三角函数变换及零点问题

三角函数变换及零点问题
三角函数变换及零点问题

_)

f(-x)=-

x +x=-(-

x

先将y=f(x)的图象关于y轴翻折,得y=f(-x)的图象,然后将y=f(-x)

图象

坐标不变,再向左平移1个单位长度

C.横坐标伸长到原来的2倍,纵坐标不变,再向右平移个单位长度D.横坐标伸长到原来的2倍,纵坐标不变,再向左平移个单位长度

分析:根据函数图像伸缩变换的法则,首先由y=log

2x的图像,纵坐标缩短到原来的

1

,得到

=1

2

log

2

x的函数,再将

二、函数零点知识点及经典练习题知识点1:函数零点的定义

(1)对于函数y=

(2)方程f(x)=

在性定理

Δ=0

轴的交点________

________

x)=0,转化为方程根的个数,解出方程有几个根,

就有几个零点,如果方程的根解不出,还有两种方法判断:方法一是基本方法,是利用零点的存在性原理,要注意参考单调性可判定零点的唯一性;方法二是数形结合法,要注意作图技巧.

ln

例1:已知a 是实数,函数f (x )=2ax 2+2x -3-a ,如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围

解 若a =0,f (x )=2x -3,显然在[-1,1]上没有零点,所以a ≠0.

令Δ=4+8a (3+a )=8a 2

+24a +4=0,

解得a =-3±7

2.

①当a =-3-72时,f (x )=0的重根x =3-7

2∈[-1,1],

当a =-3+72时,f (x )=0的重根x =3+7

2

?[-1,1],

∴y =f (x )恰有一个零点在[-1,1]上; ②当f (-1)·f (1)=(a -1)(a -5)<0,

即1

?????

a >0

Δ=8a 2

+24a +4>0-1<-12a <1f 10f 10

,或?????

a <0

Δ=8a 2

+24a +4>0

-1<-12a <1

f 10f 10

解得a ≥5或a <-3-7

2

.

综上所述实数a 的取值范围是a >1或a ≤-3-7

2

.

例2:若函数f (x )=4x +a ·2x +a +1在(-∞,+∞)上存在零点,求实数a 的取值范围.

分析:看到x

4和x

2出现,可以联想到二次关系,然后根据根的存在性就可以完成该题目,需要注意的是根在什么范围内存在,易错

解 方法一 (换元)

设2x =t ,则函数f (x )=4x +a ·2x +a +1化为g (t )=t 2

+at +a +1 (t ∈(0,+∞)).

函数f (x )=4x +a ·2x +a +1在(-∞,+∞)上存在零点,等价于方程t 2

+at +a +1=0,①有正实数根. (1)当方程①有两个正实根时,

a 应满足????

?

Δ=a 2

-4a +10

t 1+t 2=-a >0

t 1·t 2=a +1>0

解得:-1

(2)当方程①有一正根一负根时,只需t 1·t 2=a +1<0, 即a <-1;

(3)当方程①有一根为0时,a =-1,此时方程①的另一根为1. 综上可知a ≤2-2 2.

方法二 令g (t )=t 2

+at +a +1 (t ∈(0,+∞)). (1)当函数g (t )在(0,+∞)上存在两个零点时,

实数a 应满足?????

Δ=a 2-4a +1

-a

2>0

g 0

a +1>0

解得-1

(2)当函数g (t )在(0,+∞)上存在一个零点,另一个零点在(-∞,0)时,实数a 应满足g (0)=a +1<0, 解得a <-1;

(3)当函数g (t )的一个零点是0时,g (0)=a +1=0,a =-1,此时可以求得函数g (t )的另一个零点是1. 综上(1)(2)(3)知a ≤2-2 2.

一、 能力提升

综合题1 设函数f (x )=ax 2+bx +c ,且f (1)=-a

2

,3a >2c >2b ,求证:

(1)a >0且-3

4

(2)函数f (x )在区间(0,2)内至少有一个零点;

(3)设x 1,x 2是函数f (x )的两个零点,则2≤|x 1-x 2|<

574

. 证明 (1)∵f (1)=a +b +c =-a

2

∴3a +2b +2c =0.

又3a >2c >2b ,∴3a >0,2b <0, ∴a >0,b <0.

又2c =-3a -2b ,由3a >2c >2b , ∴3a >-3a -2b >2b .

∵a >0,∴-3

4

.……………………………………………………………………(4分)

(2)∵f (0)=c ,f (2)=4a +2b +c =a -c . ①当c >0时,∵a >0,

∴f (0)=c >0且f (1)=-a

2

<0,

∴函数f (x )在区间(0,1)内至少有一个零点.……………………………………………(7分) ②当c ≤0时, ∵a >0,

∴f (1)=-a

2

<0且f (2)=a -c >0,

∴函数f (x )在区间(1,2)内至少有一个零点.

综合①②得f (x )在(0,2)内至少有一个零点.……………………………………………(10分)

(3)∵x 1,x 2是函数f (x )的两个零点,则x 1,x 2是方程ax 2

+bx +c =0的两根.

∴x 1+x 2=-b a ,x 1x 2=c a =-32-b

a .

∴|x 1-x 2|=x 1+x 2

2

-4x 1x 2

=b a 2

-4

32-b a

b a

+22

+2.(12分)

有两个零点2

函数零点易错题、三角函数重难点教师版)

函数零点易错题 三角函数重难点 教师版 函数的零点是函数图象的一个重要的特征,同时也沟通了函数、方程、不等式以及算法等内容,在分析解题思路、探求解题方法中起着重要的作用,因此要重视对函数零点的学习.下面就函数的零点判定中的几个误区进行剖析,希望对大家有所帮助. 1. 因"望文生义"而致误 例1.函数23)(2+-=x x x f 的零点是 ( ) A.()0,1 B.()0,2 C.()0,1,()0,2 D.1,2 错解:C 错解剖析:错误的原因是没有理解零点的概念,"望文生义",认为零点就是一个点.而函数的零点是一个实数,即使()0=x f 成立的实数x ,也是函数 ()x f y =的图象与x 轴交点的横坐标. 正解:由()0232=+-=x x x f 得,x =1和2,所以选D. 点拨:求函数的零点有两个方法,⑴代数法:求方程()0=x f 的实数根,⑵几何法:由公式不能直接求得,可以将它与函数的图象联系起来,函数的图象与x 轴交点的横坐标. 即使所求. 2. 因函数的图象不连续而致误 例2.函数()x x x f 1 +=的零点个数为 ( ) A.0 B.1 C.2 D.3 错解:因为2)1(-=-f ,()21=f ,所以()()011<-f f ,函数()x f y =有一个零点,选B.

错解剖析:分析函数的有关问题首先考虑定义域,其次考虑函数()x x x f 1+=的图象是不是连续的,这里的函数图像是不连续的,所以不能用零点判定定理. 正解:函数的定义域为()()+∞?∞-,00,,当0>x 时,()0>x f ,当0-f f ,函数()32-=x x f 在区间[]1,1-内没有零点. 错解剖析:上述做法错误地用了函数零点判定定理,因为函数()x f 在区间[]b a ,上的函数图像是连续曲线,且()()0>b f a f ,也可能在[]b a ,内有零点.如函数 ()12-=x x g 在区间[]1,1-上有()()011>-g g ,但在[]1,1-内有零点2 1±=x . 正解:当∈x []1,1-时,()132-≤-=x x f ,函数()x f y =在[]1,1-上的图象与x 轴没有交点,即函数()32-=x x f 在区间[]1,1-内没有零点. 法二:由032=-x 得?±=2 3x []1,1-,故函数()32-=x x f 在区间[]1,1-内没有零点.

高考数学热点难点突破技巧 三角函数的零点问题的处理

第09讲三角函数零点问题的处理 【知识要点】 三角函数的零点问题,是考试经常考察的重点、热点和难点.三角函数的零点问题的处理一般有以下三种方法:1、单调性+数形结合 .2、分离参数+数形结合. 3、方程+数形结合. 三种方法也不是绝对的,要注意灵活使用. 【方法讲评】 方法一单调性+数形结合 解题步骤一般先研究三角函数的单调性,再数形结合分析. 【例1】已知向量,,设函数. (1)若函数的图象关于直线对称,且时,求函数的单调增区间;(2)在(1)的条件下,当时,函数有且只有一个零点,求实数的取值范围. (1)∵函数图象关于直线对称, ∴,解得:,∵,∴, ∴,由, 解得:, 所以函数的单调增区间为.

∴当或时函数有且只有一个零点. 即或,所以满足条件的. 【点评】(1)本题第2小问是在第1问的前提下进行的,第1问求出了函数的单调增区间,所以第2小问对零点问题的研究,可以利用单调性+数形结合方法分析解答.第2问首先求复 合函数在上的单调性,再数形结合分析函数零点的个数. (2)在解答数学问题时,只要写不等式,一定要注意取等问题,本题第2问 ,左边可以取等,右边不能取等. 【反馈检测1】设P是⊙O:上的一点,以轴的非负半轴为始边、OP为终边的角记为,又向量。且. (1)求的单调减区间; (2)若关于的方程在内有两个不同的解,求的取值范围. 方法二分离参数+数形结合 解题步骤先分离参数,再画出方程两边的函数的图像,数形结合分析解答. 【例2】已知函数的最大值为. (1)求函数的单调递增区间; (2)将的图象向左平移个单位,得到函数的图象,若方程-=0在

∈上有解,求实数的取值范围. 【解析】(1) , 由,解得, 所以函数的单调递增区间 当时,,取最小值-3. 方程在∈上有解,即 -3≤≤ 【点评】(1)本题就是先分离参数,再分别画方程左右两边的函数的图像数形结合分析.(2)本题也可以单调性+数形结合的方法分析解答.它们之间不是绝对的,要注意灵活使用. 【反馈检测2】已知函数的周期为. (1)若,求它的振幅、初相; (2)在给定的平面直角坐标系中作出该函数在的图像; (3)当时,根据实数的不同取值,讨论函数的零点个数.

三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换 一、单选题(共8道,每道12分) 1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整 个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( ) A.2 B.3 C.4 D.5 答案:C 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( ) A.1 B.2 C.3 D.4 答案:B 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( ) A.π B. C. D. 答案:D

三角函数的图像的变换口诀解读

三角函数的图像的变换口诀解读 变T 数倒系数议,变A 伸压 y 无疑, 变φ 要把系数提,正φ 左进负右移. 周期变换是通过改变x 的系数来实现的,即周期T 的变化只与ω有关而与φ无关.这是因为ω π 2=T ,故要使周期扩大或缩小m (m >0) 倍,则须用 x m 1去代原式中的x (纵坐标不 变),故有“变T 数倒系数议”之说. 相位φ变换实质上就是将函数的图像向左或向右平移.当先作周期变换后作相位变换时,须提出系数ω,这是因为周期变化时改变了x 的值,此时其初相位(非0初相)同时也改变相应得到改变,且改变的倍数相同.当先作相位变换后作周期变换,由于此时x 的系数为1,系数提不提无影响,为了统一记忆我们也视为提出系数“1”.因而有“变φ要把系数提”之说. 三角函数图像的周期﹑振幅﹑相位等变换的问题是历年高考中常考查的内容.对此类命题的求解,无论三种变换怎样摆设,先要弄清哪是原函数的图像,哪是新函数的图像,再据本歌诀所述,很快就可得到解决. 例1 为了得到 y =) 62sin(π-x 的图像,可以将函数 y = cos2x 的图像 (2004年高考) ( ) (A)向右平移6 π 个单位长度 (B)向右平移3 π 个单位长度 (C)向左平移 6 π 个单位长度 (D) 向左平移 3 π 个单位长度 解法1 ∵ y = cos2x =) 4 (2sin )2 2sin(π π + =+ x x , 而 y =] 3 )4 [(2sin )6 2sin(π π π - + =- x x , 由此可得 只须将函数y = cos2x 的图像向右平移3 π 个单位长度即可.故选(B). 解法2 ∵ y =)62sin(π - x ) 6 22 cos( ππ x + -=,即y ) 3(2cos π - = x , 而已知的函数为y = cos2x , 由此可得,须将函数y = cos2x 的图像向右平3 π 个单位即可.故选(B). 点评 由于当ω ?- =x 时, 相位0 =+?ω x .因而,我们可称此时的相位为零相位.由此可 见,在作相位变换时,其平移的数值与方向是由两个0相位对应的x 值的差来决定的.对于本题而言,由于两个0相位对应的x 的值分别为12 π与4 π - ,故所作的平移就是要将已知函数 的0相位对应的点) 0 ,4(π - 移到点)0 12 ( ,π 处.易知要平移的数值是: 3 )4 (12 π π π = - -,方向是向 右的.显然这一方法就是“五点作图法”中的第一零点判断法. 例2 已知函数 f (x ) =) 5 sin( 2π + x (x ∈R ) 的图像为C, 函数 y = ) 5 2sin(π - x (x ∈R ) 的图 像为C 1, 为了得到C 1,只需把C 上所有的点先向右平移 ,再将 . ( ) (A) 5 2π个单位,横、纵坐标都缩短到原来的2 1 (B) 5 2π个单位,横、纵坐标都伸

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数,为的导数.证明: (1)在区间 存在唯一极大值点; (2)有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ???时,单调递减,而()00,02g g π?? ''>< ??? , 可得在1,2π?? - ?? ?有唯一零点,设为. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,. 所以在()1,α-单调递增,在,2πα?? ???单调递减,故在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当时, ,故()f x 在单调递减,又,从而是()f x 在的唯 一零点. ()sin ln(1)f x x x =-+()f x '()f x ()f x '(1,)2 π-()f x ()g'x ()g'x α()0g'x <()g x ()g x (1,)-+∞(1,0)x ∈-()0f 'x <(1,0)-(0)=0f 0x =(1,0]-

(ii )当0,2x π?? ∈ ??? 时,由(1)知,在单调递增,在单调递减,而 ,02f π??'< ???,所以存在,2πβα?? ∈ ???,使得,且当时, ;当,2x πβ??∈ ???时,.故在单调递增,在,2πβ?? ???单调递 减.又,1ln 1022f ππ???? =-+> ? ???? ?,所以当时,. 从而()f x 在0,2π?? ??? 没有零点. (iii )当,2x ππ??∈ ???时,()0f x '<,所以()f x 在,2ππ?? ???单调递减.而 ()0,02f f ππ??>< ??? ,所以()f x 在,2ππ?? ??? 有唯一零点. (iv )当时,()l n 11x +>,所以<0,从而()f x 在没有零点. 综上, ()f x 有且仅有2个零点. 【变式训练1】【2020·天津南开中学月考】已知函数3()sin (),2 f x ax x a R =-∈且 在,0,2π?? ????上的最大值为32π-, (1)求函数f (x )的解析式; (2)判断函数f (x )在(0,π)内的零点个数,并加以证明 【解析】(1)由已知得()(sin cos )f x a x x x =+对于任意的x∈(0, 2 π), 有sin cos 0x x x +>,当a=0时,f(x)=? 3 2 ,不合题意; 当a<0时,x∈(0, 2π),f′(x)<0,从而f(x)在(0, 2 π )单调递减, 又函数3 ()sin 2f x ax x =- (a∈R)在[0, 2 π]上图象是连续不断的, 故函数在[0, 2 π ]上的最大值为f(0),不合题意; ()f 'x (0,)α,2απ?? ???(0)=0f '()0f 'β=(0,)x β∈()0f 'x >()0f 'x <()f x (0,)β(0)=0f 0,2x ?π?∈ ???()0f x >(,)x ∈π+∞()f x (,)π+∞

三角函数图像变换顺序详解全面

《图象变换的顺序寻根》 题根研究? 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到? 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】第1步,横向伸缩:

将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移: 将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2 中有的变换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变? (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)? (3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反—— 如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了.

三角函数图像变换顺序详解(全面).

《图象变换的顺序寻根》 题根研究 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到? 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】第1步,横向伸缩: 将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移:

将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变 换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变? (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)? (3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反—— 如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了. 如将例1中的变成 它们的变换“方向”就“统一”了. 对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x进行的. 故先平移(x→)对后伸缩(→)没有影响; 但先收缩(x→)对后平移(→)却存在着“平移”相关. 这

高中数学专题练习-函数零点问题

高中数学专题练习-函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(2015·北京)设函数f (x )=??? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (·东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (·天津)已知函数f (x )=??? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实数 a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

三角函数图像的变换

1、函数y=sin(x+π),x∈R和y=sin(x- 6- O 3 ),x∈R的图象与y=sin x的图象有什么联系?2 个单位所得的曲线是 2 sin x的图象,试求y=f(x)的解析式。 3 )y=sin2x 3 ) 3 ) 3 ) 3 ) 3 ),x∈R的简图。 π2 3 ),x∈R 6 ),x∈R 三角函数图像的变换 题型归纳: 系? π 34 ),x∈R的图象与y=sin x的图象有什么联 - π-π 3 1y π5ππ 6 34x 2、函数y=3sin(2x+π (1)y=sin x(2)y=sin x y=sin(x+π 4、函数f(x)的横坐标伸长为原来的2倍,再向左平移 π y=1 5、函数y=Asin(ωx+φA>0,ω>0,|φ|<π) 的图象如图,求函数的表达式. y=sin(2x+π y=3sin(2x+π y=sin(2x+π y=3sin(2x+π ★☆作业:(A组) 1、画出下列函数在长度为一个周期的闭区间上的简图: 3、画出函数y=3sin(2x+π y 2x+ 3 x 3sin(2x+π) 3 (3)y=4sin(x- π (4)y=sin(2x+π 第1页共2页

6 ) ,x ∈R (2) y = 1 sin( 3 x - (1) y = 5 sin( 1 x + 4 ) ,x ∈R 6、把函数 y =cos(3x + π A.向右平移 π 4 C.向右平移 12 (3) y = 3sin(2 x - ) ,x ∈R (4) y = 2 cos( x + π ) ,x ∈R 3 ,φ =- 6 B.A =1,T= 2 3 ,φ =- 4 D.A =1,T= 3 sin(2x + 3 sin(2x + (1) y = 8sin( - ) ,x ∈[0,+∞) (2) y = 1 7 ) ,x ∈[0,+∞) 2 的图象的一部分,求这个函数的解析式。 4、(1)y =sin(x + π (2)y =sin(x - π (3)y =sin(x - π 4 )是由 y =sin(x + 4 )向 5、若将某函数的图象向右平移 π 10、设函数 y = sin (x - π A.y =sin(x + 3π B.y =sin( x + π C.y =sin(x - π D.y =sin(x + π 2、说明下列函数的图像由正弦函数或余弦函数经过了怎样的变换。 π 2 2 π 4 )的图象适当变动就可以得到 y =sin(-3x )的图象,这种变动 可以是( ) π π π 4 B.向左平移 D.向左平移 12 ★★☆☆作业( B 组): 7、如图:是函数 y =A sin(ω x +φ )+2 的图象的一部分,它 的振幅、周期、初相各是 ( ) π 1 1 6 4 A.A =3,T= 4π π 4π 3π 3 ,φ =- 4 C.A =1,T= 2π 3π 4π π 3 ,φ =- 6 8、如左下图是函数 y =A sin (ω x +φ )的图象的一段,它的 解析式为 ( ) A. y = 2 π 2 x 3 ) B. y = 3 sin( 2 + π 2 π 4 ) C. y = 3 sin(x - 3 ) D. y = 2 2π 3 ) 3、不画简图,直接 写出下列函数的振幅、周期和初相,并说明这些 函数的图象可由正弦曲 线经过怎样的变化得出(注意定义域): x π 4 8 3 cos(3x + π 4 )是由 y =sin x 向 平移 个单位得到的. 4 )是由 y =sin x 向 平移 个单位得到的. π 平移 个单位得到的. 2 以后所得到的图象的函数式是 y =sin(x + 表达式为( ) 4 ) 2 ) π 4 )- 4 4 ) π 4 ),则原来的函数

三角函数f(ωx+φ)中ω、φ的取值范围问题

三角函数()f x ω?+中ω、?的取值范围问题 利用对称中心与对称轴间距离 例1:已知0ω>,函数()cos()3f x x πω=+的一条对称轴为直线3x π=,一个对称中心为点( ,0)12π,则ω有( ) B 最大值2 B .最小值2 C .最小值1 D .最大值1 例2:设函数()sin()f x x ω?=+(,,A ω?是常数,0A >,0ω>).若()f x 在区间[,]62ππ上具有单调性,且2()()()236 f f f π ππ==-,则()f x 的最小正周期为______.(π) 利用特殊点的坐标 例3:已知函数()sin()f x A x ω?=+(0ω>,0?π≤≤)是R 上的偶函数,其图象关于点3( ,0)4M π对称,且在区间[0,]2 π上是单调函数,则ω和?的值分别为( )C A .2,34π B .2,3π C .2,2π D .10,32π 例4:如果函数3cos(2)y x ?=+的图象关于点4( ,0)3π中对称,那么?的最小值为( )A A . 6π B .4π C .3π D .2π 例5:若将函数()sin 2cos 2f x x x =+图象向右平移?(0?>)个单位,所得图象关于y 轴对称,则?的最小值是( )C A . 8π B .4π C .38π D .34π 例6:若将函数tan()4y x π ω=+(0ω>)的图象向右平移6 π个单位长度后,与函数tan()6 y x π ω=+的图象重合,则ω的最小值为( )D A .16 B .14 C .13 D .12 B . 利用题设区间长度与周期的关系建立不等式

三角函数常见问题十种求解策略

三角函数常见问题十种求解策略 导语:三角形中的三角函数问题,是三角函数和解三角形两个知识点的有机结合,也是近年来高考中常见的考点之一。以下是为大家精心的高中数学,欢迎大家参考! 一、见“给角求值”问题,运用“新兴”诱导公式 一步到位转换到区间(-90,90)的公式. 1.sin(kπ+α)=(-1)ksinα(k∈Z); 2.cos(kπ+α)=(-1)kcos α(k∈Z); 3.tan(kπ+α)=(-1)ktanα(k∈Z); 4.cot(kπ+α)=(-1)kcot α(k∈Z). 二、见“sinα±cosα”问题,运用三角“八卦图” 1.sinα+cosα>0(或 2.sinα-cosα>0(或 3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内; 4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内. 三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。 四、“见齐思弦”=>“化弦为一” 已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α. 五、见“正弦值或角的平方差”形式,启用“平方差”公式:

1.sin(α+β)sin(α-β)=sin2α-sin2β; 2.cos(α+ β)cos(α-β)=cos2α-sin2β. 六、见“sinα±cosα与sinαcosα”问题,起用平方法则: (sinα±cosα)2=1±2sinαcosα=1±sin2α,故 1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α; 2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α. 七、见“tanα+tanβ与tanαtanβ”问题,启用变形公式: tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=??? 八、见三角函数“对称”问题,启用图象特征代数关系:(A≠ 0) 1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称; 2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称; 3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数 y=Acot(wx+φ)的对称性质。 九、见“求最值、值域”问题,启用有界性,或者辅助角公式: 1.|sinx|≤1,|cosx|≤1; 2.(asinx+bcosx)2=(a2+b2)sin2(x+φ)≤(a2+b2);

三角函数图像及其变换

高一数学第十四讲 三角函数图像及其变换 一、知识要点: ππ ππ ?ω2,2 3, ,2 , 0=+x 列表求出对应的x 的值与y 的值,用平滑曲线连结各点,即可得到其在一个周期内的图象。 3.研究函数R x x A y ∈+=),sin(?ω(其中0,0>>ωA )的单调性、对称轴、对称中心仍然是将?ω+x 看着整 体并与基本正弦函数加以对照而得出。它的最小正周期||2ωπ =T 4.图象变换 (1)振幅变换 R x x y ∈=,s i n ??????????????→ ?<<>倍 到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x y ∈=,s i n A

(2)周期变换 R x x y ∈=,s i n ??????????????→ ?<<>倍 到原来的或伸长所有点的横坐标缩短ω ωω1 1)(01)(R x x y ∈=,s i n ω (3)相位变换 R x x y ∈=,s i n ????????????→?<>个单位长度平移或向右所有点向左||0)(0)(???R x x y ∈+=,)(s i n ? (4)复合变换 R x x y ∈=,s i n ????????????→ ?<>个单位长度平移或向右所有点向左||0)(0)(???R x x y ∈+=,)(s i n ? ?? ????????????→?<<>倍 到原来的 或伸长所有点的横坐标缩短ω ωω11)(01)(R x x y ∈+=),sin(?ω ??????????????→ ?<<>倍到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x A y ∈+=),sin(?ω 5.主要题型:求三角函数的定义域、值域、周期,判断奇偶性,求单调区间,利用单调性比较大小,图 象的平移和伸缩,图象的对称轴和对称中心,利用图象解题,根据图象求解析式,已知三角函数值求角。 二.基础练习 1. 函数1π2sin()23 y x =+的最小正周期T = . 2.函数sin 2x y =的最小正周期是 若函数tan(2)3y ax π=-的最小正周期是2π,则a=____. 3.函数]),0[)(26 sin( 2ππ ∈-=x x y 为增函数的区间是 4.函数2 2cos()()363 y x x ππ π=- ≤≤的最小值是 5.将函数cos y x =的图像作怎样的变换可以得到函数2cos(2)4 y x π =-的图像? 6.已知简谐运动ππ()2sin 32f x x ????? ?=+< ??????? 的图象经过点(01), ,则该简谐运动的最小正周期T 和初相?分别为 7.已知a=tan1,b=tan2,c=tan3,则a,b,c 的大小关系为______. 8.给出下列命题: ①存在实数x ,使sin cos 1x x =成立; ②函数5sin 22y x π?? =- ???是偶函数; ③直线8x π=是函数5sin 24y x π? ?=+ ??? 的图象的一条对称轴; ④若α和β都是第一象限角,且αβ>,则tan tan αβ>. ⑤R x x x f ∈+ =),32sin(3)(π 的图象关于点)0,6 (π - 对称; 其中结论是正确的序号是 (把你认为是真命题的序号都填上). 三、例题分析: 题型1:三角函数图像变换 例1、 变为了得到函数)62sin(π-=x y 的图象,可以将函数1 cos 2 y x =的图象怎样变换?

三角函数常见错误

三角函数常见错误类型 由于三角函数的性质和公式较多,变换灵活,一题多解是常有的事,正因为解题途径呈开放性,有时思维误入歧途就不容易察觉,导致误解的原因也因题而异. 1.忽视定义域 三角恒等变换必须使涉及的各个三角函数有意义,给定的任意角的范围不被改变,对切与割两类函数尤其需要重视定义域的考察,否则易造成错解. 例1:求函数sin (1tan tan )2x y x x =+的递增区间. 解:sin (1tan tan )tan 2x y x x x =+= 所以原函数可化为tan y x =,故递减区间为(,),()22k k k Z ππππ- +∈. 致误分析:忽视了函数式中tan tan 2 x x 有意义的x 的取值范围,即,2,()2x k x k k Z π πππ≠+≠+∈,由此可知递增区间为:(2,2)22k k ππππ-+,(2,2)2k k π πππ++,3(2,2)2 k k ππππ++,()k Z ∈. 2.忽视单调性 已知部分三角函数值,求某一区间上的角,若不注意用三角形的单调性,则容易增解,如下例: 例2:已知1cos 7α=, 11cos()14αβ+=-,且(0,)2πα∈,(,)2 παβπ+∈,求β的值. 解:因为0()()αβαπ<++-<,所以(0,)βπ∈,又有sin sin[()()]βαβα=++- =sin()cos cos()sin αβααβα+?-+? =1111471472 +?=.所以3πβ=或23πβ=. 致误分析:(0,)βπ∈时sin β不是单调函数,由sin β= 求角β还须进一步讨论范围,因为(0,)βπ∈时cos β是单调函数,所以取余弦函数求角β是合理的,因为cos β =1cos[()()]2αβα++-=, 所以3 πβ=. 3.忽视特殊值 有些涉及三角函数值域,参变数取值范围的问题,应注意对区间端点,最值点,零点(即图象与x 轴交点)等特殊值进行讨论,以免因一点一值酿成错误,如下例: 例3:已知方程sin 0x x a +=在区间[]0,2π上有且只有两个不同的实根,求实数a 的取值范围.

三角函数图像变换

三角函数图像及其变换 一、 知识梳理 1、sin y x =与cos y x =的图像与性质 2、sin y x =与sin()y A x ωφ=+ (1) 形如sin()y A x ωφ=+的函数图像的画法 (2) sin y x =与sin()y A x ωφ=+图像的关系 二、 典型例题 1、把函数sin y x =(x R ∈)的图象上所有点向左平行移动3 π 个单位长度,再把所得图象上所有点的横坐标缩短到原来的1 2 倍(纵坐标不变),得到的图象所表示的函数是 (A )sin(2)3y x π=-,x R ∈ (B )sin()26x y π =+,x R ∈ (C )sin(2)3y x π=+,x R ∈ (D )sin(2)3 2y x π =+,x R ∈ 2、为得到函数πcos 23y x ? ?=+ ???的图像,只需将函数sin 2y x =的图像( ) A .向左平移 5π 12个长度单位 B .向右平移 5π 12个长度单位 C .向左平移5π 6 个长度单位 D .向右平移5π 6 个长度单位

3、函数πsin 23y x ??=- ?? ?在区间ππ2??-???? ,的简图是( ) 4、下面有五个命题: ①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a = Z k k ∈π ,2 |. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36 )32sin(3的图象得到的图象向右平移x y x y =π π+= ⑤函数.0)2 sin(〕上是减函数,在〔ππ - =x y 其中真命题的序号是 (写出所言 ) 5、将函数3sin()y x θ=-的图象向右平移3 π 个单位得到图象F ',若F '的一条对称轴是直线4 x π =,则θ的一个可能取值是 A. π125 B. π125- C. π12 11 D. 1112π- 三、高考再现 1、已知函数2 π()sin sin 2 f x x x x ωωω?? =++ ?? ? (0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03?????? ,上的取值范围.

三角函数的图像和变换以及经典习题和答案

【典型例题】 [例1](1)函数3sin()226 x y π = +的振幅是 ;周期是 ;频率是 ;相位是 ;初相是 . (1) 32; 14π;26x π+;6 π (2)函数2sin(2)3 y x π =- 的对称中心是 ;对称轴方程是 ;单调增区间是 . (2)( ,0),26k k Z ππ+∈;5,212 k x k Z ππ=+∈; ()5,1212k k k z ππππ?? -++∈???? (3) 将函数sin (0)y x ωω=>的图象按向量 ,06a π?? =- ??? 平移,平移后的图象如图所示,则平移后的图 象所对应函数的解析式是( ) A .sin()6y x π =+ B .sin()6 y x π =- C .sin(2)3y x π=+ D .sin(2)3 y x π =- (3)C 提示:将函数sin (0)y x ωω=>的图象按向量 ,06a π?? =- ??? 平移,平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知, 73()1262 πππω+=,所以2ω=. (4) 为了得到函数R x x y ∈+=),6 3sin(2π 的图像,只需把函数R x x y ∈=,sin 2的图像 上所有的点 ( ) (A )向左平移6π 个单位长度,再把所得各点的横坐标缩短到原来的3 1 倍(纵坐标不变) (B )向右平移6π 个单位长度,再把所得各点的横坐标缩短到原来的31 倍(纵坐标不变) (C )向左平移6 π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移 6 π 个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (4)C 先将R x x y ∈=,sin 2的图象向左平移 6 π 个单位长度,得到函数2sin(),6 y x x R π =+∈的图象,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标 不变)得到函数R x x y ∈+=),6 3sin(2π 的图像

与三角函数有关的零点问题

与三角函数有关的零点问题 1、【2015湖北】函数2π()4cos cos()2sin |ln(1)|22 x f x x x x =---+的零点个数为______. 【答案】2 【解 析】因为2()4c o s c 22x f x x x x π=---+|)1l n ( |s i n 2s i n )c o s 1(2+--+=x x x x =sin 2|ln(1)|x x -+, 所以函数)(x f 的零点个数为函数x y 2sin =与|)1ln(|+=x y 图象的交点的个数, 函数x y 2sin =与|)1ln(|+=x y 图象如图,由图知,两函数图象有2个交点,所以函数)(x f 有2个零点. 【方法技巧归纳】利用函数图象处理函数的零点(方程根)主要有两种策略:(1)确定函数零点的个数:利用图象研究与x 轴的交点个数或转化成两个函数图象的交点个数定性判断;(2)已知函数有零点(方程有根)求参数取值范围:通常也转化为两个新函数的交点,即在同一坐标系中作出两个函数的图象,通过观察它们交点的位置特征建立关于参数的不等式来求解. 2、函数()2πcos 23f x x ??=- ???+2311π19π4cos 2,3π1212x x x ????--∈- ???-????所有零点之和为( ) A .2π3 B .4π3 C .2π D .8π3 【答案】B

3.若函数sin log 2a y x x π =-的图象至少有12个零点点,则a 的取值范围是( ) A .(]1,14 B .[)14,+∞ C .(]1,7 D .[)7,+∞ 【答案】D 【解析】2y sin x π= 与log x a y = 都是偶函数,所以sin log 2a y x x π =-是偶函 数,只需0x > 时,有至少6个零点,即可画出0x >时,函数sin 2y x π =的图象与 log a y x =的图象,如图,由图可知,7log 1,7a a ≤≥ ,即a 的取值范围是[)7,+∞,故选 D .

三角函数的几种解题技巧

关于三角函数的几种解题技巧 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααc o s s i n 21c o s s i n 2c o s s i n )c o s (s i n 222±=±+=±故知道)c o s (s i n αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3cos sin -=-求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33(cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 43133]313)33[(332=?=?+= 2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用: 由于tg θ+ctg θ=θ θθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2=12+n C .n m 22= D .22m n = 分析:观察sin θ+cos θ与sin θcos θ的关系: sin θcos θ=2 121)cos (sin 22-=-+m θθ 而:n ctg tg ==+θ θθθcos sin 1 故:1212122+=?=-n m n m ,选B 。

相关文档
最新文档