第1章流体力学基础部分
第1章 流体力学基础知识
气 业 基 学 1.1.2 流体的密度、压强和温度
西 动 大 础教 院 1. 流体内部一点处的密度 北 力 学 学 在连续介质假设的前提下,可以对流体微团乃至流体内部某一几何点处的密 工 学 航 团 度下定义。
空气 业 基 天学 队 围绕流体内部某一点 P 处划取一块微小空间,设这块空间的容积为 ∆τ ,其
介质平均密度有一个相当稳
西 北
定的值,即 ρ p 。这是因为在
空 工 微元容积缩小过程中。包含
气 业 在微元单位容积内的分子数
西 动 大 目越来越稳定,单个分子的
北 力 学 个性没有显示出来。如果继续缩小微元容积,向零趋近时,单位微元容积内所
空 工 学 航天 包含的介质分子数目就不可能保持常数。在某一瞬间来看问题:如果恰好有几
大 编 dV /V 动 学 教 院 写 式中:E 为体积弹性模数;V 为一定量气体的体积。对于一定质量的气体,其体
力 航 学 积与密度成反比例关系,因此可得
学基 天 团队 dρ = − dV 学ρ V
础 院 编 因此,气体的体积弹性模数可写为
教学 写 E = ρ dp 团 dρ
(1-7)
队 在相同的压强增量作用下,这种相对密度(或体积)的变化的大小和体积弹性
队 作用,微粒的实际占有体积和气体所占空间相比较可以忽略不计。远离液态的
编 气体基本符合这些假设,通常状况下的空气也符合这些假设,可以看作为一种
完全气体。
写
任何状态下,气体的压强、密度和温度之间都存在一定的函数关系,即
p = p(ρ,T )
这个函数关系称之为气体的状态方程。完全气体的状态方程为
p = R ρT m
(1-5)
西 式中: R 为普适气体常数,其数值为 8315 m2 / (s2 ⋅ K ) ;m 为某种气体的分子量;
第1章流体力学与计算流体力学基础
第1章 流体力学与计算流体力学基础机进行数值计算,模拟流体流动时的各种相关物理现象,包括流动、热传导、声场等。
计算流体动力学分析广泛应用于航空航天设计、汽车设计、生物医学工业、化工处理工业、1.1 流体力学基础本节将介绍流体力学一些重要的基础知识,包括流体力学的基本概念和基本方程。
流体力学是进行流体力学工程计算的基础,如果想对计算的结果进行分析与整理,在设置边界条件时有所依据,那么学习流体力学的相关知识是必要的。
1.1.1 一些基本概念(1)流体的密度流体密度的定义是单位体积内所含物质的多少。
若密度是均匀的,则有:VM=ρ (1-1) 式中:ρ为流体的密度;M 是体积为V 的流体内所含物质的质量。
由上式可知,密度的单位是kg/m 3。
对于密度不均匀的流体,其某一点处密度的定义为:VMV ΔΔ=→Δ0limρ (1-2)2 Fluent 17.0流体仿真从入门到精通例如,4℃时水的密度为10003kg /m ,常温20℃时空气的密度为1.243kg /m 。
各种流体的具体密度值可查阅相关文献。
流体的密度是流体本身固有的物理量,随着温度和压强的变化而变化。
(2)流体的重度流体的重度与流体密度有一个简单的关系式,即:g ργ= (1-3)式中:g 为重力加速度,值为9.812m /s 。
流体的重度单位为3N /m 。
(3)流体的比重流体的比重定义为该流体的密度与4℃时水的密度之比。
(4)流体的粘性在研究流体流动时,若考虑流体的粘性,则称为粘性流动,相应地称流体为粘性流体;若不考虑流体的粘性,则称为理想流体的流动,相应地称流体为理想流体。
流体的粘性可由牛顿内摩擦定律表示:dyduμτ= (1-4)牛顿内摩擦定律适用于空气、水、石油等大多数机械工业中的常用流体。
凡是符合切应力与速度梯度成正比的流体叫做牛顿流体,即严格满足牛顿内摩擦定律且µ保持为常数的流体,否则就称其为非牛顿流体。
例如,溶化的沥青、糖浆等流体均属于非牛顿流体。
于治明主编液压传动课件第一章 流体力学基础
静止液体在单位面积上所受的法向力称为静压力。 静止液体在微小面积上所受的内法线方向的法向力, 该点的压力为。 (3-1) 静压力性质: 静压力垂直于承压面,其方向和该面的内法线方向一致。 静止液体内任意一点所受到的压力在各个方向上都相等。
• 压力及其性质: 质量力:力的作用反映在液体内部每一个质点上。如重力、惯性力、离心力等。质量力的大小 和液体的质量成正比。 表面力:力的作用反映在外部表面或内部截面上。表面力的大小和作用面积成正比。如液体边 界上的大气压力,液体内部各部分之间相互作用的压力、内摩擦力等。 单位质量力数值上等于加速度。 单位面积上作用的表面力称为应力。 法向应力和切向应力 液体在单位面积上所受的内法线方向的法向应力称为压力。
压力为p时液体的运动粘度
p
大气压力下液体的运动粘度
a
(1 9)
(5)气泡对粘度的影响
b 0 (1 0.015b)
b为混入空气的体积分数 混入b空气时液体的运动粘度
不含空气时液体的运动粘度
0
b
(三)、选用与维护
1、工作介质的选择 品种、粘度 2、工作介质的使用和维护 1)污染物种类及其危害 固体颗粒、水、空气、化学物质、微生物 污染能量。 2)污染原因 3)污染物等级 指单位体积工作介质中固体颗粒污染物的含 量,即工作介质中固体颗粒的浓度。 ISO4406:1987,1999
一、基本概念
(一)、理想液体、恒定流动和一维流动
既无粘性不可压缩的假想液体,称为理想液体。 液体流动时,液体中任意点处的压力、速度和密度都不随 时间而变化,液体作恒定流动。
只要压力、速度或密度有一个随时间变化,液体作非恒 定流动。当液体整体作线性流动时,称为一维流动。
(二)、流线、流束和通流截面
第一章 流体力学基础(10)
Pa s
在物理单位制中: P,泊 SI单位制和物理单位制粘度单位的换算关系为:
1Pa s 10P 第一章 流体力学基础
牛顿型流体和非流动流体
1)凡遵循牛顿粘性定义的流体称为牛顿型流体;否则 为非流动型流体。 牛顿型流体,如水、空气等; 2) 非流动型流体,如某些高分子溶液、悬浮液、泥浆 和血液等。 3) 本书所涉及的流体多为牛顿型流体。
第一章 流体力学基础
(2)通过喷嘴的流动
1 2
q+w=△h+ g△Z+
1 2 △ u 2
u2 2h1 h2
流体流过收缩喷嘴时获得的动能等于流体韩志的增加
第一章 流体力学基础
(3)通过节流阀的流动
q+w=△h+ g△Z+
1 2 △ u 2
h1 h2
流体截流前后的焓值不变
第一章 流体力学基础
在过程生产中,有些仪表是以静力学基本方程式为理论依
一、压强与压强差测量
1 U型管液柱压差计 指示液密度ρ0,被测流体密度为ρ,图中a、 b两点的压力是相等的,因为这两点都在同一 种静止液体(指示液)的同一水平面上。通 过这个关系,便可求出p1-p2的值。
指示剂的选择
@ 指示液必须与被测流体不 互容; @ 不起化学反应; @ 大于被测流体的密度。 指示液随被测流体的 不同而不同。
实际上流体都是可压缩的,一般把液体当作不可压缩流体; 气体应当属于可压缩流体。但是,如果压力或温度变化率很小 时,通常也可以当作不可压缩流体处理。
第一章 流体力学基础
稳定流动(定态流动)
稳定流动:流体在流动时,在任一点上的流速、压力等有关 物理参数仅随位置变化而不随时间改变。
(完整版)流体力学知识点总结汇总
流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3 流体力学的研究方法:理论、数值、实验。
4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。
B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
第1章 流体流动习题
第1章 流体力学基础1.1 主要公式1.1.1牛顿内摩擦定律dydu μτ±= (1-1)τ-切应力,Pa ;dydu-速度梯度,s -1; μ-流体动力粘度,Pa ·s1.1.2 稳定流动总能量方程式 单位质量流体的能量平衡式22222222211111u gZ v p e w q u gZ v p e +++=+++++ (J/kg)(1-2a)2222222111u gZ h w q u gZ h ++=++++ (J/kg)(1-2b)22u Z g h w q ∆+∆+∆=+ (J/kg) (1-2c)式中 Z —某一液面距基准面的高度,m ;u —流体流动速度,m/s ;e —单位质量的流体所具有的内能,J/kg ; p —流体绝对压力,Pa ; v —流体的比体积,m 3/kg ; ρ—流体的密度,kg/m 3;w —单位质量的流体所具有的功,J/kg ; q —单位质量的流体所具有的热量,J/kg ; h —单位质量的流体所具有的焓,J/kg 。
式中以下标1表示的项为体系进口截面上流体的能量,下标2表示的项为体系出口截面上流体的能量。
1.1.3 不可压缩理想流体的稳定流动与柏努利(Bernoulli )方程2222222111u p gZ u p gZ ++=++ρρ(J/kg) (1-3a)gu g p Z g u p Z 22g 22222111++=++ρρ(m) (1-3b)2222222111u p gZ u p gZ ρρρρ++=++ (N/m 2) (1-3c)式(1-3a)、式(1-3b)和式(1-3c)为不可压缩理想流体稳定流动能量方程的三种表达式,称为柏努利方程式。
式中各项代表单位数量的流体所具有的位能、压力能和动能,式(1-3a)以每1kg 质量的流体所具有的能量来表示;式(1-3b)以每1N 重量的流体所具有的能量来表示;式(1-3c)以每1m 3体积的流体所具有的能量来表示。
化工原理第一章流体力学基础
第一章 流体力学基础
m GA uA
17/37
1.3.1 基本概念
三、粘性——牛顿粘性定律
y x
v
内部存在内摩擦力或粘滞力
v=0
内摩擦力产生的原 因还可以从动量传 递角度加以理解:
v
单位面积上的内摩擦力,N m2
dv x
dy
动力粘度 简称粘度
速度梯度
----------------牛顿粘性定律
(2)双液柱压差计
p1
1略小于2
z1
p1 p2 2 1 gR
p1
R
p2
R
p2
1
z1
R 2
0
倾斜式压差计
浙江大学本科生课程 化工原理
第一章 流体力学基础
读数放大
14/14
幻灯片2目录
1.3 流体流动的基本方程 1.3.1 基本概念 1.3.2 质量衡算方程 1.3.3 运动方程 一、作用在流体上的力 二、运动方程 三、N-S方程 四、欧拉方程 五、不可压缩流体稳定层流时的N-S 方程若干解
v x v y vz 0
t x
y
z
t
vx
x
vy
y
vz
z
v x x
v y y
v z z
0
D
Dt
v x x
v y y
v z z
0
-------连续性方程微分式
若流体不可压缩,则D/Dt=0
v x v y v z 0 x y z
浙江大学本科生课程 化工原理
第一章 流体力学基础
dy
N m2 ms
Ns m2
Pa s
m
1Pa s 10P 1000cP
(完整版)流体力学 第一章 流体力学绪论
第一章绪论§1—1流体力学及其任务1、流体力学的任务:研究流体的宏观平衡、宏观机械运动规律及其在工程实际中的应用的一门学科。
研究对象:流体,包括液体和气体。
2、流体力学定义:研究流体平衡和运动的力学规律、流体与固体之间的相互作用及其在工程技术中的应用.3、研究对象:流体(包括气体和液体)。
4、特性:•流动(flow)性,流体在一个微小的剪切力作用下能够连续不断地变形,只有在外力停止作用后,变形才能停止。
•液体具有自由(free surface)表面,不能承受拉力承受剪切力( shear stress)。
•气体不能承受拉力,静止时不能承受剪切力,具有明显的压缩性,不具有一定的体积,可充满整个容器。
流体作为物质的一种基本形态,必须遵循自然界一切物质运动的普遍,如牛顿的力学定律、质量守恒定律和能量守恒定律等。
5、易流动性:处于静止状态的流体不能承受剪切力,即使在很小的剪切力的作用下也将发生连续不断的变形,直到剪切力消失为止。
这也是它便于用管道进行输送,适宜于做供热、制冷等工作介质的主要原因.流体也不能承受拉力,它只能承受压力.利用蒸汽压力推动气轮机来发电,利用液压、气压传动各种机械等,都是流体抗压能力和易流动性的应用.没有固定的形状,取决于约束边界形状,不同的边界必将产生不同的流动。
6、流体的连续介质模型流体微团——是使流体具有宏观特性的允许的最小体积。
这样的微团,称为流体质点。
流体微团:宏观上足够大,微观上足够小。
流体的连续介质模型为:流体是由连续分布的流体质点所组成,每一空间点都被确定的流体质点所占据,其中没有间隙,流体的任一物理量可以表达成空间坐标及时间的连续函数,而且是单值连续可微函数。
7流体力学应用:航空、造船、机械、冶金、建筑、水利、化工、石油输送、环境保护、交通运输等等也都遇到不少流体力学问题。
例如,结构工程:钢结构,钢混结构等.船舶结构;梁结构等要考虑风致振动以及水动力问题;海洋工程如石油钻井平台防波堤受到的外力除了风的作用力还有波浪、潮夕的作用力等,高层建筑的设计要考虑抗风能力;船闸的设计直接与水动力有关等等。
流体力学基础知识
流体力学基础知识(总15页) -本页仅作为预览文档封面,使用时请删除本页-第一章流体力学基本知识学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。
§1-1流体的主要物理性质1.本节教学内容和要求:1.1本节教学内容:流体的4个主要物理性质。
1.2教学要求:(1)掌握并理解流体的几个主要物理性质(2)应用流体的几个物理性质解决工程实践中的一些问题。
1.3教学难点和重点:难点:流体的粘滞性和粘滞力重点:牛顿运动定律的理解。
2.教学内容和知识要点:易流动性(1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。
流体也被认为是只能抵抗压力而不能抵抗拉力。
易流动性为流体区别与固体的特性2.2密度和重度(1)基本概念:密度——单位体积的质量,称为流体的密度即:Mρ=VM——流体的质量,k g;V——流体的体积,m3。
常温,一个标准大气压下Ρ水=1×103k g/m32Ρ水银=×103k g/m3基本概念:重度:单位体积的重量,称为流体的重度。
重度也称为容重。
Gγ=VG——流体的重量,N;V——流体的体积,m3。
∵G=m g∴γ=ρg常温,一个标准大气压下γ水=×103k g/m3γ水银=×103k g/m3密度和重度随外界压强和温度的变化而变化液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。
2..3粘滞性(1)粘滞性的表象基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。
当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表现。
为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。
用流速仪测出管道中某一断面的流速分布如图一所示设某一流层的速度为u,则与其相邻的流层为u+d u,d u为相邻流层的速度增值,设相邻流层的厚度为d y,则d u/d y叫速度梯度。
化工原理第一章流体力学
反映管路对流体的阻力特性
表示管路中流量与压力损失之间 关系的曲线
管路特性曲线的概念
01
03 02
管路特性曲线及其应用
管路特性曲线的绘制方法 通过实验测定一系列流量下的压力损失数据 将数据绘制在坐标图上,并进行曲线拟合
管路特性曲线及其应用
01 管路特性曲线的应用
02
用于分析管路的工作状态,如是否出现阻塞、泄漏等
流速和流量测量误差分析
• 信号处理误差:如模拟信号转换为数字信 号时的量化误差、信号传输过程中的干扰 等。
流速和流量测量误差分析
管道截面形状不规则
导致实际流通面积与计算流通面积存在偏差。
流体流动状态不稳定
如脉动流、涡街流等导致流量波动较大。
流速和流量测量误差分析
仪表精度限制
仪表本身的精度限制以及长期使用后的磨损等因素导 致测量误差增大。
流体静压强的表示
方法
绝对压强、相对压强和真空受力平衡条件,推导出流体平 衡微分方程。
流体平衡微分方程的物理意义
描述流体在静止状态下,压强、密度和重力 之间的关系。
流体平衡微分方程的应用
用于求解流体静力学问题,如液柱高度、液 面形状等。
重力作用下流体静压强的分布规律
连续介质模型的意义
连续介质模型是流体力学的基础,它 使得我们可以运用数学分析的方法来 研究流体的运动规律,从而建立起流 体力学的基本方程。
流体力学的研究对象和任务
流体力学的研究对象
流体力学的研究对象是流体(包括液体和气体)的平衡、运动及其与固体边界的相互作 用。
流体力学的任务
流体力学的任务是揭示流体运动的内在规律,建立描述流体运动的数学模型,并通过实验和 计算手段对流体运动进行预测和控制。具体来说,流体力学需要解决以下问题:流体的静力
第1章流体力学基本知识-PPT精品
从元流推广到总流,得:
1u1d1 2u2d2
1
2
由于过流断面上密度ρ为常数,以
带入上式,得:
ρ1Q1 =ρ2 Q2 Q=ωv
ρ1ω1v 1=ρ2ω2v 2
(1-11) (1-11a)
单位时间内通过过流断面dω的液体体积为 udω =dQ
4.流量:单位时间内通过某一过流断面的流体 体积。一般流量指的是体积流量,单位是 m3/s或L/s。
5.断面平均流速:断面上各点流速的平均值。 通过过流断面的流量为
Qvud
断面平均流速为:
v
ud
Q
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
确定流体等压面的方法,有三个条件:
必须在静止状态;在同一种流体中; 而且为连续液体。
2.分析静止液体中压强分布:
静止液体中压强分布
分析铅直小圆柱体,作用于轴向的外力有: 上表面压力
分析铅直小圆柱体,作用于轴向的外力有: 下底面的静水压力
分析铅直小圆柱体,作用于轴向的外力有: 柱体重力
静压。 rv2/2g--工程上称动压。
p12vg12 p22vg22h12
p + rv2/2g--过流断面的静压与动 压之和,工程上称全压。
南京理工大学 液压与气压传动 第一章 流体力学基础
m2
/s
9
南京理工大学 机械工程学院
温度对粘度的影响:温度升高,粘度下降。称为液体 的粘-温特性。粘-温特性常用粘度指数Ⅴ.Ⅰ来度量。 粘度指数Ⅴ.Ⅰ表示液体的粘度随温度变化的程度与标 准液体的粘度变化程度之比。粘度指数高,粘度随温 度变化小,其粘-温特性好。
10 南京理工大学 机械工程学院
压力对液体粘性的影响
表压力=绝对压力-大气压力
真空度=大气压力-绝对压力
23 南京理工大学 机械工程学院
例:图示充满油液的容器,作用在活塞上的力为F=1000N,活塞 面积A=1×10-3m2,忽略活塞质量。试问活塞下方0.5m处的压力是 多少?油液的密度 ρ =900kg/m3。
解:与活塞接触的液面处的压力为: p0 = F/A=1000/(1×10-3)=106N/m2 h=0.5m深处的压力: p =p0+ ρ gh=106+900×0.5×9.8 =1.0044 ×106(Pa)≈ 1MPa
(二)物理性质
(2)可压缩性:液体因受压力增高而体积缩小的性质。 液体压缩率k:液体在单位压力变化下的体积相对变化量。
1 V k
p V0
其中:压力p0时体积为V0,压力增加Δp,体积减小ΔV,因压力 变化与体积变化方向相反,要加“-”。
体积(弹性)模量K:液体压缩率k的倒数。
K
1 k
p V
V0
3 南京理工大学 机械工程学院
基本功能: 传动 润滑 冷却 防锈 为使液压系统长期保持正常工作性能,
对介质的要求:
可压缩性小,粘度适当,润滑性好,安定性好,防锈抗腐, 抗泡沫,抗乳化,洁净性,相容性好,阻燃性好,无毒无味等 使用最广泛的液压液为石油基液压油(润滑油+添加剂)
《流体力学》课件-(第1章 绪论)
流体力学
流体
强调水是主要研究对象 比较偏重于工程应用 土建类专业常用
力学
宏观力学分支 遵循三大守恒原 理
水力学
水
力学
§1.1.1 流体力学的任务和研究对象
二、研究对象 流体 指具有流动性的物体,包括气体和 液体二大类。
流动性
•即 任 一 微 小 剪
切力都能使流体 发生连续的变形
•
流体的共性特征
基本特征:具有明显的流动性;气体的流动性大于液体。 流体只能承受压力,不能承受拉力,在即使是很小剪切力
二. 表面力 是指作用在所研究的流体表面上的力,它是相邻流 体之间或固体壁面与流体之间相互作用的结果。 它的大小与流体的表面积成正比; 方向可分解为切向和法向。
• 设 面 积 为 ΔA 的 流 体
nFLeabharlann 面元,法向为 n ,指 向表面力受体外侧, 所受表面力为 ΔF ,则 应力
F f n lim A0 A
第一阶段:古典流体力学阶段 奠基人是瑞士数学家伯努利(Bernoulli,D.)和他的 亲密朋友欧拉(Euler,L.)。1738年,伯努利推导出了著 名的伯努利方程,欧拉于1755年建立了理想流体运动微分 方 程 , 以 后 纳 维 (Navier,C .H.) 和 斯 托 克 斯 (Stokes , G.G.)建立了粘性流体运动微分方程。拉格朗日 (Lagrange)、拉普拉斯(Laplace)和高斯(Gosse)等人, 将欧拉和伯努利所开创的新兴的流体动力学推向完美的分 析高度。
第1章 绪论 第2章 流体静力学 第3章 一元流体动力学理论基础 第4章 流动阻力与能量损失 第5章 孔口、管嘴出流和有压管流 第6章 量纲分析与相似原理
第一章 绪论
1流体力学基本知识
(kg/m3)
密度: 单位体积的质量称为流体的密度
(N/m3)
容重: 单位体积的重量称为流体的密度
二、流体的流动性和粘滞性
流体在运动状态时,由于流体各层的流速不同,就会在流层 粘滞性: 间产生阻滞相对运动和剪切变形的内摩擦力,称为粘滞力也 称粘滞性。
u ν0 = y h
作业:
1、名词解释: 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 2、写出流体的柏努利方程,并解释各部分意义。 写出流体的柏努利方程,并解释各部分意义。 3、如图判断压力的大小 4、判断图 中,A—A(a、b、c 、d),B—B,E—E是否为等压面,并说 判断图2中 是否为等压面, 明理由。 明理由。 5、如图3,液体1和液体3的密度相等,ρ1g=ρ3g=8.14 kN/m3,液体2的 如图3 液体1和液体3的密度相等, 1g=ρ = =ρ3g kN/m3,液体2 2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。( 。(1 ρ2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。(1)当 pB=68950Pa时,pA等于多少?(2)当pA=137900Pa时,且大气压力计 pB=68950Pa时 pA等于多少 等于多少? pA=137900Pa时 的读数为95976Pa时 点的表压力为多少? 的读数为95976Pa时,求B点的表压力为多少?
qv = ∫∫ v cos(v , x)dA
A
有效截面: 有效截面:
qv = ∫∫ vdA
A
3.平均流速: 3.平均流速:流经有效截 平均流速 面的体积流量除以有效截 面积而得到的商
第一章 流体力学基础ppt课件(共105张PPT)
原
力〔垂直于作用面,记为 ii〕和两个切向 应力〔又称为剪应力,平行于作用面,记为
理
ij,i j),例如图中与z轴垂直的面上受
到的应力为 zz〔法向)、 zx和 zy〔切
电 向),它们的矢量和为:
子
课
件 τ zzix zjy zkz
返回
前页
后页
主题
西
1.1 概述
安
交 • 3 作用在流体上的力
大 化
子 课 件
返回
前页
后页
主题
西
1.2.3 静力学原理在压力和压力差测量上的应用
安
交
大 思索:若U形压差计安装在倾斜管路中,此时读数 R反
化 映了什么?
工 原
理 p1p2
p2
p1 z2
电 子
(0)gR(z2z1)g z1
课
R
件
A A’
返回
前页
后页
主题
西 1.2.3 静力学原理在压力和压力差测量上的应用
安
交 大
•
2.压差计
化 • (2〕双液柱压差计
p1
p2
工•
原•
理
电•
子•
课
件
又称微差压差计适用于压差较小的场合。
z1
1
z1
密度接近但不互溶的两种指示
液1和2 , 1略小于 2 ;
R
扩p 大1 室p 内2 径与2 U 管1 内g 径之R 比应大于10 。 2
图 1-8 双 液 柱 压 差 计
返回
安
交 大
•
1.压力计
化 • (2〕U形压力计
pa
工 • 设U形管中指示液液面高度差为RA,1 指• 示液
流体力学基础
1.3 压强
垂直作用于流体单位面积上的力,称为流体的压强, 简称压强。习惯上称为压力。垂直作用于整个面上的 力称为总压力。
在静止流体中,从各方向作用于某一点的压强大小 均相等。
压强的单位: ❖ 帕斯卡, Pa, N/m2 (法定单位); ❖ 标准大气压, atm; ❖ 某流体液柱高度; ❖ bar(巴)或kgF/cm2等。
➢ 当液面的上方压力p0有变化时,必将引起液体内部各点压力
发生同样大小的变化。
➢ p2=p0+ρgh可改写为
p p0 h
g
由上式可知,压力或压力差的大小可用液柱高度表示。
静力学基本方程式中各项的意义:
将 p2=p1+ρg(Z1-Z2) 两边除以ρg并加以整理可得:
Z1p1 g Z2pg 2
或
Z
pa pb
p1p2(0)gR 0
测量气体时,由于气体的密度ρ比指示液的密度ρ0小得多,故
ρ0-ρ≈ρ0,上式可简化为
p1p2 gR0
下图所示是倒U型管压差计。该压差计是利用被测量液体本
身作为指示液的。压强差p1-p2可根据液柱高度差R进行计算。
例1-3 如附图所示,常温水在管道中流过。为测定a、b两点的压 力差,安装一U型压差计,试计算a、b两点的压力差为若干?已 知水与汞的密度分别为1000kg/m3及13600kg/m3,R为0.1米。
较大。 当压力不太高、温度不太低时,气体的密度可近似地按理
想气体状态方程式计算:
m pM
v RT
(1-3)
式中 p —— 气体的压力,kN/m2或kPa;
T —— 气体的绝对温度,K;
M —— 气体的摩尔质量,kg/kmol;
R —— 通用气体常数,8.314kJ/(kmol·K)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵ 液体在静止状态下不呈现粘性
∴ 内部不存在切向剪应力而只有法向应力 (2)各向压力相等
∵ 有一向压力不等,液体就会流动
∴ 各向压力必须相等
1.2.2 静止液体中的压力分布
1、液体静力学基本方程式
质量力(重力、惯性力)作用于液体的所有质点 作用于液体上的力
表面力(法向力、切向力、或其它物体或其它容器对液体、一部
赛氏秒SUS:
雷氏秒R:
美国用
英国用
巴氏度0B:
法国用
恩氏粘度与运动粘度之间的换算关系: ν=(7.310E – 6.31/0E)×10-6
m2/s
三、液体的可压缩性
可压缩性: 液体受压力作用而发生体积缩小性质 1、液体的体积压缩系数(液体的压缩率) 定义:体积为V的液体,当压力增大△p时,体积减小△V, 则液体在单位压力变化下体积的相对变化量 公式:
工作介质: 传递运动和动力 液压油的任务 润滑剂: 润滑运动部件 冷却、去污、防锈
1、 对液压油的要求
(1)合适的粘度和良好的粘温特性;
(2)良好的润滑性;
(3)纯净度好,杂质少; (4)对系统所用金属及密封件材料有良好的相容性。 (5)对热、氧化水解都有良好稳定性,使用寿命长; (6)抗泡沫性、抗乳化性和防锈性好,腐蚀性小; (7)比热和传热系数大,体积膨胀系数小,闪点和燃点高,流 动点和凝固点低。(凝点:油液完全失去其流动性的最高温度) (8)对人体无害,对环境污染小,成本低,价格便宜
υ=q/A
1.3.2 连续性方程--质量守恒定律在流体力学中的应用
1、连续性原理--理想液体在管道中恒定流动时,根据质 量守恒定律,液体在管道内既不能增多,也不能减少,因此 在单位时间内流入液体的质量应恒等于流出液体的质量。 2、连续性方程 ρ 1υ1A1=ρ 2υ2A2 若忽略液体可压缩性 ρ 1=ρ 则 υ1A1=υ2A2 或q=υA=常数
(1) 断面1、2需顺流向选取(否则hw为负值),且应选在缓
变的过流断面上。 (2) 断面中心在基准面以上时,z 取正值;反之取负值。通
常选取特殊位置水平面作为基准面
*1.3.4 动量方程--动量定理在流体力学中的应用
动量定理:作用在物体上的外力等于物体单位
时间内的动量变化量
即 ∑F =dI/dt=d(mv)/dt
第一章
一、液体的密度
流体力学基础部分
(kg/m3)
第一节 工作介质
密度:单位体积液体的质量 ρ=m/V
密度随着温度或压力的变化而变化,但变化不大,通常忽 略,一般取ρ=900kg/m3的大小。
二、液体的粘性
(一)粘性的物理本质
液体在外力作用下流动时,由于液体分子间的内聚力和液体分子 与壁面间的附着力,导致液体分子间相对运动而产生的内摩擦力, 这种特性称为粘性。 或: 流动液体流层之间产生内部摩擦阻力的性质
2
结论:液体在管道中流动时,流过各个断面的流量是相等的, 因而流速和过流断面成反比。
1.3.3 伯努利方程--能量守恒定律在流体力学中的应用 能量守恒定律:理想液体在管道中稳定流动时,根据能量守 恒定律,同一管道内任一截面上的总能量应该相等。 1、理想液体的运动微分方程 (1) 压力在两端截面上所产生的作用力 pdA -(p + ∂p/∂sds)dA = - ∂p / ∂s dsdA (2) 作用在微元体上的重力: -ρgdsdA 惯性力: ma =ρdsdAdu/dt =ρdsdA(u∂u/∂s) ∵ΣF = ma ∴-∂p/∂sdsdA -ρgdsdAcosθ=ρdsdA(u∂u/∂s) ∵ cosθ= ∂z/∂s 整理得:-1 /ρ∂p/∂s - g∂z/∂s = u∂u/∂s
考虑动量修正问题,则有: ∴ ∑F =ρ q(β 2v2-β 1v1) X向动量方程 X向稳态液动力 ∑Fx = ρ qv(β 22x-β 1v1x) F'x = -∑Fx = ρ qv(β 1v1x-β 2v2x)
结论: 作用在滑阀阀芯上的稳态液动力总是力图使阀口关闭
第四节 液体流动时的压力损失
液体作用在dA上的力dFx为: dFx = dF cosθ = pdA cosθ = plrcosθ dθ
缸筒右半壁的水平作用力为:
lrd
y
Fx
d
/2
/ 2
dFx
/2
/ 2
plr cosd 2 plr pA
p
r O
x
l
第三节 流体动力学
研究内容:研究液体运动和引起运动的原因,即研究液体流动 时流速和压力之间的关系(或液压传动两个基本参数的变化规 律) 主要讨论:动力学三大方程 1.3.1基本概念 1、理想液体、定常流动和一维流动
∵ q = V / t = Al / t = Au 对实际液体,则有: dq = u dA 整个过流断面υA
故 υ=q/A 液压缸的运动速度:
q=0 υ=0 q↑ υ↑ q↓ υ↓ 结论: 液压缸的运动速度取决于进入液液压缸的流量,并且随着流量的变 化而变化。
2、运动粘度ν:动力粘度与液体密度之比值
公式: ν= μ/ρ (m2/s)
物理意义:无(只是因为μ/ρ在流体力学计算中经常 出现) ∴ 用ν代替(μ/ρ)
单位: SI制: m2/s
CGS制: St(斯)、CSt(厘斯)
换算关系: 1m2/s = 104St =106CSt
∵ 单位中只有长度和时间的量纲,类似运动学的量。
真空度 = 大气压力 - 绝对压力
1.2.4 静压传递原理 1、帕斯卡原理(静压传递原理) 在密闭容器内,液体表面的压力可等值传递到液体内部 所有各点。 p=F/A
2、液压系统压力形成 结论: 液压系统的工作压力取决于负载,并且随着负 载的变化而变化。
F
A
p = F / A F = 0,p = 0 F↑、p↑ ;F↓、p↓
总之:粘度是第一位的
2、液压油的选择
液压油的类型:机械油、精密机床液压油、气轮机油
和变压器油
首先根据工作条件 和元件类型选择油液品种,然后 根据粘度选择牌号,一般根据液压泵的要求来确定介质粘度 1、选择液压油品种 2、选择液压油粘度 慢速、高压、高温:μ大(以↓△q) 通常
快速、低压、低温:μ小(以 ↓△p)
2、理想液体伯努利方程
2
1
2 2 u 1 p z ( g )ds ( )ds 1 s 2 s s
2 p1 u12 p2 u2 z1 z2 两边同除以g,整理得: g 2 g g 2g
或
u2 p z 常数 g 2g
物理意义:在密闭管道内作恒定流动的理想液体具有 三种形式的能量,即压力能、位能和动能。在流动过 程中,三种能量可以互相转化,但各个过流断面上三
P0
h
G dA
A
P
重力作用下的静止液体
2、液体静力学基本方程的物理意义
p p0 gh p0 g ( z0 z ) p0 p z z0 常数 g g
z
p0
h
z0
p g
表示单位重力液体的压力能, 常称为压力水头 表示单位重力液体的位能, 常称为位置水头
z
z
O
∴ 称运动粘度,常用于液压油牌号标注
老牌号20号液压油,指这种油在50°C时的平均运动粘度 为20 CSt。 新牌号L--HL32号液压油,指这种油在40°C时的平均运动 粘度为32CSt。
∵ μ、ν不易直接测量,只用于理论计算 ∴ 常用相对粘度
3、相对粘度(条件粘度) 恩氏度0E: 中国、德国、前苏联等用
四、其他性质
1、粘度和压力的关系
∵ p↑,Ff↑,μ↑
∴μ随p↑而↑,压力较小时忽略,50MPa以上影响趋于显著
2、粘度和温度的关系
∵ 温度↑, Ff ↓,μ↓
∴ 粘度随温度变化的关系叫粘温特性,粘度随温度的变化较小,即粘 温特性较好,常用粘度指数VI来度量, VI 高,说明粘—温特性好。
五、对液压油的要求及选用
1.2.5 液体静压力作用在固体壁面上的力
1、作用在平面上的总作用力
2、作用在曲面上的总作用力 直投影面积之乘积 例:液压缸缸筒受力分析 设缸筒半径为r,长度为l,取一微小窄条面积为: dA = lr dθ
F = pA
Fx = pAx
如: 液压缸,若设活塞直径为D,则 F = pA = pπD2/4 结论:曲面在某一方向上所受的作用力,等于液体压力与曲面在该方向的垂
理想液体:既无粘性又不可压缩的液体 定常流动(稳定流动、恒定流动):流动液体中任一点的p、u和ρ 都不随时间而变化的流动 一维流动:液体整个作线形流动
2、流线、流管和流束
流线--流场中的曲线 流管--由任一封闭曲线上的流线所组成的表面
流束--流管内的流线群
3、通流截面、流量和平均流速 通流截面:流束中与流线正交的截面,垂直于液体流动方向的截面 A 流量:单位时间内流过某通流截面的液体的体积 q 平均流速:通流截面上各点流速均匀分布(假想) υ
x
物理意义:静止液体内任何一点具有压力能和位能两种形式,且其 总和保持不变,即能量守恒,但两种能量形式之间可以相互转换
1.2.3 压力的表示方法和单位
绝对压力--以绝对零压为基准所测
测压两基准
相对压力*--以大气压力为基准所测
关系:绝对压力 = 大气压力 + 相对压力 或 相对压力(表压)= 绝对压力 - 大气压力 注 液压传动系统中所测压力均为相对压力即表 压力
第二节
液体静力学
研究内容: 研究液体处于静止状态的力学规律和这些规律的实际应用。 静止液体: 指液体内部质点之间没有相对运动,以至于液体整体完全可以象 刚体一样做各种运动。