江门数学轴对称解答题中考真题汇编[解析版]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江门数学轴对称解答题中考真题汇编[解析版]

一、八年级数学轴对称解答题压轴题(难)

1.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,点E是BC延长线上的一点,且BD=DE.点G是线段BC的中点,连结AG,交BD于点F,过点D作DH⊥BC,垂足为H.

(1)求证:△DCE为等腰三角形;

(2)若∠CDE=22.5°,DC=2,求GH的长;

(3)探究线段CE,GH的数量关系并用等式表示,并说明理由.

【答案】(1)证明见解析;(22

;(3)CE=2GH,理由见解析.

【解析】【分析】

(1)根据题意可得∠CBD=1

2

∠ABC=

1

2

∠ACB,,由BD=DE,可得∠DBC=∠E=

1 2∠ACB,根据三角形的外角性质可得∠CDE=

1

2

∠ACB=∠E,可证△DCE为等腰三角

形;

(2)根据题意可得CH=DH=1,△ABC是等腰直角三角形,由等腰三角形的性质可得BG=GC,2+1,即可求GH的值;

(3)CE=2GH,根据等腰三角形的性可得BG=GC,BH=HE,可得GH=GC﹣HC=GC﹣

(HE﹣CE)=1

2

BC﹣

1

2

BE+CE=

1

2

CE,即CE=2GH

【详解】

证明:(1)∵AB=AC,∴∠ABC=∠ACB,

∵BD平分∠ABC,

∴∠CBD=1

2

∠ABC=

1

2

∠ACB,

∵BD=DE,

∴∠DBC=∠E=1

2

∠ACB,

∵∠ACB=∠E+∠CDE,

∴∠CDE=1

2

∠ACB=∠E,

∴CD=CE,

∴△DCE是等腰三角形

(2)

∵∠CDE=22.5°,CD=CE2,

∴∠DCH=45°,且DH⊥BC,

∴∠HDC=∠DCH=45°

∴DH=CH,

∵DH2+CH2=DC2=2,

∴DH=CH=1,

∵∠ABC=∠DCH=45°

∴△ABC是等腰直角三角形,

又∵点G是BC中点

∴AG⊥BC,AG=GC=BG,

∵BD=DE,DH⊥BC

∴BH=HE2+1

∵BH=BG+GH=CG+GH=CH+GH+GH2+1∴1+2GH2+1

∴GH=

2 2

(3)CE=2GH

理由如下:∵AB=CA,点G是BC的中点,∴BG=GC,

∵BD=DE,DH⊥BC,

∴BH=HE,

∵GH=GC﹣HC=GC﹣(HE﹣CE)=1

2

BC﹣

1

2

BE+CE=

1

2

CE,

∴CE=2GH

【点睛】

本题是三角形综合题,考查了角平分线的性质,等腰三角形的性质,灵活运用相关的性质定理、综合运用知识是解题的关键.

2.如图,在等腰直角ABC △中,AB AC =,90BAC ∠=︒,点D 是ABC △ 内一点,连接 AD ,AE AD ⊥ 且 AE AD =,连接 BD 、CE 交于点 F .

(1)如图 1,求BFC ∠的度数;

(2)如图 2,连接ED 交 BC 于点 G ,连接 AG ,若 AG 平分BAD ∠,求证:

2EAC EDF ∠=∠;

(3)如图 3,在(2)的条件下,BF 交 AG 、AC 分别于点M 、N ,DH AM ⊥,连接 HN ,若ADN ∆的面积与DHN 的面积差为 6,6DF =,求四边形 AMFE 的面积.

【答案】(1)∠BFC =90°;(2)见解析;(3)20AMFE S =四边形.

【解析】

【分析】

(1)根据SAS 证明ABD ACE ≌,所以ABD ACF ∠=∠,所以

90BFC BAC ∠=∠=︒.

(2)根据题意先求出180ABG ADG ∠+∠=︒,在AB 上截取AK AD =,连接KG ,由AKG ADG ≌,180BKG AKG ∠+∠=︒,可证得BKG KBG ∠=∠,

GB GK DG ==,所以

DBG BDG EDF α∠=∠=∠=, 因为2CAE BAD α∠=∠=,所以

2CAE EDF ∠=∠.

(3)根据题意和(2)中结论先证明AD AN AE ==,过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,证明ANR AET ≌,所以AR AT =,然后根据等腰三角形的性质可得出DM FN =,过点H 作HP FM ⊥,垂足为P ,所以HP PM DP ==,设DP x =,DR y =,

所以ADN DHN S S ∆∆-= 1122

DN AR DN HP ⋅⋅-⋅ ()6y x y =+=,226DF x y =+=,求出x ,y ,不难得到AEF ANF ADM S S S ∆∆∆===4,然后可得20AMFE S =四边形.

【详解】

(1)因为ABC 是等腰直角三角形,所以AB AC =,90BAC DAE ∠=︒=∠, 所以BAD CAE ∠=∠,因为AD AE =,所以ABD ACE ≌,所以ABD ACF ∠=∠,所以90BFC BAC ∠=∠=︒.

(2)因为AD AE =,90DAE ∠=︒,所以45AED ACG ∠=︒=∠,所以

CAE CGE ∠=∠,

由(1)知:BAD CAE ∠=∠,所以BAD CGD ∠=∠,

设2BAD CGD α∠==∠, 所以1802BGD α∠=︒-,所以180BAD BGD ∠+∠=︒, 所以180ABG ADG ∠+∠=︒, 因为AG 平分BAD ∠,所以BAG DAG α∠=∠=, 在AB 上截取AK AD =,连接KG ,

因为AG AG =,所以AKG ADG ≌,所以AKG ADG ∠=∠,DG KG =, 因为180BKG AKG ∠+∠=︒,所以BKG KBG ∠=∠,

所以GB GK DG ==,所以DBG BDG EDF α∠=∠=∠=, 因为

2CAE BAD α∠=∠=,所以2CAE EDF ∠=∠.

(3)由(2)知:BAG DBG α∠=∠=,因为90BAC ∠=︒,45ABC ∠=︒,所以45ABN α∠=︒-,

因为2BAD α∠=,所以45ADN α∠=︒+,因为902DAN α∠=︒-,所以

45AND ADN α∠=︒+=∠,所以AD AN =,因为AD AE =,所以AE AN =, 过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,

因为45ACE ABD α∠=∠=︒-,2CAE α∠=,所以45AET ANR α∠=︒+=∠, 因为AE AN =,所以ANR AET ≌,所以AR AT =,所以FA 平分BFT ∠, 所以45AFN AFE ∠=∠=︒,因为45AMN ∠=︒,所以AFM AMF ∠=∠,所以AF AM =,

所以FR MR =,因为DR RN =,所以DM FN =,过点H 作HP FM ⊥,垂足为P , 因为45AMN ∠=︒,90DHM ∠=︒,所以45MHP DHP HDP ∠=∠=∠=︒,所以HP PM DP ==,

设DP x =,所以2DM FN x ==,设DR y =,所以2DN y =,所以2MR x y =+,因为45MAR ∠=︒,

相关文档
最新文档