方差分析5.ppt

合集下载

第5章 方差分析53页PPT

第5章 方差分析53页PPT
学习目标
掌握方差分析中的基本概念; 掌握方差分析的基本思想和原理; 掌握单因素方差分析的方法及应用; 初步了解多重比较方法的应用; 了解双因素方差分析的方法及应用。
1
5.1 方差分析中的基本概念 和假设
2
为什么要进行方差分析?
为了比较四个专业的起薪,我们 从某高校四个专业的毕业生中分 别随机选择6人调查他们的起薪。 如何根据样本数据比较不同专业 毕业生的平均起薪?
5.2.1 单因素方差分析模型 5.2.2方差分析的基本原理 5.2.3 单因素方差分析的步骤 5.2.4 方差分析中的多重比较
15
5.2.1 单因素方差分析模型
单因素方差分析: 模型中有一个自变量 (因素)和一个因变量。
在失业保险实验中假设张三在高奖金组,则 张三的失业时间 =高奖金组的平均失业时间 +随机因素带来的影响 =总平均失业时间 +高奖金组平均值与总平均值之差 + 随机因素带来的影响
10
5.1.2:方差分析中的基本假设
(1)在各个总体中因变量都服从正态分布; (2)在各个总体中因变量的方差都相等; (3)各个观测值之间是相互独立的。
11
(1)正态性的检验
各组数据的直方图 峰度系数、偏度系数 Q-Q图, K-S检验*
12
(2)等方差性的检验
经验方法:计算各组数据的标准差,如果最大值 与最小值的比例小于2:1,则可认为是同方差的。 最大值和最小值的比例等于1.83<2
Levene检验 *
13
(3) 其它说明
方差分析对前两个假设条件是稳健的, 允许一定程度的偏离。
独立性的假设条件一般可以通过对数据 搜集过程的控制来保证。
如果确实严重偏离了前两个假设条件, 则需要先对数据进行数学变换,也可以 使用非参数的方法来比较各组的均值。

方差分析法PPT课件

方差分析法PPT课件

计算各样本平均数 y 如i 下:
表 6-2
型号
ABCDE F
yi
9.4 5.5 7.9 5.4 7.5 8.8
•5
引言 方差分析的基本概念和原理
两个总体平均值比较的检验法 把样本平均数两两组成对:
y 1与 y ,2 与y 1 ,…y 3 与 y ,1 与y 6 ,…y ,2 与y 3 ,共有y (5
6.3 显著性检验
利用(6-17)式来检验原假设H0是否成立.对于给定的显著水
平,可以从F分布表查出临界值
A的值.
F(k1,k(再m根1)据),样本观测值算出F
当 FAF(k1,时k(m ,拒1绝))H0,
当 FAF(k1,,时k(m ,接1 受))H0。
即:如果H0成立,F应等于1;相反应大于1,而且因素的影响越大, F值也越大
m
km
T Tj Yij
•38
j1
作统计假设:6种型号的生产线平均维修时数无显 著差异,即
H0: i=0(i=1,2,…,6),H1:i不全为零
•37
6.3 显著性检验
计算SA及SE
k
SA
k
m
i1
(Yi
Y)2
Ti2
i1
m
T2 km
k
km
km
Ti2
SE i1
(Yij Yi)2
j1
i1
j1Yij2i1m
m
Ti Yij
j 1
相当于检验假设
H0 : i 0 (i=1,2,…,k) , H1 : αi不全为零
•29
6.3 显著性检验
可以证明当H0为真时,
ST
2
~2(k

方差分析(共66张PPT)

方差分析(共66张PPT)

18~岁 21.65 20.66
… … 18.82 16 22.07 8.97
30~岁 27.15 28.58
… … 23.93 16 25.94 8.11
45~60岁 20.28 22.88 … … 26.49 16 25.49 7.19
基本步骤
(1)建立假设,确定检验水准
H0:三个总体均数相等,即三组工作人员的 体重指数总体均数相等
单因素方差分析
例1 在肾缺血再灌注过程的研究中,将36只雄性大鼠随机等分成三组, 分别为正常对照组、肾缺血60分组和肾缺血60分再灌注组,测得 各个体的NO数据见数据文件,试问各组的NO平均水平是否相同?
单因素方差分析
分析:
对于单因素方差分析,其资料在SPSS中的数据结构应当由两 列数据构成,其中一列是观察指标的变量值,另一列是用以表 示分组变量。实际上,几乎所有的统计分析软件,包括SAS, STATA等,都要求方差分析采用这种数据输入形式,这一点也暗 示了方差分析与线性模型间千丝万缕的联系。
H1:三个总体均数不等或不全相等
(2)计算检验统计量F值
变异来源
SS 自由度(df)
MS
F
组间 组内 总变异
143.406 363.86 507.36
2
71.703
8.87
45
8.09
47
(3)确定p值,作出统计推断
,本次F值处于F界值之外,说明组间均方组内 均方比值属于小概率事件,因此拒绝H0,接受 H1,三个总体均数不等或不全相等
分凝血活酶时间有无不同?
方差分析步骤 :
(1)提出检验假设,确定检验水准
H0:μ1=μ2=μ3 H1:μ1,μ2,μ3不全相同 a=

第章方差分析(页)PPT课件

第章方差分析(页)PPT课件

1. 进行两个或两个以上样本均数的比较; 2. 可以同时分析一个、两个或多个因素对试验
结果的作用和影响;
3. 分析多个因素的独立作用及多个因素之间的 交互作用;
4. 进行两个或多个样本的方差齐性检验等。 5. 应用条件:方差分析对分析数据的要求及条
件比较严格,即要求各样本为随机样本,各 样本来自正态总体,各样本所代表的总体方 差齐性或相等。
简历
返回总目录 返回章目录 .
第2页
结束
《医学统计学》目录
第1章 绪论 第2章 定量资料的统计描述 第3章 总体均数的区间估计和假设检验 第4章 方差分析 第5章 定性资料的统计描述 第6章 总体率的区间估计和假设检验 第7章 二项分布与Poisson分布 第8章 秩和检验 第9章 直线相关与回归 第10章 实验设计 第11章 调查设计 第12章 统计表与统计图
简历
返回总目录 返回章目录 .
第16页
结束
2. 计算各部分变异 :
(1)单因素方差分析中,可以分出组间变异 (SS组间)和组内变异(SS组内)两大部分;
(2)双因素方差分析中,可以分出处理组变 异(SS处理),区组变异(SS区组)或称为 配伍组变异(SS配伍)及误差变异(SS误差) 三大部分。
简历
简历
返回总目录 返回章目录 .
第10页
结束
单因素方差分析模式表
简历
返回总目录 返回章目录 .
第11页
结束
6. 各种变异除以相应的自由度,称为均方,用MS 表示,也就是方差。当H0为真时,组间均方与组 内均方相差不大,两者比值F值约接近于1。 即 F=组间均方/组内均方≈1。
7. 间当均H方0不增成大立,时此,时处,理F因>素>产1,生当了大作于用等,于使F得临组界 值数时 不, 全则 相等P≤。0.05。可认为H0不成立,各样本均

方差分析 (共72张PPT)

 方差分析 (共72张PPT)

2.总体变异的构成
总体变异 组间变异: 组内变异:组内变异理论上要求齐性,实际计算取其 均值
3.方差的基本公式
一般总体方差称方差,样本方差称均方 能使变量发生变异的原因很多,这些原因我们都将其称为变异
因素或变异来源。
方差分析就是发现各类变异因素相对重要性的一种方法
方差分析的思路就是:把整个试验(设有 k 个总体)的样本资料作 为一个整体来考虑。
原理是变异的可加性。
即每一个数据与数据的总体平均数差的平方和,可以分解为每一组数 据各自的离差平方和与由各组数据的平均数组成的一组数据的
离差平方和两部分。前者表达的是组内差异,即每组数据中 各个数据之间的差异,也就是个体差异,表达的是抽样误差或 随机误差程度;后者表达的是组间差异,即各组平均数之间的差 异,表达的是实验操纵的差异程度,实验操纵即指自变量的操 纵,这两部分差异之间相互独立。
3、这种两两比较会随着样本组数的增加而加大犯Ⅰ型错的差异显著性检验,若两两比较推 断正确的概率为95%,则所有比较都正确的概率为6=0.74,则降低
了推断的可靠性。
• 几个常用术语:
1、试验指标(experimental index) 为衡量试验结果的好坏或处理效应的高低 ,在试验中具体测
(1).计算平方和:
组间平方和
SB SX n2X n2 71 .5 6 65 8 .1 7 8 20 8 .47
¨ 组内平方和
SW SX 2X n2 7 6 7 41 4 .5 6 4 45 7 .5 7 8
¨ 总平方和
SS T X 2X n2
764414252 876.396
23
(2).计算自由度
因此,方差分析可以帮助我们抓住试验的主要矛盾和技术关键,发 现主要的变异来源,从而抓住主要的、实质性的东西。

方差分析ppt课件

方差分析ppt课件
推断控制变量是否给观测变量带来了显 著影响。
在观测变量总离差平方和中,如果组
间离差平方和所占比例较大,则说明观 测变量的变动主要是由控制变量引起的, 可以由控制变量来解释,控制变量给观 测变量带来了显著影响;反之,如果组 间离差平方和所占比例小,则说明观测 变量的变动不是主要由控制变量引起的, 不可以主要由控制变量来解释,控制变 量的不同水平没有给观测变量带来显著 影响,观测变量值的变动是由随机变量 因素引起的。
不同饲料对牲畜体重增长的效果等, 都可以使用方差分析方法去解决。
方差或叫均方,是标准差的平方,是
表示变异的量。在一个多处理试验中, 可以得到一系列不同的观测值。造成观 测值不同的原因是多方面的,有的是处 理不同引起的,叫处理效应或条件变异, 有的是试验过程中偶然性因素的干扰和 测量误差所致,称为实验误差。
dfT nk 1 20 1 19
dft k 1 5 1 4
dfe 5(4 1) 15
st 2
SSt dft
103.94 3
34.65
se2
SSe dfe
109.36 12
9.11
进行F检验:
F st2 34.65 50.15 se2 9.11
F0.05(4,15) 3.06, F0.01(4,15) 4.89, F
x1 x2
ts x1 x2
x1 x2
LSD0.05 t s 0.05 x1x2
LSD0.01
t0.01
s x1 x2

x1
x 2 >t0.05
s x1
x2

x1
ห้องสมุดไป่ตู้
x2

t0.01
s x1 x2

统计学方差分析ppt课件

统计学方差分析ppt课件

水平
水平指因素的具体表现,如销售的 四种方式就是因素的不同取值等级。有 时水平是人为划分的,比如质量被评定 为好、中、差。
单元
单元指因素水平之间的组合。如销 售方式一下有五种不同的销售业绩,就 是五个单元。方差分析要求的方差齐就 是指的各个单元间的方差齐性。
元素
元素指用于测量因变量的最小单 位。一个单元里可以只有一个元素, 也可以有多个元素。
均衡
如果一个试验设计中任一因素各水 平在所有单元格中出现的次数相同,且 每个单元格内的元素数相同,则称该试 验是为均衡,否则,就被称为不均衡。 不均衡试验中获得的数据在分析时较为 复杂。
交互作用
如果一个因素的效应大小在另一 个因素不同水平下明显不同,则称为 两因素间存在交互作用。当存在交互 作用时,单纯研究某个因素的作用是 没有意义的,必须分另一个因素的不 同水平研究该因素的作用大小。如果 所有单元格内都至多只有一个元素, 则交互作用无法测出。
地点一 地点二 地点三 地点四 地点五
方式一
77
86
81
88
83
方式二
95
92
78
96
89
方式三
71
76
68
81
74
方式四
80
84
79
70
82
【解】设这四种方式的销售量的均值分别用 1•, 2•, 3•, 4• 表示,四 个销售地点的平均销售量用 •1, •2, •3, •4 表示;则要检验的假设为
例题
Excel操作
构造F统计量
判断与结论
例题
Excel操作
方差分析概述
因素和水平
单元和元素
均衡
交互作用

方差分析课件-PPT

方差分析课件-PPT
、 、 、 增重表就是选用S-N-K法作均数多重两两比较得结果
增重表就是选用S-N-K法作均数多重两两比较得结果:
本例按a=0、05水准,将无显著性差异得数归为一类 (Subset for alpha=0、05)。可见
品种5、2、3得样本均数位于同一个子集( Subset )内,说 明品种5、品种2、品种3得样本均数两两之间无显著差异; 品种3、4、1位于同一个Subset内,她们之间无显著差异;而 品种5、2与品种4、1得样本均数有显著差异。
即三组均数间差异极显著,即不同时期切痂对大鼠肝脏 ATP含量有影响。
LSD法多重比较:
“*”显著性标注 两组均数得差
•S-N-K法:本例按0、5水平,将无显著差异得均数归为一类。
•第一组与第三组为一类,无显著差异,它们与第二组之间均数差 异显著。
•LSD与S-N-K法,不同得两两比较法会有不同。
如欲了解就是否达到极显著差异,需要将显著水平框中得 值输入0、01。
例、 为了研究烫伤后不同时间切痂对大鼠肝脏 ATP得影响,现将30只雄性大鼠随机分成3组,每组 10只:A组为烫伤对照组,B组为烫伤后24小时切痂 组,C组为烫伤后96小时切痂组。全部大鼠在烫伤 168小时候处死并测量器肝脏ATP含量,结果如下。 问试验3组大鼠肝脏ATP总数均数就是否相同。
该12个观察值得总得均值为91、5,标准差为34、 48。
上图为品系、剂量间均值得方差分析(F检验)结果
由表中可知,品系得F=23、771,P=0、001<0、01,差异极显著;
剂量得F=33、537,P=0、001<0、01,差异极显著。说明不同品系与 不同雌激素剂量对大鼠子宫得发育均有极显著影响,故有必要进一步对 品系、雌激素剂量两因素不同水平得均值进行多重比较。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方差分析的基本思想,就是将总变差分解为各构成 部分之和,然后对它们作统计检验。总变差:
mn
SST
( X ij X )2
i1 j1
其中m为试验水平数,n为重复次数,自由度vT =
mn – 1 = N – 1



数理统计在化学中的应用
制 造
条件变差(组间方差)
每一组的测定平均值和总平均值差值的平方和再乘 以重复次数:
( X ij X i )( X i X )
i1 j1
i1 j1
i1 j1
mn
mn
m
n
( X ij X i )2
( X i X )2 2 ( X i X ) ( X ij X i )
i1 j1
i1 j1
i 1
j 1
mn
mn
SST
( Xij Xi )2
( Xi X )]2



数理统计在化学中的应用



数理统计在化学中的应用
制 造
例7-1
用火焰原子吸收光谱法测定试样中的铋,研究溶液的 酸度对测定吸光度的影响,得到如下结果,求分析酸 含量的变化对测定结果的影响是否显著?
含酸量(%) 0
1
2
3
4
0.140 0.153 0.160 0.181 0.175
吸光度 0.141 0.150 0.158 0.185 0.173
制 造
总变差的分解
m
nm
SSA n ( Xi X )2 SSe
( X ij X i )2
i 1
i1 j 1
mn
mn
SST
( X ij X )2
[( X ij X i ) ( X i X )]2
i1 i1
i1 j1
mn
mn
mn
( X ij X i )2
( Xi X )]2 2
SST 3.34E-03 14 2.39E-04
结论:酸度对测定结果有非常显著的影响



数理统计在化学中的应用
制 造
方差分析要注意以下几点
1、从理论上可推知,当ve很小时,F检验的灵敏度是很低的, ve很大时,灵敏度就高。增加实验次数,有利于灵敏度提高
。一般ve应在5-10,如达不到,须将 放宽至0.20。
0.144 0.153 0.163 0.183 0.174
平均值 0.142 0.153 0.161 0.183 0.174



数理统计在化学中的应用
制 造
在方差分析中,把所有数据之间的差异叫做总变差。 产生总变差的原因有两类,一类是条件变差(本例中 即是酸度的影响),另一类就是试验误差。方差分析 解决这个问题的办法就是:
1、从总变差中区分出试验变差和条件变差,也就 是将不同因素的影响给区分开来。
2、利用F检验比较这两个变差的大小,确定出主 要变差。
3、根据主要的变差,去选择较好的分析条件,或
确定进一步试验的方向。



数理统计在化学中的应用
制 造
方差分析的基本思想
方差分析的依据是建立在变差平方和具有加和性的 基础上的。因此,如果用变差平方和来表征测定结 果的总变差,那么总变差的平方和就等于各变异因 素形成的变差平方和的总和。
m
SSA n ( Xi X )2 i 1
自由度vA = m – 1



数理统计在化学中的应用
制 造
试验误差(组内方差)
各组内的每次测定值和组内平均值差值的平方和:
nm
SSe
( X ij X i )2
i1 j 1
自由度ve = m(n – 1) = N – m



数理统计在化学中的应用
第七章 方差分析
(Analysis of Variance)简称ANOVA
数理统计在化学中的应用
方差分析
在化学中,对一个试样进行分析或进行一个化学反 应时,常常要选择具体的实验条件,通常需要通过多 次条件试验才能确定。这种条件试验应如何进行?其 结果能说明什么问题?这就要借助于方差分析来给出 解答。
Ronald A. Fisher开发并首先应用了方差分析作为 实验设计中的设计分析的基本方法.



数理统计在化学中的应用
制 造
$7.1 化学试验的单因素方差分析
单因素方差分析,是指仅分析一个因素对试验结果 的影响是否显著的问题。例如,在分析化学中实验 被分析溶液的酸度对分析结果的影响是否显著。
0.144 0.153 0.163 0.183 0.174 平均值 0.142 0.152 0.160 0.183 0.174
Ti Ti2/ni
n
Xij2
j 1
0.425 0.456 0.481 0.549 0.522 0.3946 P 0.06021 0.06931 0.07712 0.10047 0.09083 0.3979 QA 0.06022 0.06932 0.07713 0.10048 0.09083 0.3980 R



数理统计在化学中的应用
制 造
例7-1
方差来源
变差平方 和
自由度
平均变差 平方和
F
临界值
SSA 3.30E-03 4 8.26E-04
F0.05,4,10 3.48
(SSA/vA)/ SSe 3.73E-05 10 3.73E-06 (SSe/ve) F0.01,4,10 5.99
=221.2
i1 j1
i1 j1
SSA SSe



数理统计在化学中的应用
制 造
定义
n
Ti Xij j 1
m
mn
T Ti Xij
i 1
i1 j1
SST
m i 1
n j 1
X ij 2
T2 N
SS A
m i 1
Ti 2 ni
T2 N
SSe
m i 1
n j 1
X ij 2
m i 1
Ti ni
2、当F值特别小时,表明可能取样或测量中有系统误差,一般 不应发生,一旦发生就应仔细寻找原因,决不能放过。
3、试验应采取随机的方式,而不能按照先后次序(例如温度 从高到低)。因为有可能在整个试验过程中,前后尺度掌 握不均,或者有其它因素也在有规律或周期性地变化。
4、如果是评定实验室之间及实验室内部的精度,当F F时, 就说明实验室之间的精度与实验室内部的精度是一致的。
mn
R
X ij2
i1 j1
P T2 N
QA
m i 1
Ti 2 ni
SST R P SSA QA P SSe R QA



数理统计在化学中的应用
制 造
例7-1
含酸量 (%)
吸光度
0
0.140 0.141
1
58
3
4
0.181 0.175 0.185 0.173
相关文档
最新文档