5. 材料的相结构及相图
材料科学基础(第2版)石德珂-第5章材料的相结构及相图

THE PHASE STRUCTURE AND PHASE DIAGRAMS OF MATERIALS
材料的相结构 二元相图及其类型 复杂相图分析 相图的热力学基础 三元相图及其类型
1
SCHOOL OF MATERIALS SCIENCE AND ENGINEERING OF XI`AN JIAOTONG UNIVERSITY
12
SCHOOL OF MATERIALS SCIENCE AND ENGINEERING OF XI`AN JIAOTONG UNIVERSITY
4. 固溶体中溶质原子的偏聚与有序
1) 溶质原子分布的微观不均匀性
A, B原子 间结合能
13
E AB
1 2 (EAA
EBB )
EAB
1 2
(EAA
EBB )
3. 陶瓷材料中的固溶方式
可间隙方式固溶 也可置换方式固溶
如: Mg[CO3]→(Mg,Fe)[CO3]→(Fe,Mg)[CO3]→Fe[CO3] 菱镁矿 含铁菱镁矿 含镁菱铁矿 菱铁矿
8
SCHOOL OF MATERIALS SCIENCE AND ENGINEERING OF XI`AN JIAOTONG UNIVERSITY
24
SCHOOL OF MATERIALS SCIENCE AND ENGINEERING OF XI`AN JIAOTONG UNIVERSITY
第二节 二元相图及其类型
THE BINARY PHASE DIAGRAM AND ITS TYPE
相图的基本知识 一元系相图 二元系相图 材料性能与相图的关系
一些溶质元素在一价Cu中的最大溶解度
溶质元素
《材料科学基础》名词解释

《材料科学基础》名词解释第一章材料结构的基本知识1、晶体材料的组织:指材料由几个相(或组织单元)组成,各个相的相对量、尺寸、形状及分布。
第二章材料的晶体结构1、空间点阵:将理想模型中每个原子或原子团抽象为纯几何点,无数几何点在三维空间规律排列的阵列2、同素异构:是指有些元素在温度和压力变化时,晶体结构发生变化的特性3、离子半径:从原子核中心到其最外层电子的平衡距离。
4、离子晶体配位数:在离子晶体中,与某一考察离子邻接的异号离子的数目称为该考察离子的配位数。
5、配位数:晶体结构中任一原子周围最近邻且等距离的原子数6、致密度:晶体结构中原子体积占总体积的百分数;第三章高分子材料的结构1、聚合度:高分子化合物的大分子链是出大量锥告连成的。
大分子链中链节的重复次数叫聚合度2、官能度:指在一个单体上能和别的单体发生键合的位置数目3、加聚反应:由一种或多种单体相互加成而连接成聚合物的反应;4、缩聚反应:由一种或多种单体相互混合而连接成聚合物,同时析出(缩去)某种低分子物质(如水、氨、醉、卤化氢等)的反应;5、共聚:由两种或两种以上的单休参加聚合而形成聚合物的反应。
第四章晶体缺陷1、晶体缺陷:实际晶体中与理想的点阵结构发生偏差的区域;2、位错密度:晶体中位错的数量,是单位体积晶体中所包含的位错线总长度;3、晶界:同一种相的晶粒与晶粒的边界;4、晶界内吸附:少量杂质或合金元素在晶体内部的分布是不均匀的,它们常偏聚于晶界,称这种现象为晶界内吸附;第五章材料的相结构及相图1、固溶体:当合金相的晶体结构保持溶剂组元的晶体结构时,这种相就称为一次固溶体或端际固溶体,简称固溶体。
2、拓扑密堆积:如两种不同大小的原子堆积,利用拓扑学的配合规律,可得到全部或主要由四面体堆垛的复合相结构,形成空间利用率很高、配位数较大(12、14、15、16等)一类的中间相,称为拓扑密堆积。
3、电子浓度:固溶体中价电子数目e与原子数目之比。
4、间隙相:两组元间电负性相差大,且/1≤0.59具有简单的晶体结构的中间相5、间隙化合物:两组元间电负性相差大,且/≥0.59所形成化合物具有复杂的晶体结构。
大学材料科学基础 第五章材料的相结构和相图(1)

弗兰克尔空位
肖脱基空位
2) 为了保持电中性,离子间数量不等的置换会 在晶体内部形成点缺陷。 如:2Ca2+→Zr4+ ,形成氧离子空缺。 3) 陶瓷化合物中存在变价离子,当其电价改变 时,也会在晶体中产生空位。 如:方铁矿中,部分Fe2+被氧化为Fe3+时, 2FeO+O → Fe2O3中,产生阳离子空缺。 同理,TiO2中,部分Ti4+被还原为Ti3+时,产 生阴离子空缺。 这种由于维持电中性而出现的空位,可以 当作电子空穴。欠缺或多出的电子具有一定的 自由活动性,因而降低了化合物的电阻。这种 现象在材料的电性能方面有重要意义。
3.陶瓷材料中的固溶方式
陶瓷材料——一般不具备金属特性,属无机非金属。 无机非金属化合物可以置换或间隙固溶的方式溶入其 它元素而形成固溶体,甚至无限固溶体,但是一般形 成有限固溶体。 如:Mg[CO3] → (Mg,Fe)[CO3] →(Fe,Mg)[CO3] →Fe[CO3] 菱镁矿 含铁菱镁矿 含镁菱铁矿 菱铁矿 不改变原来的晶格类型,晶格常数略有改变。
(3) 多为金属间或金属与类金属间的化合物, 以金属键为主,具有金属性,所以也称金属 间化合物。 (4) 晶体结构复杂。 (5) 在材料中是少数相,分布在固溶体基体 上,起到改善材料性能、强化基体的作用。 中间相可分为以下几类: 正常价化合物;电子化合物;间隙相;间隙 化合物;拓扑密堆相。
1. 正常价化合物 • 通常是由金属元素与周期表中第Ⅳ、Ⅴ、 Ⅵ族元素形成,它们具有严格的化合比, 成分固定不变,符合化合价规律,常具有 AB、AB2、A2B3分子式。 • 它的结构与相应分子式的离子化合物晶体 结构相同,如分子式具有AB型的正常价化 合物其晶体结构为NaCl型。正常价化合物 常见于陶瓷材料,多为离子化合物。如 Mg2Si、Mg2Pb、MgS、AuAl2等。 • 在合金材料中,起弥散强化的作用。
材料科学基础第5章 材料的相结构与相图 ppt课件[1]
![材料科学基础第5章 材料的相结构与相图 ppt课件[1]](https://img.taocdn.com/s3/m/534d1746700abb68a882fb0c.png)
一、纯金属特点
1、优良的导电、导热性能; 2、高的化学稳定性; 3、美观的金属光泽; 4、但强度、硬度较低; 5、制取困难;价格高;资源有限
2020/10/28
4
二、合金的基本概念
1、定义
是由两种或两种以上金属元素, 或金属元素与非金属元素,经熔 炼、烧结等方法组合而成并具有 金属特性的物质。
2020/10/28
5
钢:Fe-C合金;
黄铜:Cu-Zn合金; 黄铜 防锈铝:Al-Mg合金。
2、合金的特点 Al-Cu两相合金 强度高、硬度高;性能可大幅 度调节;价格较低、应用广。
2020/10/28
6
3、相
是合金中具有晶体结构相同、 成分相同和性能相同,并以界 面相互分开的组成部分。
2020/10/28
7
纯铁:由α-Fe(铁素体相) 单相构成,为单相合金;
3、作用:为合金的强化相。
2020/10/28
28
(二)金属间化合物
1、定义
合金结晶时,当其溶质浓度大 于溶解度时,将析出结构不同于任 何组元的新相,该相具有一定的金 属特征,称为金属间化合物。
2020/10/28
29
3、分类:
正常价化合物、电子化合物 、 间隙相和间隙化合物 。
1)正常价化合物
P(珠光体)= F + Fe3C Fe3C形状:片状和球状。
2020/10/28
12
❖ 当Fe3C为片状 时,构成P片状
❖ HB≈200 ❖ δ=15% ❖ Ψ=30%
2020/10/28
珠光体
13
当Fe3C为球状 时,构成P球状
HBS≈163 δ=20% Ψ=40%
2020/10/28
第五章 材料的相结构及相图

11924F
第一节
材料的相结构
表5-4 钢中常见的间隙化合物
表5-5 钢中常见间隙化合物的硬度及熔点
11924F
第一节
材料的相结构
图5-7 MgCu结构
11924F
第一节
材料的相结构
图5-8 拉弗斯相中B原子分布和四面体堆垛方式
11924F
第二节
二元相图及其类型
一、相图的基本知识 1.相律 2.二元相图的成分表示方法与相图的建立
11924F
第一节
材料的相结构
图5-5 铜金合金电阻率与成分的关系
11924F
第一节
材料的相结构
图5-6 Ni-Mn合金的饱和磁矩
11924F
第一节
二、中间相 1.正常价化合物 2.电子化合物
材料的相结构
表5-2 铜合金中常见的电子化合物
3.尺寸因素化合物
11924F
第一节
材料的相结构
表5-3 简单结构的间隙化合物成分范围
11924F
第三节
复杂相图分析
图5-35 Cu-Sn相图
11924F
第三节
复杂相图分析
图5-36
Mg2SiO4-SiO2系相图
11924F
第三节
复杂相图分析
图5-37 ZrO2-SiO2系相图
11924F
第三节
复杂相图分析
三、铁-碳合金相图
图5-38 铁-碳相图
11924F
第三节
复杂相图分析
11924F
第三节
复杂相图分析
一、分析方法 1)相图中若有稳定中间相,可依此把相图分为几个部分, 根据需要选取某一部分进行分析。 2)许多相图往往只标注单相区,为了便于分析相图,应 根据“相区接触法则”填写各空白相区,也可用组织 组成物填写相图。 3)利用典型成分分析合金的结晶过程及组织转变,并利 用杠杆定律分析各相相对量随温度的变化情况。 二、复杂相图分析举例 1. Cu-Sn合金系相图(图5-44) 2. Mg2SiO4-SiO2系相图
第五章材料相结构和相图

一般认为热力学上平衡状态的无序固溶体溶质原子 分布在宏观上是均匀的,在微观上是不均匀的。
在一定条件下,溶质原子和溶剂原子在整个晶体中按 一定的顺序排列起来,形成有序固溶体。有序固溶体 中溶质原子和溶剂原子之比是固定的,可以用化学分 子式来表示,因此把有序固溶体结构称为超点阵。
例如:在Cu-Al合金中,Cu:Al原子比是1:1或3:1 时从液态缓冷条件下可形成有序的超点阵结构,用 CuAl或Cu3Al来表示。
HRTEM for Ni precipitate in 8YSZ/Ni Nanocomposites
size of precipitated Ni nanoparticle ~ 20 nm
pore Ni
10 nm
Ni nanoparticle and accompanied nano-pore in 8YSZ/0.6 vol%Ni Nanocomposite
中间相分类:正常价化合物、电子化合物(电子 相)、间隙化合物
材料科学基础
1. 材料的相结构
材料的 相结构
固溶体
置换固溶体 间隙固溶体 正常价化合物
中间相
电子化合物 尺寸因素化合物
间隙化合物 拉弗斯相
2.1 正常价化合物
材料科学基础
相图的基本知识及单元系相图

5.1 相图的基本知识
相律的应用
① 利用相律可以判断在一定条件下系统最多可能平衡共存的相数 f=C-P+1 P=C-f+1
压力给定时,最多平衡相数比组元数多1 P=C+1 (压力给定时,最多平衡相数比组元数多1) 单元系,C=1 P=2 最多两相共存。 例:单元系,C=1,P=2 最多两相共存。
利用它可解释纯金属与二元合金结晶时的差别。 ② 利用它可解释纯金属与二元合金结晶时的差别。 纯金属结晶, 固共存, 说明结晶为恒温。 纯金属结晶,液-固共存,f=0,说明结晶为恒温。 二元系金属结晶两相平衡, 二元系金属结晶两相平衡,f= 2-2+1=1,说明有一个可变因 表明它在一定( 范围内结晶。 素(T),表明它在一定(T)范围内结晶。 二元系三相平衡, 此时温度恒定, 成分不变, 二元系三相平衡 , f= 2 - 3 + 1=0, 此时温度恒定 , 成分不变 , 各因素恒定。 各因素恒定。
系中旧相 新相的转变过程称为相变。 新相的转变过程称为相变。 若转变前后均为固相 , 则称为 固态相变 ( solid phase transformation )。 从液相转变为固相的过程称为凝固 凝固( 从液相转变为固相的过程称为凝固(solidification)。若凝 ) 固后的产物为晶体称为结晶 结晶( 固后的产物为晶体称为结晶(crystallization)。 )
1 相图的基本知识
相律是检验、分析和使用相图的重要工具。 相律是检验、分析和使用相图的重要工具。利用它 可以分析和确定系统中可能存在的相数, 可以分析和确定系统中可能存在的相数,检验和研究 相图。 相图。 注意使用相律有一些限制: 注意使用相律有一些限制: 只适用于热力学平衡状态,各相温度相等( (1)只适用于热力学平衡状态,各相温度相等(热量 平衡) 各相压力相等(机械平衡) 平衡)、各相压力相等(机械平衡)、各相化学势相 化学平衡) 等(化学平衡)。 只表示体系中组元和相的数目, (2)只表示体系中组元和相的数目,不能指明组元和 相的类型和含量。 相的类型和含量。 不能预告反应动力学(即反应速度问题) (3)不能预告反应动力学(即反应速度问题)。 ( 4 ) f ≧0
第五章材料的相结构及相图

电子浓度为21/13时,为复杂立方结构,或称γ黄铜结构
电子浓度为21/12时,为密排六方结构,或称ε黄铜结构。 其他影响因数:尺寸因素及组元的电负性差。 例:电子浓度21/14的电子化合物,当组元原子尺寸差较小时,倾向于形成密排六方 结构;当尺寸差较大时,倾向于形成体心立方结构;若电负性差较大,则倾向于形 成复杂立方及密排六方结构。 性能:结合键为金属键,具有明显的金属特性。电子化合物的熔点及硬度较高 ,脆性较大
有些与金属固溶体类似,如原子半径差越小,温度越高,电负性差越小,离子间的 代换越易进行 ,其固溶度也就越大。当两化合物的晶体结构相同,且在其他条件 有利的情况下 ,相同电价的离子间有可能完全互换而形成无限固溶体 。
此外,必须考虑以下情况 (1) 保持晶格的电中性 ,代换前后离子的总电价必须相等 若相互代换的离子间电价相等,称为等价代换, 例 钾 长 石 K [AlSi303]与钠长石Na [AlSi303〕中的K+与Na+的代换及上例中Si4+代 换 Ti4+, Mg2+与Fe2+的互换等。
eC、eA分别为在非电离状态下正离子及负离子的价电子数
类型:一般有AB、A2B(或AB2)等类型 特点:种类繁多,晶体结构十分复杂,包括从离子键、共价键过渡到 金属键为主的一系列化合物 如: Mg2Si 电负性影响大,较强的离子键
Mg2Sn 电负性差减小,共价键为主,呈半导体特征 Mg2Pb 金属键占主导地位
之差超过14%~15%,则固溶度(摩尔分数)极为有限;
原因:点阵畸变导致能量升高,Δ r越大,点阵畸变能越高
2
r
rA rB rA
按弹性力学方法计算
2 3 r rB 3 8 G rB A 8 G rB r rA
材料科学基础第六讲-相图

3-4点时,为单相固溶体,不发生变化。 4点以下,将从β相析出次生相αII
§4.4其它类型的二元合金相图
第五节 复杂相图
§5.1 二元合金相图的分析和使用
I 包晶反应:L+α β II 包晶反应:L+ β γ III 包晶反应:L+ ε η IV 共析反应: β α + γ V 共析反应: γ α + δ VI 共析反应: δ α + ε VII 共析反应: ζ δ + ε VIII 包析反应: γ + ε ζ IX 包析反应: γ + ζ δ X 熔晶反应: γ ε + L XI 共晶反应: L η + θ
相律:表示在平衡条件下,系统的自由度数、组元 数和相数之间的关系。它是检验、分析和使用相图 的重要工具。
F=C-P+2
F-平衡系统的自由度数 C-平衡系统的组元数 P-平衡系统的相数
当压力为常数时:F=C-P+1
J. Willard Gibbs
自由度:指平衡系统中可以独立改变的因素(如温度, 美国物理学家 压力,成分)等。纯金属的自由度最多一个,二元系 (1839-1903)
包晶转变区的特征是:反应相是液相和一个固相,其成分点位于水 平线的两端,所形成的固相位于水平线中间的下方。
典型合金的平衡结晶及组织
(一)含银量42.4%的铂银合金
当合金I自液态缓冷到1点时, 开始结晶出α相,与匀晶系 合金的结晶完全相同
当温度降到tD时,合金中 α 相的成分到P点,液相的成 分到C点。
应用相图时要注意的问题
连接线(等温线):两个平衡相成分点之间的连线
第三节 一元系相图
材料科学基础-第五章 材料的相结构及相图

相律在相图中的应用
C
2 二元系
P 1 2
3 1
f 2 1 0
3 2 1 0
含义
单相合金,成分和温度都可变 两相平衡,成分、相对量和温度 等因素中只有一个独立变量 三相平衡,三相的成分、相对 量及温度都确定 单相合金其中两个组元的含量 及温度三个因素均可变 两相平衡,两相的成分、数量 及温度中有两个独立变量 三相平衡,所有变量中只有 一个是独立变量 四相平衡所有因素都确定不变
结构简单的具有极高的硬度及熔点,是合金工具钢和硬 质合金的重要组成相。
I. 间隙化合物
间隙化合物和间隙固溶体的异同点
相同点: 非金属原子以间隙的方式进入晶格。
不同点: 间隙化合物:间隙化合物中的金属组元大多与自 身原来的结构类型不同 间隙固溶体:间隙固溶体中的金属组元仍保持自 身的晶格结构
I. 尺寸因素
II. 晶体结构因素 组元间晶体结构相同时,固溶度一般都较大,而且有可 能形成无限固溶体。若不同只能形成有限固溶体。
III. 电负性差因素
两元素间电负性差越小,越易形成固溶体,且形成的 固溶体的溶解度越大;随两元素间电负性差增大,固 溶度减小。
1)电负性差值ΔX<0.4~0.5时,有利于形成固溶体 2)ΔX>0.4~0.5,倾向于形成稳定的化合物
Mg2Si
Mg—Si相图
(2)电子化合物
由ⅠB族或过渡金属元素与ⅡB,ⅢB,ⅣB族元素 形成的金属化合物。 不遵守化合价规律,晶格类型随化合物电子浓度 而变化。 电子浓度为3/2时: 呈体心立方结构(b相); 电子浓度为21/13时:呈复杂立方结构(g相); 电子浓度为21/12时。呈密排六方结构(e相);
NaCl型 CaF2型 闪锌矿型 硫锌矿型 (面心立方) (面心立方) (立方ZnS) (六方ZnS)
材料科学基础(讲稿5章)

Cu-Ni合金的铸态组织 ×50 树枝状
39
3)特点 (ⅰ) 冷却速度较快. (ⅱ) 开始结晶温度低于液相线. (ⅲ) 结晶中,剩余液相特别是晶粒内部成分不 均匀,先结晶的部分含高熔点组元较多,后 结晶的部分含低熔点组元较多;固相平均成 分偏离固相线,液相平均成分是否偏离液相 线随冷却速度而异. (ⅳ) 结晶终了温度低于固相线. (ⅴ) 通常不能应用杠杆定律. (ⅵ) 室温铸态有晶内偏析,形成树枝状组织.
Zn 2+、Ga 3+、Ge 4+、As 5+在Cu+中的最大固溶度(摩尔分数) 分别为38%、20%、12%、7%
6
Zn 2+、Ga 3+、Ge 4+、As 5+在Cu+中达最大 固溶度时所对应的e/a≈1.4→极限电子浓度
超过极限电子浓度,固溶体就不稳定,会 形成新相。 计算电子浓度时,元素的原子价指的是: 原子平均贡献出的共有电子数,与该元素 在化学反应时的价数不完全一致。
不平衡共晶形成原因分析
56
3)离异共晶——合金中 先共晶相的量很多,共晶 体的量很少时,共晶体中 与先共晶相相同的相依附 于先共晶相生长,将共晶 体中的另一相孤立在先共 晶相的晶界处.这种共晶 体两相分离的组织称为离 异共晶.
57ቤተ መጻሕፍቲ ባይዱ
Pb-Sb共晶离异组织(铸态)×400 α 相依附初生晶α 析出,形成离异的 白色网状β
58
3、包晶相图及其结晶
(1)相图分析 液相线 单相区 两相区 固相线 三相区 固溶度曲线 (2)包晶反应 在一定温度下,由一固定成分的液相与一个固定成 分的固相作用,生成另一个成分固定的固相的反应, 称为包晶反应。
石德珂《材料科学基础》配套题库-章节题库(材料的相结构及相图)【圣才出品】

第5章材料的相结构及相图一、选择题三元系统相图中,若存在有n条界线,则此系统相图中能连接出()条连线。
A.3B.n-1C.nD.n+1【答案】C【解析】三元系统相图中,存在几条界线就能在相图中连接出几条连线。
二、填空题1.Fe-Fe3C相图中含碳量小于______为钢,大于______为铸铁;铁碳合金室温平衡组织均由______和______两个基本相组成;奥氏体其晶体结构是______,合金平衡结晶时,奥氏体的最大含碳量是______;珠光体的含碳量是______;莱氏体的含碳量为______;在常温下,亚共析钢的平衡组织是______,过共析钢的平衡组织是______;Fe3CⅠ是从______中析出的,Fe3CⅡ是从______中析出的,Fe3CⅢ是从______中析出的,它们的含碳量为______。
【答案】2.11%C;2.11%C;铁素体(a);渗碳体(Fe3C);FCC;2.11%;0.77%;4.3%;铁素体和珠光体;珠光体和Fe3CⅡ;液相;奥氏体;铁素体;6.69%2.置换固溶体的溶解度与原子尺寸因素、______、电子浓度因素和______有关。
【答案】电负性;晶体结构三、判断题1.中间相只是包括那些位于相图中间且可以用一个分子式表示的化合物相。
()【答案】×【解析】凡是位于相图中间的各种合金相结构都统称为中间相,这其中当然包括一个分子式表示的化合物相以及一些固溶体相。
2.三元相图中的三元无变量点都有可能成为析晶结束点。
()【答案】×【解析】三元相图中三条界线的交点是三元无变量点,也是低共熔点,它的液相同时对三种晶相饱和。
低共熔点也是存在液相的最低温度点。
通过低共熔点平行于底面的平面称为固相面或结晶结束面。
固相面之下全部是固相。
四、名词解释1.中间相答:中间相是指合金中组元之间形成的、与纯组元结构不同的相。
在相图的中间区域。
2.间隙固溶体答:间隙固溶体是指若溶质原子比较小时可以进入溶剂晶格的间隙位置之中而不改变溶剂的晶格类型所形成的固溶体。
材料科学基础第五章 材料的相结构及相图

SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学 2)尺寸因素
化学与材料科学学院
溶质原子溶入溶剂晶格会引起晶格点阵畸变,使晶体能量升高。 晶格畸变能
能量越高,晶格越不稳定。
单位体积畸变能的大小与溶质原子溶入的数量及溶质原子的相对尺寸有关:
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
1)晶体结构因素
溶质与溶剂的晶格结构相同→固溶度大。 例如:具有面心立方结构的Mn、Co、Ni、Cu,在γ-Fe中 固溶度较大,而在α-Fe中固溶度较小。 溶质与溶剂的晶格结构相同是形成无限固溶体的必要条件。
贵州师范大学
化学与材料科学学院
1)无限固溶体
无限固溶体都是置换固溶体? 2)有限固溶体 间隙固溶体只能是有限固溶体?
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
按溶质原子分布分类 1)有序固溶体 2)无序固溶体
贵州师范大学
化学与材料科学学院
基本概念
组元:组成材料的最基本的、独立的物质,简称元。
金属元素:Cu、Al、Fe 非金属元素:C、N、O 化合物: Al2O3, MgO, Na2O, SiO2 单一组元组成:纯金属、 Al2O3晶体等 材料: 二元合金 多组元组成,含合金 三元合金
组元:
纯元素
合金:指由两种或两种以上的金属或金属与非金属 经熔炼或其它方法制成的具有金属特性的物质。
材料科学基础-第五章-材料的相结构及相图-PPT

Mg2Si
Mg—Si相图
(2)电子化合物
由ⅠB族或过渡金属元素与ⅡB,ⅢB,ⅣB族元素
形成的金属化合物。
不遵守化合价规律,晶格类型随化合物电子浓度而
变化。
电子浓度为3/2时: 呈体心立方结构(b相);
电子浓度为21/13时:呈复杂立方结构(g相);
电子浓度为21/12时。呈密排六方结构(e相);
体。
III. 电负性差因素
IV. 两元素间电负性差越小,越易形成固溶体,且形
成的固溶体的溶解度越大;随两元素间电负性差
增大,固溶度减小。
1)电负性差值ΔX<0.4~0.5时,有利于形成固溶体
2)ΔX>0.4~0.5,倾向于形成稳定的化合物
IV. 电子浓度因素
V. 电子浓度的定义是合金中各组成元素的价电子数总
子的价电子数恰好使负离子具有稳定的电子层
结构。
金属元素与周期表中的ⅣA,ⅤA,ⅥA元素
形成正常价化合物。
有较高的硬度,脆性很大。
例如:Mg2Si、Mg2Sn、Mg2Pb、MgS、MnS等
(1)正常价化合物
正常价化合物的分子式只有AB,A2B或AB2两种。
常见类型:
NaCl型
CaF2型
Cu原子形成四面体(16个)。
每个镁原子有4个近邻镁原子和12个近邻铜原子;
每个铜原子有6个近邻的铜原子和6个近邻的镁原子
。
Cu
Mg
II. 拉弗斯(Laves)相
②MgZn2型:六方晶系。
Mg原子形成硫锌矿结构;Zn原子形成四面体。
每个Mg原子有4个近邻Mg原子和12个近邻Zn原
子。
每个Zn原子有6个近邻Zn原子和6个近邻Mg原子
材料的相结构及相图

(2) 晶体结构因素 组元间晶体结构相同时,固溶度较大,而且有可能形成
无限固溶体。组元间晶体结构不同,便只能形成有限固溶 体。
(3) 电负性差因素 两元素间电负性差越小,则越易形成固溶 体,而且所形成的固溶体的溶解度也就越大;溶质与溶剂 的电负性差很大时,往往形成比较稳定的金属化合物。
空位时必须是电价总和为零的正、负离子同时移
弗兰克尔空位
出晶体,在晶体中形成正、负离子的空位对。
2) 为了保持电中性,离子间数量不等的置换会在晶体 内部形成点缺陷。
如:2Ca2+→Zr4+ ,形成氧离子空缺。 3) 陶瓷化合物中存在变价离子,当其电价改变时,也
会在晶体中产生空位。
如:方铁矿中,部分Fe2+被氧化为Fe3+时, 2FeO+O → Fe2O3中,产生阳离子空缺。 生阴同离理子,空T缺iO。2中,部分Ti4+被还原为Ti3+时,产
溶剂——摩尔分数大于50%,
溶质——小于50%的组元
3. 按溶质与溶剂原子相对分布分类:
无序固溶体——溶质原子统计式地或概率地分布在溶 剂的晶格中。
有序固溶体——溶质原子在溶剂晶格的结点位或溶剂 晶格的间隙中,有规律的排列。
1.置换固溶体
影响置换固溶体溶解度的因素:
(1) 尺寸因素 溶质原子溶入溶剂晶格引起晶格的点阵畸变。 溶质点阵
第一节 材料的相结构
相——合金中具有同一聚集状态、同一晶 体结构和性质并以界面相互隔开的均匀组 成部分。材料的性能与各组成相的性质、 形态、数量直接有关。
根据相的结构特点分类: 固溶体 中间相
材料的相结构及相图材料科学基础

第三章材料的相结构及相图第一节材料的相结构1.1置换固溶体当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。
金属元素彼此之间一般都能形成置换固溶体,但溶解度视不同元素而异,有些能无限溶解,有的只能有限溶解。
影响溶解度的因素很多,主要取决于以下几个因素:(1)晶体结构晶体结构相同是组元间形成无限固溶体的必要条件。
只有当组元A和B的结构类型相同时,B原子才有可能连续不断地置换A原子,如图3-1所示。
(2)原子尺寸因素(3)化学亲和力(电负性因素)(4)原子价合金中的电子浓度可按下式计算:月(10口-工)+正工* (100 (3-1)式中A--分别为溶剂;B--溶质的原子价;x--为溶质的原子数分数(%)。
图3-2元素的电负性(虚线表示铁的电负性数值)1.1.2间隙固溶体溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体。
在间隙固溶体中,由于溶质原子一般都比晶格间隙的尺寸大,所以当它们溶人后,都会引起溶剂点阵畸变,点阵常数变大,畸变能升高。
因此,间隙固溶体都是有限固溶体,而且溶解度很小。
1.1.3固溶体的微观不均匀性为了了解固溶体的微观不均匀性,可引用短程序参数。
短程序参数a定义为1.1.4固溶体的性质(1)点阵常数改变(2)产生固溶强化(3)物理和化学性能的变化1.2中间相1.2.1正常价化合物1.2.2电子化合物1.2.3原子尺寸因素有关的化合物(1)间隙相和间隙化合物(2)拓扑密堆相1.2.4超结构(有序固溶体)金属间化合物由于原子键合和晶体结构的多样性,使得这种化合物具有许多特殊的物理、化学性能,已日益受到人们的重视,不少金属间化合物特别是超结构已作为新的功能材料和耐热材料正在被开发应用。
第二节二元系相图2.1固溶体的类型置换固溶体示意图间隙固溶体示意图缺位固溶体示意图2.2杠杆规则杠杆规则示意图2.3二元系相图的热力学性质2.3.1由吉布斯自由能曲线作公切线的方法绘制相图液态和固态的吉布斯自由能曲线规定纯液态NiO 作为NiO 的标准态,纯固态MgO 作为MgO 的标准态,则形成1mol 固态理想溶液时,体系的吉布斯自由能为 1mol 液态理想溶液 时,体系的吉布斯自由能为匚万)=戌丁(吟/n 端白1/1^白1门五瓢白)—12500人源日I 5.6A ^OZ 母份二磕?%兄 ++尺^(七白1口 忒口+x 篇目In x 短 J1嬴r + Ktigo把各个温度下不同的xNiO、xMgO值代入上列两式中,就可得到各个温度下液相和固相的吉布斯自由能曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相律在相图中的应用
组元数(C) 相数(P) f=C–P+1
含义 单相合金,成分和温度都可变 两相平衡,成分、相对量和温度 等因素中只有一个独立变量 三相平衡,三相的成分、相对 量及温度都确定 单相合金其中两个组元的含量 及温度三个因素均可变 两相平衡,两相的成分、数量 及温度中有两个独立变量 三相平衡,所有变量中只有一 个是独立变量 四相平衡所有因素都确定不变
<2>晶体结构因素 组元间晶体结构相 同时,固溶度一般都较大,而且有可能形成 无限固溶体。若不同只能形成有限固溶体。 <3>电负性差因素 两元素间电负性差 越小,越易形成固溶体,而且形成的固溶体 的溶解度越大;随两元素间电负性差增大, 固溶度减小,当溶质与溶剂的电负性差很大 时,往往形成比较稳定的金属化合物。
(1)不同成分的材料在不同温度下存 在哪些变化 (2)各稳定相的相对量是多少
(3)成分与温度变化时所可能发生的变 化
了解相图的分析和使用方法后,就可以 了解合金的组织状态,进而预测合金的 性能。另外,可以根据相图来制订合金 的锻造和热处理工艺。 组元——组成材料最基本的、独立的物 质。
合金——有两种或两种以上的金属、或 金属与非金属经熔炼或用其它方法制成 的具有金属特性的物质。
Lc m n ●共晶反应:
tc
固相线: amcnb
●组成
液相线: acb
me 的溶解度变化线
nf 的溶解度变化线
●凝固过程: L 合金1:L 合金2 : L L
●不平衡凝固
<4>电子浓度因素 电子浓度的定义是 合金中各组成元素的价电子数总和与原 子总数的比值,记作e/a。电子浓度有 一极限,超过这一极限,固溶体就不稳 定,会形成新相。 二、间隙固溶体
只有原子半径接近于溶剂晶格某些间隙
半径的溶质原子,才有可能进入溶剂晶 格的间隙中而形成间隙固溶体。 无论是置换固溶体还是间隙固溶体, 均能引起固溶体的硬度、强度升高。对 置换式固溶体,溶质原子与溶剂原子的 尺寸差别越大,溶质原子的浓度越高, 其强化效果就越大。这种由于溶质原子 的固溶而引起的强化效应,称为固溶强 化。
1
2 1
2
二元系
2 3 1
0
3 2
3
三元系
2
3
4
1 0
●相图的建立
●杠杆定律
温 度
a
o
b
a
L
o
b
Q Qo
A
QL
Qa
w
L Ni
o
o Ni Ni
w
Ni
B
L Ni o Ni
Q QL
w w w w
二.二元系相图
1.匀晶相图
℃
1 L
tB
℃
L 1
L
2
tA
A
B 0
P
水
冰
气
水的状态示意图
T
其中f为系统的自由度数,C为组元数, P为相数。相律表明:在只受外界温度 和压力影响的平衡系统中,其自由度数 等于组元数与相数之差再加上2。所谓 自由度,即指独立可变的因
素,包括各组成相的成分、数量及 温度、压力等。在金属及合金的制 造和应用过程中,一般都是在常压 下进行的,因此常把压力看成一个 常数,相律的表达式可写成 f=C–P+1
固溶体与纯金属结晶的不同之处: (1)固溶体结晶是在一个温度范围内 完成的,而纯金属结晶是在恒温下完 成的。 (2)合金结晶过程中,结晶出的固相 与共寸液相的成分不同,这种结晶称 为选分结晶。而纯金属在结晶过 程中,固相与液相的成分始终是相同 的。
2.共晶相图 ●形成:液相完全互溶,固相有限互 溶,有共晶反应的相图。
(1)熔晶反应:一个固相在某一恒温下分 解成一个固相与一个液相的反应。 (2)合晶反应:由两个不同成分的液相在 某一恒温下生成一个一定成分的固相的反。 应。 (3)偏晶反应:在某一恒温下,由一定成 分的液相分解出另一成分的液相,并同时 结晶出一定成分的固相的反应。
(4)共析反应:在某一恒温下,一定成分 的固相同时分解成两个成分与结构不同的固 相反应。 (5)包析反应:两个不同成分的固相,在 某一恒温下相互作用生成另一固相的反应。
L
2
B%
X
冷却曲线
t
●形成:液态完全互溶,固态完全互 溶 ,即形成 匀晶相图。
L ●冷凝过程:L 图5-15 液相线:合金凝固的开始转变线 L= 时液相 的平衡成分线 。 ●组成 固相线:合金凝固终了线L=时固 相的平衡成分线。
●不平衡凝固:出现枝晶偏析(主枝与分 枝成分不均匀)图5-16
第一节 材料的相结构
在一种金属元素中,有目的地加入一 种或几种金属或非金属元素,通过冶金或 粉末冶金的方法,所制成的具有金属特性 的物质称为合金。合金的性质决定于它的 成分、工艺及其显微组织,而成分和工艺 在很多情况下,也是通过对显微组织的影 响而影响性能的,因此研究合金的显微组 织及其形成机制和变化规律是极其重要的。
固溶体中溶质原子分部示意图
二、中间相 两组元间的相对尺寸差、电子浓度及电 负性差都有一溶限,当溶质原子的加入 量超过此溶限时便会形成一种新相,这 种新相称为中间相。 1、正常价化合物:两组元间电负性差 起主要作用而形成的化合物,它符合化 合的原子价规律。有较高的硬度,脆性 很大。如Mg2Si、 Mg2Sn、Mg2Pb、MgS、MnS等。
表5-6是对以上反应类型的总结
二元相图的分析方法
一、二元相图的一些基本规律 (1)相接触法则:在二元相图中,相邻相区 的相数差为1,点接触除外。 (2)在二元相图中,三相平衡一定是一条水 平线,该向上一定与3个单相区有点接触,其 中两点在水平线的两端,另一点在水平线中 间某处,3点对应于3个平衡相的成分,此外 该线一定与3个两相区相邻。 (3)两相区与单相区的分界线与水平线相交 处,前者的延长线应进入另一个两相区。
◆伪共晶
在非共晶成分处获得100%的共晶组 织,只能在非平衡条件下得到。
◆不平衡共晶
m点以左,n点以右合金不平衡凝固时出现的 共晶组织 。
◆离异共晶
当初相较多,当发生 共晶反应时,与当初相相 同的一相优先形核,将另 一相推到最后处形成,失 去了共晶形貌,即组织为 离异组织。
●包晶相图
◆起他类型的二元系相图
相——合金中具有同一聚积状态、内部 结构和特性并以界面相互隔开的均匀组 成部分。 ●相 相——描述系统的状态、温度、压力及 成分之间关系的一种图解。所谓相即体 系中一切具有相同的物理性能与化学性 能的均匀部分,与其它有明显界面分开, 超越界面会有性质突变,否则仍为同一 相。
对于合金系统来说,要保持物理性能、 化学性能相同则要满足:成分相同和结 构相同。 ●相变——由一个相转变为了另一相的 过程。
2、电子化合物:它们的形成主要是 电子浓度起主导作用。也与尺寸因 素及组元的电负性差有一定关系。 溶点及硬度较高,脆性大。 3、尺寸因素化合物:这类中间相 的形成主要受组元的相对尺寸所控 制。尺寸差别越大,造成的晶格畸 变就越大,一.相图基本知识 ●利用相图可以获取的信息
●相律——f=C-P+2
C—系统组元,P——平衡时共存的相数 目,f——自由度
相图的基本知识 合金相图是应用图解的方法,表示合金 的成分、平衡相状态及外界条件(温度、 压力等)之间关系的图线,它是研究合 金中的相变规律的基础。
单元系相图
下图是水的相图,在以温度和压力为两 坐标的平面图上,表示出水的3种存在 状态与温度和压力的关系。(如图) 合金的相平衡概念及相律 由于相平衡条件的约束,处于平 衡状态的合金中可能存的相数,将受到 组元数及外界条件的限制,这种限制可 从相平衡的热力学条件推处,这就是相 律,即 f=C–P+2
相是合金中具有同一聚集状态,同一 晶体结构和性质并以界面相互隔开的均匀 组成部分。根据相的结构特点可以归纳为 两大类:固溶体及中间相。 一、固溶体 以合金中某一组元作为溶剂,其它组元为 溶质,所形成的与溶剂有相同晶体结构、 晶格常数稍有变化的固相,称为固溶体。 固溶体分为:
(1)置换固溶体
置换固溶体中溶质与溶剂可以有限互溶也可 以无限互溶,其溶解度与以下几个因素有关: <1>尺寸因素 溶质原子半径与溶剂原子 半径之差越大,一个溶质原子引起的点阵畸 变能就越大,溶质原子能溶入溶剂中的数量 就越少,固溶体的溶解度就越小。相反就越 大。
固溶体类型
三、陶瓷材料中的固溶方式
与金属为基的固溶体一样, 这些无机非金属化合物也可以以 置换或间隙的方式溶入一些元素 而形成固溶体,有时甚至可以形 成无限固溶体。
四、固溶体中溶质原子的偏聚与 有序
通常认为,溶质原子在固溶体 中的分布是随机的、均匀无序的。 事实上,完全无序的固溶体是不存 在的,总是在一定程度上偏离完全 无序状态,即存在着分部的微观不 均匀性。溶质原子在溶剂晶格中的 分部状态,主要取决于固溶体中同 类原子结合能与异类原子结合能的 相对大小。
第五章 材料的相结构及相图
材料的相结构
二元相图及其类型 三元相图及其类型
引言
组元——组成材料最基本的、独立的物 质。 合金——有两种或两种以上的金属、或 金属与非金属经熔炼或用其它方法制成 的具有金属特性的物质。
相——合金中具有同一聚积状态、内部 结构和特性并以界面相互隔开的均匀组 成部分。 ●相 相——描述系统的状态、温度、压力及 成分之间关系的一种图解。所谓相即体 系中一切具有相同的物理性能与化学性 能的均匀部分,与其它有明显界面分开, 超越界面会有性质突变,否则仍为同一 相。
2、根据相图判断合金的工艺性能 合金的铸造性能主要表现为合金液体 的流动性、缩空、热裂倾向及成分偏 析等。 1)温度间隔和成分间隔越大的合金 其流动性越差,分散缩空也越多,凝 固后的枝晶偏析也越严重。 2)共晶成分合金流动性好,分散缩 空少。(图5-43)。 3)单相固溶体塑性好,变形均匀。