污水处理厂泵站与曝气系统的节能途径

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

污水处理厂泵站与曝气系统的节能途径

1 能耗分析

城市污水处理厂消耗的能源主要包括电、燃料及药剂等潜在能源,其中电耗占总能耗的60%~90%,具体电耗分布情况因工艺和管理水平的不同而有差异(见表1)。

根据资料分析不难得出以下结论:

①污水处理电耗占全厂总电耗的50%~80%,污泥处理仅占15%~40%,可见污水处理是处理厂耗电大户,自然也就是节能重点。其中又以提升泵、风机为重中之重。

②表1列出4个污水厂均为老厂,无污泥脱水等工艺,处理单位污水耗电量约0.262 kW·h/m3,从表面上看与日本全国平均0.260 kW·h/m3相近,比美国0.20 kW·h/m3稍高。但仔细分析就会发现:日本沉砂池普遍有洗砂、通风、脱臭等,约耗电0.01 kW·h/m3;美、日两国普遍对出水进行消毒处理,该项电耗约0.002 kW·h/m 3;美、日两国对污泥都进行消化、脱水、焚烧处理,美国还进行气浮处理,约耗电0.05~0.1 kW·h/m3,而回收的能源均未计算在内。另外,美、日两国自控设备比我们多,照明空调等耗电也比我们多不少。可见老厂节能问题十分突出,潜力巨大。

2 提升泵的节能

提升泵的电耗一般占全厂电耗的10%~20%,是污水厂的节能重点。提升泵的节能首先应从设计入手,进行节能设计;对于已投产的污水厂,仍能通过加强管理或更换部分设备进行节能。

2.1 精确计算水头损失,合理确定泵扬程

从泵的有效功率N U=γQH 可以看出当γ、Q一定时,N U与H呈正比,因此降低泵扬程节能效果显著。如天津东郊污水厂总水位差 4.5m,小于纪庄子污水厂的6 m,仅此一项每年即可节电100×10.4kW·h。然而,目前进行污水厂设计时,水头损失估算普遍偏高,导致泵扬程计算值偏高。在日本一般污水厂总水位差仅2.0 m左右,可见我们的差距还很大。

降低泵扬程可采取以下措施:

①总体布置要紧凑。连接管路要短而直,尽量减小水头损失。

②改非淹没堰为淹没堰[1],落差可由35~40cm减少到10cm。

③日本总水位差小的关键在于初沉池、曝气池、二沉池均采用方形平流式,三池为一体,首尾相连,水流通畅,从而最大限度地减小了水头损失。虽然造价比辐流式要高一些,但其差价很快可以从节电效益得到补偿。平流式沉淀池在我国应用较少,主要原因是刮泥设备不过关,近年来环保设备技术水平有了长足进步,所以平流式沉淀池应用前景广阔。

2.2 流量调节方式

污水厂进水量往往随时间、季节波动,如果按目前通行的以最大流量作为选泵依据,水泵全速运转时间将不超过10%[2],大部分时间都无法高效运转,造成能源浪费。

由轴功率N=N U/η1(η1为泵运行效率)可以看出,一定流量扬程下N U是一定的,而泵的轴功率直接由η1决定,所以应选择合适调控方式,合理确定泵流量,以保证泵始终高效运转。

2.2.1 转速加台数控制方式

目前国外大型污水厂普遍采用转速加台数控制方法,定速泵按平均流量选择,定速运转以满足基本流量的要求;调速泵变速运转以适应流量的变化,流量出现较大波动时以增减运转台数作为补充。但是由于泵的特性曲线高效段范围不

是很大,这就决定了对于调速泵也不可能将流量调到任意小,而仍能保持高效。四种调速方法效率-转速关系如图1。

2.2.2 其它调节方式

除调速外还有一些流量调节方式,不需添置设备,只需加强管理,就可很快收到可观效益。

①机构调节

主要指水量出现大的波动时关闭或开启出水闸,这样虽然会增大水头损失,但因N-Q曲线为上升曲线,所以还是有一定节能作用的。

②运行方式调节

一般可以很简单地采用随进水量增减台数的方法进行,通过缩短运行时间达到节能目的。这一点在各厂都已采用,但要注意对于大型水泵,因为启动电流很大,所以应尽量避免频繁启动。

③调整改造

离心式水泵都配有一系列直径的叶轮,可简单地通过更换叶轮使水泵适应低于额定流量的流量。另外,在确认流量为恒定低流量后,还可以采用切削叶轮的方法。

2.3 选用高效电机及传动装置

泵系统电耗W=t N U/(η1η2η3)

式中η2、η3--传动效率和电机效率

t --- 运行时间

因此可从η2、η3入手,采用高效电机进行节能。

高效电机没有一个准确定义,一般效率比常规电机高2%~8%,虽然提高幅度不大,但因为污水泵大多为大功率、24h运转,所以即便只提高1%,节能效果也是很明显的。

当然高效电机价格比普通电机高15%~60%,所以采用该方法应进行经济校核,看是否能在使用期内由节电效益收回投资。

3 曝气系统的节能

鼓风曝气系统电耗一般占全厂电耗的40%~50%,是全厂节能的关键。最根本的节能措施就是减小风量,而减小风量必须提高扩散装置效率,降低污泥对氧的需求。

3.1 扩散装置

3.1.1 改进布置方式

传统的曝气池,曝气管是单边布置形成旋流,过去认为这种方式有利于保持真正推流,另外可以减小风量,但经过多年实践与研究发现,这种方式不如全面曝气效果好。全面曝气可使整个池内均匀产生小旋涡,形成局部混合,同时可将小气泡吸至1/3到2/3深处,提高充氧效率,见表2。

3.1.2 采用微孔曝气器

微孔曝气器可以减小气泡尺寸,增大表面积,因而转移速度高,节约风量。天津东郊污水厂和纪庄子污水厂均采用微孔全面曝气,比穿孔管节电20%以上。英国有报道采用微孔曝气每去除1 kgBOD可节约风量25%,电力18%[4] 。

日本的情况如表3所示。

美国对一大批老式穿孔曝气进行了改造,效果显著。如美国的Hartford在224 640 m3/d的污水厂采用微孔曝气,实际氧利用率从穿孔管 4.4%提高到了10.0%,总投资600 000美元,每年节约电费200 000美元,不计清洗费用,3年即可收回投资[5]。

3.2 风量控制节能

选择风机时,都要在计算需气量基础上加上一个足够大的安全系数,以满足最大负荷时的需要。所以在日常负荷下一般都要适当减小风量,负荷低时更应如此,这不仅是节能的需要,也是防止过曝气、保证处理效果的要求。而进行风量控制是曝气系统效果最显著的节能方法,据EPA对美国12个处理设施的调查结果显示,以DO为指标控制风量时可节电33%[4]。图2反映了风机风量与电耗的关系,图中电耗指每小时的耗电量。

可见,电耗随风量变化很大,因此进行风量控制节能效果显著,而且功率越大效果越明显,当然风量并不是可以任意减小,它将受到许多因素的影响。

3.2.1 风量程序控制

长期观测进水水质、水量,掌握其变化特性,再由经验确定风量与时间的关系,并设定程序,自动进行控制。该方法简便易行,但当水质水量出现很大波动时,应与其他方法配合使用。

3.2.2 按进水比例控制风量

相关文档
最新文档