性 标记的分子探针,对特定分子或细胞进行成像,为个 性化医疗和精准诊断提供了可能。
04 磁共振成像应用
医学诊断
成本与普及
磁共振成像设备成本较高,限制了其 在基层医疗机构的普及。未来需要降 低设备成本,提高可及性。
磁敏感加权成像(Susceptibility Weighted Imaging, SWI):利用组织磁敏感性 的差异进行成像,能够显示脑部微出血、铁沉积等病理变化。
分子成像技术
化学交换饱和转移成像(Chemical Exchange Saturation Transfer, CEST):利用特定频率的射频 脉冲来检测组织中特定化学物质的变化,对肿瘤和炎 症等疾病的诊断具有潜在价值。
。
快速扫描技术
研究更快的扫描序列和算法,缩短 成像时间,提高检查效率,减轻患 者长时间处于扫描腔内的压力。
多模态成像融合
结合磁共振成像与其他影像技术( 如CT、PET等),实现多模态成像 融合,提供更全面的医学影像信息 。
新应用活动和功能连接,深入 了解神经系统和认知科学领域。
磁共振成像的优势与局限性
高软组织分辨率
MRI对软组织结构有高分辨率,能够清晰显示脑、关节、肌 肉等组织的细微结构。
无骨伪影干扰
MRI不受骨骼的影响,能够清晰显示周围软组织的结构。
磁共振成像的优势与局限性
01
02
03
检查时间长
由于MRI需要采集大量数 据,检查时间相对较长。
金属植入物限制
MRI技术PPT课件
点 对T1影响敏感
3D TOF法
高的空间分辨率 对T1影响敏感
缺 较低的空间分辨率层 内流动的饱和效应
点 百叶窗伪影
层内流动的饱和效应 小的覆盖面
Phase Contrast Angiography
相位对比法(Phase contrast MRA)
利用流动质子的速度不动,在梯度磁 场中移动造成的相位差异,得到血流 对比图像。在横向平面进动的自旋质 子受梯度场影响,进动频率将被改变。 梯度场反方向的质子进动频率减慢, 反之加快。当梯度场取消后,所有自 旋质子以原来的频率进动,但相位不 同。
临床优势: • 优秀的背景抑制
组织抑制 • 显示缓慢血流和静脉
MRA方案的设计
MRA的选择:
• 血管的走行 • 血管内血流的速度 • 流动的方向 • 临床要求的检查范围 • 病变的类型
MRA技术选择及其影 响
• 重复时间(TR) • 回波时间(TE)及流动补偿(flow
compensation, FC)
优点:
3D TOF
➢SNR ➢ 分辨率 ➢对各个方向血流的敏感度一致
缺点:
➢ 背景抑制 ➢ 慢血流饱和
➢成像范围
3D TOF —Multi Slab
优点:
➢成像范围 ➢ 饱和效应 ➢对慢血流和动脉细小分支显示
缺点:
➢ 层块交界处因饱和程度不同而出现分界线
3D TOF SPGR
临床应用:
➢ 颅内动脉成像
回波时间(TE)及流动补偿( FC)
短的TE可减小因血管内不同流动相位 造成的影响,在一些特定的TE内,脂 肪信号会降低,流动补偿可用最短的TE 来维持TE时间内静止组织与流动质子 的相位一致。
翻转角(flip angle FA)
3D TOF法
高的空间分辨率 对T1影响敏感
缺 较低的空间分辨率层 内流动的饱和效应
点 百叶窗伪影
层内流动的饱和效应 小的覆盖面
Phase Contrast Angiography
相位对比法(Phase contrast MRA)
利用流动质子的速度不动,在梯度磁 场中移动造成的相位差异,得到血流 对比图像。在横向平面进动的自旋质 子受梯度场影响,进动频率将被改变。 梯度场反方向的质子进动频率减慢, 反之加快。当梯度场取消后,所有自 旋质子以原来的频率进动,但相位不 同。
临床优势: • 优秀的背景抑制
组织抑制 • 显示缓慢血流和静脉
MRA方案的设计
MRA的选择:
• 血管的走行 • 血管内血流的速度 • 流动的方向 • 临床要求的检查范围 • 病变的类型
MRA技术选择及其影 响
• 重复时间(TR) • 回波时间(TE)及流动补偿(flow
compensation, FC)
优点:
3D TOF
➢SNR ➢ 分辨率 ➢对各个方向血流的敏感度一致
缺点:
➢ 背景抑制 ➢ 慢血流饱和
➢成像范围
3D TOF —Multi Slab
优点:
➢成像范围 ➢ 饱和效应 ➢对慢血流和动脉细小分支显示
缺点:
➢ 层块交界处因饱和程度不同而出现分界线
3D TOF SPGR
临床应用:
➢ 颅内动脉成像
回波时间(TE)及流动补偿( FC)
短的TE可减小因血管内不同流动相位 造成的影响,在一些特定的TE内,脂 肪信号会降低,流动补偿可用最短的TE 来维持TE时间内静止组织与流动质子 的相位一致。
翻转角(flip angle FA)
《MRI技术》课件
3 MRI的成像过程
MRI的成像过程包括磁场对齐、脉冲信号激发、信号接收和图像重建等步骤,最终生成高 质量的人体图像。
MRI技术设备
MRI设备的组成
MRI设备由主磁场系统、梯度线 圈和射频线圈等部件组MRI设备的主要部件包括磁体、 梯度线圈和射频线圈,它们协同 工作来实现高质量的成像。
MRI设备的分类
MRI设备可以根据磁场强度、磁 体类型和应用领域等方面进行分 类。
MRI技术操作
1
MRI技术的操作流程
进行MRI技术,需要准备患者、确定扫描范围、对患者进行定位,然后进行扫描 和图像处理等步骤。
2
MRI检查的准备工作
患者需要遵循一些准备步骤,如空腹、去除金属物品和穿着舒适的服装,以确保 MRI检查的顺利进行。
MRI技术相比于CT和X线成像技术,具有更好的对比度和更广泛的应用领域。
MRI技术发展趋势
1 MRI技术的发展历程
MRI技术自从20世纪70年 代问世以来,经历了不断 的改进和发展,成为医学 影像领域的重要技术。
2 MRI技术的未来发展
方向
随着科技的进步,MRI技 术将更加智能化、高分辨 率、高速度和便携化,以 满足临床医学的需求。
3
MRI过程中的安全措施
MRI设备中的强磁场和无线电波需要注意安全,患者和医生需要遵循相关的安全 措施。
MRI技术优缺点
MRI技术的优点
MRI技术具有无辐射、对软组织有很好的对比度、可以多平面重建等优点。
MRI技术的局限性
MRI技术在成像时间、成本和对金属材料的敏感性上存在一些局限性。
MRI技术与其它成像技术的比较
3 MRI技术的应用前景
MRI技术将在神经科学、 肿瘤学、心脑血管疾病等 领域发挥更大的作用,为 医学诊断和治疗提供更好 的支持。
MRI的成像过程包括磁场对齐、脉冲信号激发、信号接收和图像重建等步骤,最终生成高 质量的人体图像。
MRI技术设备
MRI设备的组成
MRI设备由主磁场系统、梯度线 圈和射频线圈等部件组MRI设备的主要部件包括磁体、 梯度线圈和射频线圈,它们协同 工作来实现高质量的成像。
MRI设备的分类
MRI设备可以根据磁场强度、磁 体类型和应用领域等方面进行分 类。
MRI技术操作
1
MRI技术的操作流程
进行MRI技术,需要准备患者、确定扫描范围、对患者进行定位,然后进行扫描 和图像处理等步骤。
2
MRI检查的准备工作
患者需要遵循一些准备步骤,如空腹、去除金属物品和穿着舒适的服装,以确保 MRI检查的顺利进行。
MRI技术相比于CT和X线成像技术,具有更好的对比度和更广泛的应用领域。
MRI技术发展趋势
1 MRI技术的发展历程
MRI技术自从20世纪70年 代问世以来,经历了不断 的改进和发展,成为医学 影像领域的重要技术。
2 MRI技术的未来发展
方向
随着科技的进步,MRI技 术将更加智能化、高分辨 率、高速度和便携化,以 满足临床医学的需求。
3
MRI过程中的安全措施
MRI设备中的强磁场和无线电波需要注意安全,患者和医生需要遵循相关的安全 措施。
MRI技术优缺点
MRI技术的优点
MRI技术具有无辐射、对软组织有很好的对比度、可以多平面重建等优点。
MRI技术的局限性
MRI技术在成像时间、成本和对金属材料的敏感性上存在一些局限性。
MRI技术与其它成像技术的比较
3 MRI技术的应用前景
MRI技术将在神经科学、 肿瘤学、心脑血管疾病等 领域发挥更大的作用,为 医学诊断和治疗提供更好 的支持。
最新【医学课件】磁共振成像(mri诊断学幻灯片课件
第二章 中枢神经系统MR诊断
第二节 正常MR表现
正常颅脑MR表现
正常颅脑MR表现
正常颅脑MR表现
正常颅脑MR表现
正常颅脑MR表现
第三章 胸部病变MR诊断
第一节 胸部MRI检查基本情况
一;检查方法
1 患者准备及体位: 2 体部线圈: 3 心电图门控技术:
ECG中R波触发RF,确保信号才采集与心 脏运动同步,同时控制R波后的延迟时间,获 得心脏不同运动时相的MRI图象,以便判断 心脏功能
第五章 脊柱和脊髓病变MRI诊断
第一节 概 述
二; 检查方法
1 线圈选择:脊椎表面线圈;阵列线 圈可全脊椎成像
2 扫描层面:矢状. 横扫. 冠状 3 扫描参数:层厚/层距=5-8mm
T1WI/ T2WI 4 增强扫描:
第二节 脊柱脊髓正常MR表现
第二节 脊柱脊髓正常MR表现
第二节 脊柱脊髓正常MR表现
TE值—回波时间 Echo Time, TE
第一章 总 论
磁共振成像参数
T1值:纵向弛豫时间 T1WI: 重点显示组织T1值
的图像称为T1WI T1 Weighted Imaging 短TR(TR<500ms) 短TE(TE<30ms)
第一章 总 论
磁共振成像参数
T2值:横向弛豫时间 T2WI: 重点显示组织T2值
第二节 脊柱脊髓正常MR表现
颈椎横扫 T2WI所见
第二节 脊柱脊髓正常MR表现
腰椎横扫 T1WI所见
10 大经济学效应
蝴蝶效应所描述的其实是一
种混沌现象。它指出在一个动力 系统中,初始条件下微小的变化 能给整个系统带来长期的、巨大 的连锁反应。
丢了一个钉子,坏了一只蹄铁; 坏了一只蹄铁,折了一匹战马; 折了一匹战马,伤了一位骑士; 伤了一位骑士,输了一场战斗; 输了一场战斗,亡了一个帝国。
MR成像原理及全身应用ppt课件
组织中,化为热量。使局部
弛豫
体温升高或诱发分子运动, RF
即T1驰豫。
Transceiver MR Signal
③ 能量可逆性地转移到其它共
振的质子上,使其相位一致
性丧失,即T2弛豫。
17
无线电波激发使磁场偏转90度,关闭无线 电波后,磁场又慢慢回到平衡状态(纵向)
射频脉冲停止后,在主磁场的作用下,横向宏观磁化矢量逐渐
T2WI:白质比灰 质信号低
– 腹部:
T1WI:肝脏比脾 脏信号高
T2WI:肝脏比脾 脏信号低
T1WI T1WI
T2WI T22W5 I
总结一下MR成像的过程---1
第一步: 病人进入磁场 人体被磁化产生纵向磁 化矢量
26
总结一下MR成像的过程---2
第二步: 发射射频脉冲 人体内氢质子发生共振 从而产生横向磁化矢量
韧带和肌腱等 致密结缔组织
低 PD、很长 T1、很短 T2
骨皮质、空气和含气组织 极低 PD
实质脏器 脑灰质 脑白质
常为较高 PD 较长 T1 较长 T2
肝脏
肾脏
纤维软骨
较高 PD,较长 T1 和短 T2
透明软骨
较高 PD,长 T1 和 T2
+~ ++ +
0~+
++ ++ ++ ++ +~ ++ ++
8
❖ 基本原理
3、自旋质子:
(一)原子结构
原子
原子核 电子
质子 中子
统称核子 具有自旋的特性
根据经典电磁学理论:
旋转的电荷可视为环路上的
MRI基本原理精品PPT课件精选全文完整版
进动是核磁(小磁场)与主磁 场相互作用的结果 进动的频率明显低于质子的自 旋频率,但比后者更为重要。
54
= .B
:进动频率
Larmor 频率
:磁旋比
42.5兆赫 / T
B:主磁场场强
55
高能与低能状态质子的进动
由于在主磁场中质子进动,每个氢质子均 产生纵向和横向磁化分矢量,那么人体进 入主磁场后到底处于何种核磁状态?
91
5、磁共振“加权成像”
T1WI
PD
T2WI
92
何为加权???
• 所谓的加权就是“重点突出”
的意思
– T1加权成像(T1WI)----突出组织T1弛豫 (纵向弛豫)差别
– T2加权成像(T2WI)----突出组织T2弛豫 (横向弛豫)差别
– 质子密度加权成像(PD)-突出组织氢质 子含量差别
93
低能量
宏观效应
中等能量
高能量
69
90度脉冲继发后产生的宏观和微观效应
低能的超出部分的氢质子有一半获得能量进入高能状态, 高能和低能质子数相等,纵向磁化矢量相互抵消而等于零
使质子处于同相位,质子的微观横向磁化矢量相加,产生 宏观横向磁化矢量
70
氢质子多 氢质子少
90度脉冲激发使质子发生共振,产生最大的旋转 横向磁化矢量,这种旋转的横向磁化矢量切割接 收线圈,MR仪可以检测到。
N
S
MR不能检测到纵向磁化矢量,但能检测到旋转的横向磁化矢量
62
如何才能产生横向宏观磁化矢量?
63
3、什么叫共振,怎样产生磁共振?
• 共振:能量从一个震动着的物体传递到另一
个物体,而后者以前者相同的频率震动。
64
共振
54
= .B
:进动频率
Larmor 频率
:磁旋比
42.5兆赫 / T
B:主磁场场强
55
高能与低能状态质子的进动
由于在主磁场中质子进动,每个氢质子均 产生纵向和横向磁化分矢量,那么人体进 入主磁场后到底处于何种核磁状态?
91
5、磁共振“加权成像”
T1WI
PD
T2WI
92
何为加权???
• 所谓的加权就是“重点突出”
的意思
– T1加权成像(T1WI)----突出组织T1弛豫 (纵向弛豫)差别
– T2加权成像(T2WI)----突出组织T2弛豫 (横向弛豫)差别
– 质子密度加权成像(PD)-突出组织氢质 子含量差别
93
低能量
宏观效应
中等能量
高能量
69
90度脉冲继发后产生的宏观和微观效应
低能的超出部分的氢质子有一半获得能量进入高能状态, 高能和低能质子数相等,纵向磁化矢量相互抵消而等于零
使质子处于同相位,质子的微观横向磁化矢量相加,产生 宏观横向磁化矢量
70
氢质子多 氢质子少
90度脉冲激发使质子发生共振,产生最大的旋转 横向磁化矢量,这种旋转的横向磁化矢量切割接 收线圈,MR仪可以检测到。
N
S
MR不能检测到纵向磁化矢量,但能检测到旋转的横向磁化矢量
62
如何才能产生横向宏观磁化矢量?
63
3、什么叫共振,怎样产生磁共振?
• 共振:能量从一个震动着的物体传递到另一
个物体,而后者以前者相同的频率震动。
64
共振
磁共振成像MRI技术PPT课件
• 1983年,MRI设备进入市场。 • MRI设备具有对软组织成像好的优点。把大量的波谱分析技术运用到医用MRI设
备上,使MRI设备不仅可获得解剖学信息,而且可获得其他方面的信息,如生理 和生化方面的信息。
第5页/共37页
二、主要特点及临床应用
MRI 与 CT 各 有 优 点 , 可 以 互 相 补 充 。 通 过 MRI设备与CT扫描机的性能比较和临床应用比较, 可以看出:MRI设备的优点为: ①多参数成像,可提供丰富的诊断信息 ②多方位成像 ③大视野成像 ④组织特异性成像 ⑤人体能量代谢研究 ⑥无电离辐射,即无创性检查 ⑦无骨伪影干扰
曲(Spin Warp)成像法。 • 1977年,达马丁完成了首例动物活体肿瘤检测成像,并获得首张人体活体
MRI设备图像。
第4页/共37页
• 1980年,阿勃亭(Aberdeen)领导的研究小组发表了利用二维傅立叶变换对 图像进行重建的成像方法。该成像方法效率高、功能多、形成的图像分辨力高、 伪影小,目前医用MRI设备均采用该算法。
从每个体素的MR信号中获得与像素灰度值有关的数 据并产生MR图像,MR图像重建是采用傅里叶变换的 方法。
第31页/共37页
第32页/共37页
幅度
幅度
时间
频率
第33页/共37页
第34页/共37页
第35页/共37页
第36页/共37页
感谢您的观看!
第37页/共37页
第16页/共37页
三、驰豫
驰豫是指自旋系统由激发态恢复至其平衡态 的过程,也就是纵向磁化恢复和横向磁化衰减 的过程。
Z
B0 Mxy
M Mz
X
Y
第17页/共37页
(1)纵向驰豫及纵向驰豫时间
备上,使MRI设备不仅可获得解剖学信息,而且可获得其他方面的信息,如生理 和生化方面的信息。
第5页/共37页
二、主要特点及临床应用
MRI 与 CT 各 有 优 点 , 可 以 互 相 补 充 。 通 过 MRI设备与CT扫描机的性能比较和临床应用比较, 可以看出:MRI设备的优点为: ①多参数成像,可提供丰富的诊断信息 ②多方位成像 ③大视野成像 ④组织特异性成像 ⑤人体能量代谢研究 ⑥无电离辐射,即无创性检查 ⑦无骨伪影干扰
曲(Spin Warp)成像法。 • 1977年,达马丁完成了首例动物活体肿瘤检测成像,并获得首张人体活体
MRI设备图像。
第4页/共37页
• 1980年,阿勃亭(Aberdeen)领导的研究小组发表了利用二维傅立叶变换对 图像进行重建的成像方法。该成像方法效率高、功能多、形成的图像分辨力高、 伪影小,目前医用MRI设备均采用该算法。
从每个体素的MR信号中获得与像素灰度值有关的数 据并产生MR图像,MR图像重建是采用傅里叶变换的 方法。
第31页/共37页
第32页/共37页
幅度
幅度
时间
频率
第33页/共37页
第34页/共37页
第35页/共37页
第36页/共37页
感谢您的观看!
第37页/共37页
第16页/共37页
三、驰豫
驰豫是指自旋系统由激发态恢复至其平衡态 的过程,也就是纵向磁化恢复和横向磁化衰减 的过程。
Z
B0 Mxy
M Mz
X
Y
第17页/共37页
(1)纵向驰豫及纵向驰豫时间
磁共振检查技术MRI检查方法课件.ppt
《医学影像检查技术》第八章 磁共振检查技术
IR序列 短TI反转恢复脉冲序列 STIR
临床应用:脂肪抑制。 扫描参数:短TI,150~175ms;短TE, 10~30ms;长TR,2000ms以上。 TI的选择使脂肪的信号近于0
《医学影像检查技术》第八章 磁共振检查技术
IR序列 液体衰减反转恢复序列 FLAIR
Y
X
X
X
30 脉冲
90 脉冲
180 脉冲
《医学影像检查技术》第八章 磁共振检查技术
反转时间 TI
IR序列中的参数 180脉冲关闭后某时刻,各组织磁化矢量不断 恢复 施加90脉冲,产生不同的横向磁矩
《医学影像检查技术》第八章 磁共振检查技术
反转时间 TI (IR序列中)
Y
Y
Y
X
甲组织 恢复最慢
X
乙组织 恢复一般
X
丙组织 恢复快
《医学影像检查技术》第八章 磁共振检查技术
激励次数
激励次数NEX 又叫采集次数NA NEX越大,扫描时间就越长,同时图像信 噪比提高
《医学影像检查技术》第八章 磁共振检查技术
回波链长ETL
是指快速自旋回波序列每个TR时间内用 不同的相位编码来采样的回波数,即在1 个TR时间内180脉冲的个数,也称为快 速系数。 即回波链越长,所需扫描时间越短。
《医学影像检查技术》第八章 磁共振检查技术
梯度回波序列(GE)
①具有SE及FSE序列的特点; ②较SE及FSE有更高的磁敏感性; ③采集速度快; ④可用于高分辨成像; ⑤易产生伪影。
《医学影像检查技术》第八章 磁共振检查技术
回波平面技术(EPI)
① EPI只是一种数据采集模式,可与任何脉冲 序列结合产生不同对比的图像; ②是目前成像速度最快的磁共振检查技术; ③由于该技术可大大缩短扫描时间,有效减少 各种运动伪影的产生; ④ EPI技术的梯度频率一般限制在1KHZ,降低 了噪声; ⑤ EPI技术对主磁场均匀性要求较高。
mri课件ppt课件
MRI技术具有无辐射、无创伤、无痛苦、成像清晰等优点,广泛应用于临床医学 、生物学、药学等领域。
MRI原理
MRI技术基于原子核的自旋磁矩和外 加磁场之间的相互作用,通过施加射 频脉冲激发原子核产生共振,然后检 测共振信号并重建图像。
原子核在磁场中会受到洛伦兹力,产 生能级分裂,当外加射频脉冲的频率 与原子核的固有频率相同时,原子核 受到激发产生共振。
诊断报告
医生根据图像处理结果和 患者病史等信息,撰写 MRI诊断报告。
报告解读
患者或家属可向医生咨询 MRI检查结果,了解病情 状况。
03
MRI图像解读
图像特点
高分辨率
MRI图像具有高分辨率, 能够清晰显示组织的细微 结构。
多平面成像
MRI可以进行多平面成像 ,如横断面、矢状面和冠 状面,有助于全面观察病 变。
循环系统
心包疾病
MRI可以检测心包积液、心包肿 瘤等心包疾病,为医生提供更准 确的诊断依据。
大血管疾病
MRI可以检测大血管的狭窄、阻 塞和动脉瘤等病变,有助于医生 制定治疗方案。
05
MRI与其他影像学检查的比较
CT与MRI的比较
分辨率
MRI具有更高的软组织分辨率 ,能够更清晰地显示器官和组
织结构。
软组织对比度高
MRI利用不同组织间的弛 豫时间差异产生对比,使 得软组织对比度较高。
常见病变表现
肿瘤
MRI图像上肿瘤常表现为形态不 规则、信号不均匀的异常信号影
。
炎症
炎症常表现为软组织肿胀、积液等 ,MRI图像上表现为信号增强。
出血
出血在MRI图像上表现为高信号影 ,根据出血时间的不同,信号强度 也会有所变化。
06
MRI原理
MRI技术基于原子核的自旋磁矩和外 加磁场之间的相互作用,通过施加射 频脉冲激发原子核产生共振,然后检 测共振信号并重建图像。
原子核在磁场中会受到洛伦兹力,产 生能级分裂,当外加射频脉冲的频率 与原子核的固有频率相同时,原子核 受到激发产生共振。
诊断报告
医生根据图像处理结果和 患者病史等信息,撰写 MRI诊断报告。
报告解读
患者或家属可向医生咨询 MRI检查结果,了解病情 状况。
03
MRI图像解读
图像特点
高分辨率
MRI图像具有高分辨率, 能够清晰显示组织的细微 结构。
多平面成像
MRI可以进行多平面成像 ,如横断面、矢状面和冠 状面,有助于全面观察病 变。
循环系统
心包疾病
MRI可以检测心包积液、心包肿 瘤等心包疾病,为医生提供更准 确的诊断依据。
大血管疾病
MRI可以检测大血管的狭窄、阻 塞和动脉瘤等病变,有助于医生 制定治疗方案。
05
MRI与其他影像学检查的比较
CT与MRI的比较
分辨率
MRI具有更高的软组织分辨率 ,能够更清晰地显示器官和组
织结构。
软组织对比度高
MRI利用不同组织间的弛 豫时间差异产生对比,使 得软组织对比度较高。
常见病变表现
肿瘤
MRI图像上肿瘤常表现为形态不 规则、信号不均匀的异常信号影
。
炎症
炎症常表现为软组织肿胀、积液等 ,MRI图像上表现为信号增强。
出血
出血在MRI图像上表现为高信号影 ,根据出血时间的不同,信号强度 也会有所变化。
06
mri技术ppt课件
高。
04
MRI技术的未来发展
技术创新
更高分辨率
随着技术的进步,MRI的分辨率有望 得到进一步提升,能够更精确地检测 微小病变。
实时成像
功能成像
除了结构成像外,未来MRI技术有望 实现更多功能成像,如灌注成像、扩 散成像等,以提供更多关于病变的信 息。
目前部分先进的MRI设备已经实现了 实时成像,未来这一技术有望更加成 熟,减少成像时间,提高诊断效率。
MRI技术PPT课件
目录
• MRI技术简介 • MRI技术的应用领域 • MRI技术的优缺点 • MRI技术的未来发展 • MRI技术的实际案例
01
MRI技术简介
MRI技术的定义
01
MRI技术即磁共振成像技术,是 一种利用磁场和射频脉冲使人体 组织产生共振,通过分析共振信 号进行成像的技术。
02
考古学
MRI技术可以无损地检测文物和 古迹,有助于考古学研究和文物 保护。
03
MRI技术的优缺点
优点
01
0203Biblioteka 04无创性MRI技术不需要通过手术或穿 刺获取样本,因此对患者的身
体没有创伤。
高分辨率
MRI技术可以提供高分辨率的 图像,有助于医生更准确地诊
断疾病。
多参数成像
MRI技术可以获取多个参数的 图像,有助于医生更全面地了
MRI技术可以生成高分辨率、高 对比度的图像,能够清晰地显示 人体内部结构。
MRI技术的发展历程
01
02
03
04
1946年,核磁共振现象 被发现。
1970年代,MRI技术开 始应用于医学领域。
1980年代,MRI技术逐 渐成熟并广泛应用于临 床诊断。
04
MRI技术的未来发展
技术创新
更高分辨率
随着技术的进步,MRI的分辨率有望 得到进一步提升,能够更精确地检测 微小病变。
实时成像
功能成像
除了结构成像外,未来MRI技术有望 实现更多功能成像,如灌注成像、扩 散成像等,以提供更多关于病变的信 息。
目前部分先进的MRI设备已经实现了 实时成像,未来这一技术有望更加成 熟,减少成像时间,提高诊断效率。
MRI技术PPT课件
目录
• MRI技术简介 • MRI技术的应用领域 • MRI技术的优缺点 • MRI技术的未来发展 • MRI技术的实际案例
01
MRI技术简介
MRI技术的定义
01
MRI技术即磁共振成像技术,是 一种利用磁场和射频脉冲使人体 组织产生共振,通过分析共振信 号进行成像的技术。
02
考古学
MRI技术可以无损地检测文物和 古迹,有助于考古学研究和文物 保护。
03
MRI技术的优缺点
优点
01
0203Biblioteka 04无创性MRI技术不需要通过手术或穿 刺获取样本,因此对患者的身
体没有创伤。
高分辨率
MRI技术可以提供高分辨率的 图像,有助于医生更准确地诊
断疾病。
多参数成像
MRI技术可以获取多个参数的 图像,有助于医生更全面地了
MRI技术可以生成高分辨率、高 对比度的图像,能够清晰地显示 人体内部结构。
MRI技术的发展历程
01
02
03
04
1946年,核磁共振现象 被发现。
1970年代,MRI技术开 始应用于医学领域。
1980年代,MRI技术逐 渐成熟并广泛应用于临 床诊断。
磁共振成像与应用PPT课件
利进行和结果的准确解读。
THANK YOU
发展历程
从1970年代的初期研究,到1980年代初期的初步应用,再到现在的广泛应用 ,MRI技术不断发展。
未来趋势
随着技术的进步,MRI将更加快速、高分辨率、高灵敏度,并有望与其他医学 影像技术结合,提高疾病的诊断准确率。
02
MRI系统构成与技术
MRI系统的硬件组成
01
02
03
04
磁体系统
产生静磁场,是MRI系统的核 心部分。
关节病变
MRI能够观察关节的结构 和病变,有助于诊断关节 炎、关节损伤等疾病。
肿瘤的诊断与分期
肿瘤定位
MRI能够准确地定位肿瘤的位置 ,有助于医生制定手术或治疗方
案。
肿瘤分期
MRI可以评估肿瘤的侵犯范围和分 期,为医生提供制定治疗计划的依 据。
肿瘤疗效评估
MRI可以监测肿瘤治疗的效果,为 医生调整治疗方案提供参考。
磁共振成像与应用ppt课件
汇报人:可编辑 2024-01-11
目录
• 磁共振成像(MRI)概述 • MRI系统构成与技术 • MRI在医学诊断中的应用 • MRI在科研领域的应用 • MRI的安全与防护 • 案例分析与实践经验分享
01
磁共振成像(MRI)概述
MRI的定义与原理
定义
磁共振成像(MRI)是一种利用 磁场和射频脉冲来检测人体内部 结构的非侵入性成像技术。
梯度系统
用于空间定位,产生不同的磁 场强度。
射频系统
发射和接收射频信号,实现信 号的激发和接收。
计算机系统
处理和显示图像,实现数据采 集、重建和显示等功能。
MRI的扫描序列与参数
自旋回波序列(Spin Echo):最常 用的序列,通过90度和180度脉冲组 合获取信号。
mri-ppt课件
快速序列常用于检查急性脑卒中、骨折等需要快速成像的病例。
快速序列是指成像速度较快的序列,通常采用较短的回波时间(TE)和较小的扫描层数,以减少成像时间。
稳态自由进动序列是一种基于磁场梯度的自旋回波序列,其特点是在成像过程中磁场不发生改变。
稳态自由进动序列的优点是成像速度快、图像质量高,且对血流和软组织有较好的显示效果。
无辐射损伤、多角度成像、高软组织分辨率、能够检测多种生理和生化变化等。
优势
检查时间长、价格昂贵、不适用于体内有金属植入物或金属异物的人群,以及某些特殊情况(如幽闭恐惧症等)。
局限性
02
CHAPTER
MRI的应用领域
MRI可以检测肿瘤的存在,并确定其位置和大小,有助于制定治疗方案。
肿瘤检测
神经系统疾病诊断
磁敏感伪影是由于被检者体内不同组织对磁场的敏感度差异而产生的图像伪影。
总结词
磁敏感伪影表现为图像中某些区域的颜色或信号强度的异常变化,尤其是在头颅和肺部等区域。这可能是由于铁、钙等磁敏感物质的分布不均所引起。
详细描述
05
CHAPTER
MRI的未来发展
高场强MRI可以提供更高的分辨率,使医生能够更准确地诊断疾病。
MRI-PPT课件
目录
MRI简介MRI的应用领域MRI的常见序列MRI的伪影与校正方法MRI的未来发展
01
CHAPTER
MRI简介
MRI(磁共振成像)是一种非侵入性的医学影像技术,利用场和射频脉冲使人体组织产生共振,通过检测共振信号来生成图像。
MRI系统通过强大的磁场和射频脉冲,使人体内的氢原子核产生能级跃迁,在恢复过程中释放出能量并产生射频信号,被接收器检测并传输到计算机处理系统,最终形成图像。
快速序列是指成像速度较快的序列,通常采用较短的回波时间(TE)和较小的扫描层数,以减少成像时间。
稳态自由进动序列是一种基于磁场梯度的自旋回波序列,其特点是在成像过程中磁场不发生改变。
稳态自由进动序列的优点是成像速度快、图像质量高,且对血流和软组织有较好的显示效果。
无辐射损伤、多角度成像、高软组织分辨率、能够检测多种生理和生化变化等。
优势
检查时间长、价格昂贵、不适用于体内有金属植入物或金属异物的人群,以及某些特殊情况(如幽闭恐惧症等)。
局限性
02
CHAPTER
MRI的应用领域
MRI可以检测肿瘤的存在,并确定其位置和大小,有助于制定治疗方案。
肿瘤检测
神经系统疾病诊断
磁敏感伪影是由于被检者体内不同组织对磁场的敏感度差异而产生的图像伪影。
总结词
磁敏感伪影表现为图像中某些区域的颜色或信号强度的异常变化,尤其是在头颅和肺部等区域。这可能是由于铁、钙等磁敏感物质的分布不均所引起。
详细描述
05
CHAPTER
MRI的未来发展
高场强MRI可以提供更高的分辨率,使医生能够更准确地诊断疾病。
MRI-PPT课件
目录
MRI简介MRI的应用领域MRI的常见序列MRI的伪影与校正方法MRI的未来发展
01
CHAPTER
MRI简介
MRI(磁共振成像)是一种非侵入性的医学影像技术,利用场和射频脉冲使人体组织产生共振,通过检测共振信号来生成图像。
MRI系统通过强大的磁场和射频脉冲,使人体内的氢原子核产生能级跃迁,在恢复过程中释放出能量并产生射频信号,被接收器检测并传输到计算机处理系统,最终形成图像。
MRI磁共振扫描技术PPT课件
精选PPT课件
5
一、磁共振成像基本原理
值得注意的是,MRI的影像虽然也以不同的灰度 显示,但其反映的是MRI信号强度的不同或弛豫 时间T1与T2的长短,而不像CT图像,灰度反映的 是组织密度。
一般而言,组织信号强,图像所相应的部分就亮, 组织信号弱,图像所相应的部分就暗,由组织反 映出的不同的信号强度变化,就构成组织器官之 间、正常组织和病理组织之间图像明暗的对比。
用于显示病灶
精选PPT课件
33
五、磁共振图片展示(T2Flair)
精选PPT课件
34
五、磁共振图片展示(T2Flair)
精选PPT课件
35
五、磁共振图片展示(T1矢状位)
精选PPT课件
36
五、磁共振图片展示(T1矢状位)
精选PPT课件
37
五、磁共振图片展示(DWI)
用于急性脑梗赛或淋巴瘤等
21
四、中枢神经系统MRI常用序列
梯度回波(gradient echo,GRE)序列
其方法与SE中频率编码方向的去相位梯 度及读出梯度的相位重聚方法相同。由于小 翻转角使纵向磁化快速恢复,缩短了重复时 间TR,也不会产生饱和效应,故使数据采 集周期变短,提高了成像速度。
精选PPT课件
22
四、中枢神经系统MRI常用序列
整理课件目录一磁共振成像基本原理二磁共振常见物质的信号特点三病理组织的信号特点病理组织的信号特点四中枢神经系统磁共振成像常用序列五磁共振图片展示整理课件五磁共振图片展示定位相横轴位矢状位及冠状位定位相整理课件五磁共振图片展示t1wi横轴位整理课件五磁共振图片展示t1wi横轴位整理课件五磁共振图片展示t1wi横轴位整理课件五磁共振图片展示t2wi横轴位整理课件五磁共振
磁共振 ppt课件
化学交换饱和转移成像(Chemical Exchange Saturation Transfer,CEST):通过测量化学交换过程中产生的磁共振 信号来反映组织内的特定代谢物浓度,常用于神经退行性疾 病和肿瘤的研究。
05 磁共振的优势与局限性
优势
无电离辐射
磁共振成像技术利用磁场和射频脉冲,而 不是X射线,因此没有电离辐射,对病人
磁场均匀度
为了保证检测结果的准确性,磁体 系统需要提供高均匀度的磁场环境 。
射频系统
发射器
射频系统中的发射器负责 产生高频电磁波,用于激 发人体内的氢原子核。
接收器
接收器负责接收氢原子核 返回的信号,并将其转换 为可供计算机系统处理的 电信号。
射频线圈
射频线圈是发射和接收电 磁波的重要部件,其设计 和性能对信号质量和成像 质量有重要影响。
研究和发展分子成像技术,实现从分子水平上对疾病进行早期诊断 和疗效评估。
THANKS FOR WATCHING
感谢您的观看
磁共振的发展历程
1946年,美国科学家Bloch和Purcell 共同获得了诺贝尔物理学奖,因为他 们发现了核磁共振现象。
1977年,美国科学家Mansfield和 Maudsley开发出了基于快速扫描的 磁共振成像技术,大大缩短了成像时 间。
1971年,美国科学家Damadian发明 了第一台核磁共振成像仪,并获得了 专利。
无害。
高软组织分辨率
磁共振成像能够清晰地显示软组织结构, 对于脑、关节、肌肉等部位的病变诊断具
有优势。
多参数成像
磁共振成像可以获取多种参数,如T1、T2 、质子密度等,从而提供丰富的诊断信息 。
功能成像
除了结构成像外,磁共振还可以进行功能 成像,如灌注成像和弥散成像,有助于疾 病的早期诊断和预后评估。
05 磁共振的优势与局限性
优势
无电离辐射
磁共振成像技术利用磁场和射频脉冲,而 不是X射线,因此没有电离辐射,对病人
磁场均匀度
为了保证检测结果的准确性,磁体 系统需要提供高均匀度的磁场环境 。
射频系统
发射器
射频系统中的发射器负责 产生高频电磁波,用于激 发人体内的氢原子核。
接收器
接收器负责接收氢原子核 返回的信号,并将其转换 为可供计算机系统处理的 电信号。
射频线圈
射频线圈是发射和接收电 磁波的重要部件,其设计 和性能对信号质量和成像 质量有重要影响。
研究和发展分子成像技术,实现从分子水平上对疾病进行早期诊断 和疗效评估。
THANKS FOR WATCHING
感谢您的观看
磁共振的发展历程
1946年,美国科学家Bloch和Purcell 共同获得了诺贝尔物理学奖,因为他 们发现了核磁共振现象。
1977年,美国科学家Mansfield和 Maudsley开发出了基于快速扫描的 磁共振成像技术,大大缩短了成像时 间。
1971年,美国科学家Damadian发明 了第一台核磁共振成像仪,并获得了 专利。
无害。
高软组织分辨率
磁共振成像能够清晰地显示软组织结构, 对于脑、关节、肌肉等部位的病变诊断具
有优势。
多参数成像
磁共振成像可以获取多种参数,如T1、T2 、质子密度等,从而提供丰富的诊断信息 。
功能成像
除了结构成像外,磁共振还可以进行功能 成像,如灌注成像和弥散成像,有助于疾 病的早期诊断和预后评估。
临床医学MRI检查技术PPT课件
〔一〕常规SE 脉冲序列 〔二〕FSE 脉冲序列
第2页/共95页
90°pulse and 180°pulse Z
Mz
Θ=γB1t
90°
Mxy
Y
B1
180°
X
第3页/共95页
90°pulse后 M=Mo
Z Mz=Mo Mxy=0
Z Mz=0
Mxy=Mo
Y
Y
Z M=Mxy+Mz
M=Mo
Z Mz=Mo Mxy=0
* Brain,orbital cavity,auditory nerves *Orthopedic range including joints,ligaments,
tendons,muscles *Spinal column in all sections *Thorax,heart
第11页/共95页
第24页/共95页
IR脉冲序列
〈3〉IR脉冲序列的三种图像
1:重 T1 加权像:由于纵向磁化的恢复是从180 ° 反转脉冲后的﹣1(完全饱和)至﹢1(纵向磁化完 全恢复),范围大,因而选择合适的TI可得到不同 质子纵向磁化的显著差异。获得比SE脉冲序列更 显著的T1加权效果。
2: 质子密度图:使用长TI,则所有质子(脂肪与水) 的纵向磁化均可完全恢复,使T1对比完全消失,此 时的图像为质子密度图。
三、 GRE脉冲序列
GRE脉冲序列的种类 (1)常规GRE脉冲序列 (2)GRASS脉冲序列 (3)失相位GRE脉冲序列
第31页/共95页
〈1 〉常规GRE 脉冲波的形式
RF
﹤ 90 °
TR
Signal
FID
Echo
频率编码
去相位 TE
第2页/共95页
90°pulse and 180°pulse Z
Mz
Θ=γB1t
90°
Mxy
Y
B1
180°
X
第3页/共95页
90°pulse后 M=Mo
Z Mz=Mo Mxy=0
Z Mz=0
Mxy=Mo
Y
Y
Z M=Mxy+Mz
M=Mo
Z Mz=Mo Mxy=0
* Brain,orbital cavity,auditory nerves *Orthopedic range including joints,ligaments,
tendons,muscles *Spinal column in all sections *Thorax,heart
第11页/共95页
第24页/共95页
IR脉冲序列
〈3〉IR脉冲序列的三种图像
1:重 T1 加权像:由于纵向磁化的恢复是从180 ° 反转脉冲后的﹣1(完全饱和)至﹢1(纵向磁化完 全恢复),范围大,因而选择合适的TI可得到不同 质子纵向磁化的显著差异。获得比SE脉冲序列更 显著的T1加权效果。
2: 质子密度图:使用长TI,则所有质子(脂肪与水) 的纵向磁化均可完全恢复,使T1对比完全消失,此 时的图像为质子密度图。
三、 GRE脉冲序列
GRE脉冲序列的种类 (1)常规GRE脉冲序列 (2)GRASS脉冲序列 (3)失相位GRE脉冲序列
第31页/共95页
〈1 〉常规GRE 脉冲波的形式
RF
﹤ 90 °
TR
Signal
FID
Echo
频率编码
去相位 TE
磁共振检查技术MRI检查方法PPT课件
《医学影像检查技术》第八章 磁共振检查技术
快速自旋回波序列(FSE)
①图像对比特性与SE相似,磁敏感性更 低; ②成像速度更快; ③回波链长增加,扫描时间缩短,采集 层数减少。
《医学影像检查技术》第八章 磁共振检查技术
反转恢复序列(IR)
①具有较强T1对比特性,短TI反转恢复 序列同时具有较强的T2对比特性; ②可根据需要设定TI,饱和特定组织产 生特征性对比的图像(STIR、FLAIR); ③短TI对比常用于新生儿脑部成像; ④采集时间较长,扫描层面较少。
《医学影像检查技术》第八章 磁共振检查技术
第二节 MRI检查方法
《医学影像检查技术》第八章 磁共振检查技术
总体概述
标题添加
点击此处输入相 关文本内容
点击此处输入 相关文本内容
标题添加
点击此处输入相 关文本内容
点击此处输入 相关文本内容
《医学影像检查技术》第八章 磁共振检查技术
MR成像参数
《医学影像检查技术》第八章 磁共振检查技术
三、反转恢复序列(IR) 在1800脉冲的激励下,使磁化矢量M反转到主磁场 的反方向,在驰豫的过程中施加900重聚脉冲,检
测信号
180°
180°
180°
90°
回波
TI TE
TR
《医学影像检查技术》第八章 磁共振检查技术
四、梯度回波序列(GE,GRE) 使用一个小于900的RF激励质子后,使用两个大小相同 而方向相反的梯度磁场使其产生相位重聚
反转时间 TI (IR序列中)
Y
Y
Y
X
甲组织 恢复最慢
X
乙组织 恢复一般
X
丙组织 恢复快
《医学影像检查技术》第八章 磁共振检查技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
一、磁共振成像基本原理 二、磁共振常见物质的信号特点 三、病理组织的信号特点 四、中枢神经系统磁共振成像常用序列 五、磁共振图片展示
2
磁共振成像(magnetic resonance imaging, MRI)是利用原子核在磁场内所产生的信号经 重建成像的一种影像技术 。
纵向弛豫又称T1弛豫,是指90”射频脉冲停 止后纵向磁 化逐渐恢复至平衡的过程,亦就是 M0由XY平面回复到Z轴的过程,可定义为纵向 磁化矢量从最小值恢复至平衡态的63%所经历 的弛豫时间。
15
出血:影像表现很复杂,与出血的部位、 时间有关
① 《24h仅见周围水肿征象; ② 1~3天急性期,脱氧血红蛋白可使T2缩
短且水肿更明显; ③ 3~14天亚急性期,红血球溶解破坏,脱
氧血红蛋白氧化成高铁血红蛋白,T1弛 豫明显缩短T2弛豫延长,周围水肿存在; ④ 》14天慢性期,高铁血红蛋白氧化为半 色素,含铁血红蛋白沉积血肿周边部。
3
横向弛豫又称为自旋一自旋弛豫(spin-spin relaxation)或T2弛豫。横向弛豫的实质是在 射频脉冲停止后,质子又恢复到原来各自相位 上的过程,这种横向磁化逐渐衰减的过程称为 T2弛豫。T2为横向弛豫时间常数,它等于横向 磁化由最大值衰减至37%时所经历的时间。
4
通过采集部分饱和的纵向磁化产生的MR信号, 具有T1依赖性,其重建的图像即为T1加权图像。
④混杂信号强度:病变区包括以上二种或三种信号 强度改变,例如肝癌伴出血坏死时在T2WI上可呈 现混杂信号强度改变。
14
水肿:局部液体含量增多具有长T1和长T2 弛豫特点;
梗塞:组织出现缺血、水肿、变形、坏死等 病理变化,急性期呈长T1、T2弛豫;
变性:不同组织的变性机制不同如脑组织变 性部分水分增加、椎间盘水分减少;
90˚射频脉冲停止后,横向磁化矢量衰减到原值 的37%所需时间为T2值; 短T2组织,磁化矢量衰减快,在长TR序列中, 有效TE时间点采集的磁化矢量已经衰减到最小, 所以短T2组织为低信号,长T2组织为高信号。
9
脂肪与骨髓组织:有较高的质子 密度,这些质子T1值很短,质子 密度大和T1值小其信号强度大, 与周围长T1组织的对比度良好。
13
病变在MRI上通常有四种信号强度的改变:
①等信号强度:指病变与周围组织呈相同灰度,平 扫MRI上无法识别病灶,有时需借助MRI对比剂的 顺磁性效应以增加病变信号强度,使之与周围组 织产生对比差别;
②低信号强度:MRI片上病灶信号强度不及周围组 织亮;
③高信号强度:MRI片上病变组织的信号强度高于 周围组织;
流动血液:信号强度与流速有关,射 频脉冲和采集信号的时间差,出现流 空信号,涡流、层流可出现信号差别。
气体:质子密度最小,信号趋向零。 水:质子密度极高,具有长T1和长T2
弛豫特点。
12
一、磁共振成像基本原理 二、磁共振常见物质的信号特点 三、病理组织的信号特点 四、中枢神经系统磁共振成像常用序列 五、磁共振图片展示
18
自旋回波(SE)序列 采用“90°-180°”脉冲 组合形式构成。
其特点为可消除由于磁场不均匀性所致的 去相位效应,磁敏感伪影小。但其采集时间较 长,尤其是T2加权成像,重T2加权时信噪比较 低。
该序列为MRI的基础序列。
19
反转恢复(inversion recovery,IR)序列 短反转时间(inversion time,TI)的反转
16
坏死:坏死组织的水分增多,肉芽组织形 成,慢性纤维结缔组织形成;
钙化:质子密度很少,不如CT敏感; 囊变:囊内容物-纯水物质,蛋白质水分; 肿瘤:病理组织成分复杂,影像特点与其
所含成分有关,一般来讲肿瘤组织的质子 密度较正常组织高,T1延长不明显,T2延 长明显。
17
一、磁共振成像基本原理 二、磁共振常见物质的信号特点 三、病理组织的信号特点 四、中枢神经系统磁共振成像常用序列 五、磁共振图片展示
一般而言,组织信号强,图像所相应的部分就亮, 组织信号弱,图像所相应的部分就暗,由组织反 映出的不同的信号强度变化,就构成组织器官之 间、正常组织和病理组织之间图像明暗的对比。
T1 看解剖结构 T2 看病理改变
6
一、磁共振成像基本原理 二、磁共振常见物质的信号特点 三、病理组织的信号特点 四、中枢神经系统磁共振成像常用序列 五、磁共振图片展示
恢复序列,同时具有强的T2对比,还可根据需 要设定TI,饱和特定组织产生具有特征性对比 的图像,如短T1反转恢复(short T1 Inversion recovery,STIR)、液体衰减反转恢复(fluid attenuated inversion recovery,FLAIR)等序 列。
肌肉组织:具有较长的T1和较短 的T2弛豫特点。
10
骨骼组织: 1.骨皮质和钙化软骨质子密度很小,信 号很弱; 2.纤维软骨质子密度较高,具有较长 T1和较短T2弛豫时间,T1和T2呈中低 信号; 3.透明软骨含75~80%水分,为长T1和 长T2驰豫组织。
11
淋巴结:质子密度较高,具有较长T1 和较短T2弛豫特点。
MR信号主要依正常组织与病理组织的T1值是 相对固定的,而且它们之间有一定的差别,T2 值也是如此。这种组织间弛豫时间上的差别, 是磁共振成像诊断的基础。
5
值得注意的是,MRI的影像虽然也以不同的灰度 显示,但其反映的是MRI信号强度的不同或弛豫 时间T1与T2的长短,而不像CT图像,灰度反映的 是组织密度。
7
TR为重复时间, 越长图像对比度越高 TE 为回波时间 在自旋回波和梯度回波中二者共同决定图像
对比度。
T1、T2 是组织固有属性,在相同磁场不同 组织表现不同T1、T2 ,在磁共振图像上出 现不同的像素亮度。
8
根据弛豫值T1、T2定义,90˚射频脉冲停止后, 纵向磁化矢量增长到原值的63%所需时间为T1 值; 长T1组织,磁化矢量恢复慢,在短TR序列 中,有效TE时间点采集的磁化矢量没有恢复到 足够大,处于低值水平,所以长T1组织为低信 号,短T1组织为高信号。
一、磁共振成像基本原理 二、磁共振常见物质的信号特点 三、病理组织的信号特点 四、中枢神经系统磁共振成像常用序列 五、磁共振图片展示
2
磁共振成像(magnetic resonance imaging, MRI)是利用原子核在磁场内所产生的信号经 重建成像的一种影像技术 。
纵向弛豫又称T1弛豫,是指90”射频脉冲停 止后纵向磁 化逐渐恢复至平衡的过程,亦就是 M0由XY平面回复到Z轴的过程,可定义为纵向 磁化矢量从最小值恢复至平衡态的63%所经历 的弛豫时间。
15
出血:影像表现很复杂,与出血的部位、 时间有关
① 《24h仅见周围水肿征象; ② 1~3天急性期,脱氧血红蛋白可使T2缩
短且水肿更明显; ③ 3~14天亚急性期,红血球溶解破坏,脱
氧血红蛋白氧化成高铁血红蛋白,T1弛 豫明显缩短T2弛豫延长,周围水肿存在; ④ 》14天慢性期,高铁血红蛋白氧化为半 色素,含铁血红蛋白沉积血肿周边部。
3
横向弛豫又称为自旋一自旋弛豫(spin-spin relaxation)或T2弛豫。横向弛豫的实质是在 射频脉冲停止后,质子又恢复到原来各自相位 上的过程,这种横向磁化逐渐衰减的过程称为 T2弛豫。T2为横向弛豫时间常数,它等于横向 磁化由最大值衰减至37%时所经历的时间。
4
通过采集部分饱和的纵向磁化产生的MR信号, 具有T1依赖性,其重建的图像即为T1加权图像。
④混杂信号强度:病变区包括以上二种或三种信号 强度改变,例如肝癌伴出血坏死时在T2WI上可呈 现混杂信号强度改变。
14
水肿:局部液体含量增多具有长T1和长T2 弛豫特点;
梗塞:组织出现缺血、水肿、变形、坏死等 病理变化,急性期呈长T1、T2弛豫;
变性:不同组织的变性机制不同如脑组织变 性部分水分增加、椎间盘水分减少;
90˚射频脉冲停止后,横向磁化矢量衰减到原值 的37%所需时间为T2值; 短T2组织,磁化矢量衰减快,在长TR序列中, 有效TE时间点采集的磁化矢量已经衰减到最小, 所以短T2组织为低信号,长T2组织为高信号。
9
脂肪与骨髓组织:有较高的质子 密度,这些质子T1值很短,质子 密度大和T1值小其信号强度大, 与周围长T1组织的对比度良好。
13
病变在MRI上通常有四种信号强度的改变:
①等信号强度:指病变与周围组织呈相同灰度,平 扫MRI上无法识别病灶,有时需借助MRI对比剂的 顺磁性效应以增加病变信号强度,使之与周围组 织产生对比差别;
②低信号强度:MRI片上病灶信号强度不及周围组 织亮;
③高信号强度:MRI片上病变组织的信号强度高于 周围组织;
流动血液:信号强度与流速有关,射 频脉冲和采集信号的时间差,出现流 空信号,涡流、层流可出现信号差别。
气体:质子密度最小,信号趋向零。 水:质子密度极高,具有长T1和长T2
弛豫特点。
12
一、磁共振成像基本原理 二、磁共振常见物质的信号特点 三、病理组织的信号特点 四、中枢神经系统磁共振成像常用序列 五、磁共振图片展示
18
自旋回波(SE)序列 采用“90°-180°”脉冲 组合形式构成。
其特点为可消除由于磁场不均匀性所致的 去相位效应,磁敏感伪影小。但其采集时间较 长,尤其是T2加权成像,重T2加权时信噪比较 低。
该序列为MRI的基础序列。
19
反转恢复(inversion recovery,IR)序列 短反转时间(inversion time,TI)的反转
16
坏死:坏死组织的水分增多,肉芽组织形 成,慢性纤维结缔组织形成;
钙化:质子密度很少,不如CT敏感; 囊变:囊内容物-纯水物质,蛋白质水分; 肿瘤:病理组织成分复杂,影像特点与其
所含成分有关,一般来讲肿瘤组织的质子 密度较正常组织高,T1延长不明显,T2延 长明显。
17
一、磁共振成像基本原理 二、磁共振常见物质的信号特点 三、病理组织的信号特点 四、中枢神经系统磁共振成像常用序列 五、磁共振图片展示
一般而言,组织信号强,图像所相应的部分就亮, 组织信号弱,图像所相应的部分就暗,由组织反 映出的不同的信号强度变化,就构成组织器官之 间、正常组织和病理组织之间图像明暗的对比。
T1 看解剖结构 T2 看病理改变
6
一、磁共振成像基本原理 二、磁共振常见物质的信号特点 三、病理组织的信号特点 四、中枢神经系统磁共振成像常用序列 五、磁共振图片展示
恢复序列,同时具有强的T2对比,还可根据需 要设定TI,饱和特定组织产生具有特征性对比 的图像,如短T1反转恢复(short T1 Inversion recovery,STIR)、液体衰减反转恢复(fluid attenuated inversion recovery,FLAIR)等序 列。
肌肉组织:具有较长的T1和较短 的T2弛豫特点。
10
骨骼组织: 1.骨皮质和钙化软骨质子密度很小,信 号很弱; 2.纤维软骨质子密度较高,具有较长 T1和较短T2弛豫时间,T1和T2呈中低 信号; 3.透明软骨含75~80%水分,为长T1和 长T2驰豫组织。
11
淋巴结:质子密度较高,具有较长T1 和较短T2弛豫特点。
MR信号主要依正常组织与病理组织的T1值是 相对固定的,而且它们之间有一定的差别,T2 值也是如此。这种组织间弛豫时间上的差别, 是磁共振成像诊断的基础。
5
值得注意的是,MRI的影像虽然也以不同的灰度 显示,但其反映的是MRI信号强度的不同或弛豫 时间T1与T2的长短,而不像CT图像,灰度反映的 是组织密度。
7
TR为重复时间, 越长图像对比度越高 TE 为回波时间 在自旋回波和梯度回波中二者共同决定图像
对比度。
T1、T2 是组织固有属性,在相同磁场不同 组织表现不同T1、T2 ,在磁共振图像上出 现不同的像素亮度。
8
根据弛豫值T1、T2定义,90˚射频脉冲停止后, 纵向磁化矢量增长到原值的63%所需时间为T1 值; 长T1组织,磁化矢量恢复慢,在短TR序列 中,有效TE时间点采集的磁化矢量没有恢复到 足够大,处于低值水平,所以长T1组织为低信 号,短T1组织为高信号。