函数零点易错题三角函数重难点教师版

函数零点易错题三角函数重难点教师版
函数零点易错题三角函数重难点教师版

函数零点易错题三角函数重难点教师版

CKBOOD was revised in the early morning of December 17, 2020.

函数零点易错题 三角函数重难点 教师版

函数的零点是函数图象的一个重要的特征,同时也沟通了函数、方程、不等式以及算法等内容,在分析解题思路、探求解题方法中起着重要的作用,因此要重视对函数零点的学习.下面就函数的零点判定中的几个误区进行剖析,希望对大家有所帮助. 1.因"望文生义"而致误

例1.函数23)(2+-=x x x f 的零点是 ( ) A.()0,1 B.()0,2 C.()0,1,()0,2 D.1,2 错解:C

错解剖析:错误的原因是没有理解零点的概念,"望文生义",认为零点就是一个点.而函数的零点是一个实数,即使()0=x f 成立的实数x ,也是函数()x f y =的图象与x 轴交点的横坐标.

正解:由()0232=+-=x x x f 得,x =1和2,所以选D.

点拨:求函数的零点有两个方法,⑴代数法:求方程()0=x f 的实数根,⑵几何法:由公式不能直接求得,可以将它与函数的图象联系起来,函数的图象与x 轴交点的横坐标. 即使所求.

2.因函数的图象不连续而致误 例2.函数()x

x x f 1

+

=的零点个数为 ( ) A.0 B.1 C.2 D.3

错解:因为2)1(-=-f ,()21=f ,所以()()011<-f f ,函数()x f y =有一个零点,选B. 错解剖析:分析函数的有关问题首先考虑定义域,其次考虑函数()x

x x f 1

+=的图象是不是连续的,这里的函数图像是不连续的,所以不能用零点判定定理.

正解:函数的定义域为()()+∞?∞-,00,,当0>x 时,()0>x f ,当0

=+

x

x 得012=+x 方程无实数解.

点拨:对函数零点个数的判定,可以利用零点存在性定理来判定,涉及多个零点的往往借助

于函数的单调性.若函数()x f y =在区间[]b a ,上的图象是连续曲线,并且在区间端点的函数值符号相反,即()()0

()0=x f 在区间()b a ,至少有一个实数解.然而对于函数的()x f ,若满足()()0

x f 在区间[]b a ,内不一定有零点;反之,()x f 在区间[]b a ,内有零点也不一定有()()0

例3.判定函数()32-=x x f 在区间[]1,1-内是否有零点.

错解:因为()()111-==-f f ,所以()()011>-f f ,函数()32-=x x f 在区间[]1,1-内没有零点.

错解剖析:上述做法错误地用了函数零点判定定理,因为函数()x f 在区间[]b a ,上的函数图像是连续曲线,且()()0>b f a f ,也可能在[]b a ,内有零点.如函数()12-=x x g 在区间[]1,1-上有

()()011>-g g ,但在[]1,1-内有零点2

1

±=x .

正解:当∈x []1,1-时,()132-≤-=x x f ,函数()x f y =在[]1,1-上的图象与x 轴没有交点,即函数()32-=x x f 在区间[]1,1-内没有零点.

法二:由032=-x 得?±=2

3

x []1,1-,故函数()32-=x x f 在区间[]1,1-内没有零点.

点拨:对有些函数,即使它的图象是连续不断的,当它通过零点时,函数值也不一定变号.如函数2)1(-=x y 有零点1,(如上图)但函数值没变号.对函数零点的判定一定要抓住两点:①函数()x f y =在区间[]b a ,上的图象是连续曲线,②在区间端点的函数值符号相反,即

()()0

4.因忽略区间端点而致误

例4.已知二次函数()m x m x x f 2)1(2+--=在[]1,0上有且只有一个零点,求实数m 的取值范围.

错解:由函数的零点的性质得()()010

所以实数m 的取值范围为()0,2-.

错解剖析:错解的原因是只注意到函数零点的应用,而忽略问题的其它形式:①在[]1,0上有二重根;②终点的函数值可能为0.

正解:⑴当方程02)1(2=+--m x m x 在[]1,0上有两个相等实根时,

()0812

=--=?m m 且12

1

0<-<

m ,此时无解. ⑵当方程02)1(2=+--m x m x 有两个不相等的实根时,

① 有且只有一根在[]1,0上时,有()()010

③当()01=f 时,2-=m ,方程可化为0432=-+x x ,解得4,121-==x x 合题意. 综上所述,实数m 的取值范围为[]0,2-.

点拨:在求参数时,要注意将函数零点的特殊性质与函数的有关性质相结合,进行分类讨论使复杂的问题简单化.

本文已在《学苑新报》上发表

方程的根与函数的零点

1.函数2()41f x x x =--+的零点为( )

A 、12-+

B 、1-

C 、1-±

D 、不存在 2.函数32()32f x x x x =-+的零点个数为( )

A 、0

B 、1

C 、2

D 、3 3. 函数()ln 26f x x x =+-的零点一定位于区间( ).

A. (1, 2)

B. (2 , 3)

C. (3, 4)

D. (4, 5)

3.易知函数()f x 在定义域(0,)+∞内是增函数.

∵(1)ln12640f =+-=-<,(2)ln 246ln 220f =+-=-<,(3)ln366ln30f =+-=>. ∴ (2)(3)0f f <,即函数()f x 的零点在区间(2,3). 所以选B.

4. 求证方程231

x x

x -=

+在(0,1)内必有一个实数根. 4. 证明:设函数2()31

x x

f x x -=-+. 由函数的单调性定义,可以证出函数()f x 在(1,)-+∞是减函数.

而0(0)3210f =-=-<,115

(1)3022

f =-=>,即(0)(1)0f f <,说明函数()f x 在区间(0,1)内有零点,且只有一个. 所以方程231

x x

x -=

+在(0,1)内必有一个实数根. 点评:等价转化是高中数学解题中处理问题的一种重要思想,它是将不熟悉的问题转化为熟悉的问题,每个问题的求解过程正是这样一种逐步的转化. 此题可变式为研究方程

231x x

x -=

+的实根个数.

5. (1)若方程2210ax -=在(0,1)内恰有一解,则实数a 的取值范围是 .

(2)已知函数()34f x mx =-,若在[2,0]-上存在0x ,使0()0f x =,则实数m 的取值范围是 . 5. 解:(1)设函数2()21f x ax =-,由题意可知,函数()f x 在(0,1)内恰有一个零点.

∴ (0)(1)1(21)0f f a =-?-<, 解得12

a >

. (2)∵在[2,0]-上存在0x ,使0()0f x =, 则(2)(0)0f f -≤,

∴ (64)(4)0m --?-≤,解得23m ≤-

. 所以, 实数m 的取值范围是2

(,]3

-∞-.

6. 已知关于x 的方程x 2+2mx +2m +3=0的两个不等实根都在区间(0,2)内,求实数m 的取值范围.

6. 解:令

2

()223f x x mx m =+++有图像特征可知方程f (x )=0的两根都在(0,2)内需满足的条件是

解得35

14m -

<<-。

7. 已知函数f (x )=|x 2-2x -3|-a 分别满足下列条件,求实数a 的取值范围.

(1) 函数有两个零点; (2)函数有三个零点; (3)函数有四个零点.

7. 因为函数

f (x )=|x 2-2x -3|-a 的零点个数不易讨论,所以可转化为方程

|x 2-2x -3|-a =0根的个数来讨论,即转化为方程|x 2-2x -3|=a 的根的个数问

题,再转化为函数f (x )=|x 2-2x -3|与函数f (x )=a 交点个数问题.

解:设f (x )=|x 2-2x -3|和f (x )=a 分别作出这两个函数的图象(图3-1-

1-5),它们交点的个数,即函数f (x )=|x 2-2x -3|-a 的零点个数.

(1)若函数有两个零点,则a =0或a >4.

(2)若函数有三个零点,则a =4. (3)函数有四个零点,则0

8. 已知函数f (x )=ax 3+bx 2+cx +d 有三个零点,分别是0、1、2,如图所示,求证:b <0. 8.证:因为f (0)=f (1)=f (2)=0,所以d =0,a +b +c =0,4a +2b +c =0. 所以a =3

b

-,c =3

2-b .所以f (x )=3

b -x (x 2-3x +2)=3

b -x (x -1)(x -2). 当x <0时,f (x )<0,所以b <0.

证法二:因为f (0)=f (1)=f (2)=0,所以f (x )=ax (x -1)(x -2). 当x >2时,f (x )>0,所以a >0.比较同次项系数,得b =-3a .所以b <0.

三角函数的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值),三角函数的图象,三角恒等变换(主要是求值),三角函数模型的应用,正余弦定理及其应用,平面向量的基本问题及其应用.

题型1 三角函数的最值:最值是三角函数最为重要的内容之一,其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问题.

例1 若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的最大值是( )

A .1-

B .

C .12-+

D .12+分析:三角形的最小内角是不大于3

π的,而()2

sin cos 12sin cos x x x x +=+,换元解决.

解析:由03x π<≤,令sin cos ),4

t x x x π=+=+而7

4412x πππ<+≤,得1t <≤.

又2

12sin cos t x x =+,得21

sin cos 2

t x x -=,

得22

11(1)122

t y t t -=+

=+-,有2111022y -+<≤=.选择答案D . 点评:涉及到sin cos x x ±与sin cos x x 的问题时,通常用换元解决.

解法二:1sin cos sin cos sin 242y x x x x x x π?

?=++=++ ???,

当4x π

=

时,max 1

2

y =,选D 。

例2.已知函数2()2sin cos 2cos f x a x x b x =+.,且(0)8,()126f f π

==.

(1)求实数a ,b 的值;(2)求函数)(x f 的最大值及取得最大值时x 的值.

分析:待定系数求a ,b ;然后用倍角公式和降幂公式转化问题. 解析:函数)(x f 可化为()sin 2cos 2f x a x b x b =++.

(1)由(0)8f = ,()126

f π

=可得(0)28f b ==

,3()1262f b π=

+= ,所以4b =

,a =

(2

)()24cos 248sin(2)46

f x x x x π

=++=++,

故当226

2

x k π

π

π+

=+

即()6

x k k Z π

π=+

∈时,函数()f x 取得最大值为12.

点评:

结论()sin cos a b θθθ?+=+是三角函数中的一个重要公式,它在解决三角函数的图象、单调性、最值、周期以及化简求值恒等式的证明中有着广泛应用,是实现转化的工具,是联系三角函数问题间的一条纽带,是三角函数部分高考命题的重点内容. 题型2 三角函数的图象:三角函数图象从“形”上反应了三角函数的性质,一直是高考所重点考查的问题之一.

例3.(2009年福建省理科数学高考样卷第8题)为得到函数πcos 23y x ?

?=+ ??

?的图象,只需

将函数sin 2y x =的图象

A .向左平移

12个长度单位 B .向右平移

12个长度单位 C .向左平移5π

6

个长度单位

D .向右平移5π

6

个长度单位

分析:先统一函数名称,在根据平移的法则解决.

解析:函数π55cos 2sin 2sin 2sin 2332612y x x x x ππππ?????

??

?=+=++=+

=+ ? ? ? ??????

???

,故要将函数

sin 2y x =的图象向左平移5π

12

个长度单位,选择答案A . 例4

(2008

A

B

C

D

-

高考江西文10)函数tan sin tan sin y x x x x =+--在区间3(,)22ππ

内的图象是

分析:分段去绝对值后,结合选择支分析判断.

解析:函数2tan ,tan sin tan sin tan sin 2sin ,tan sin x x x y x x x x x x x

当时.结合选择支和一些特殊

点,选择答案D .

点评:本题综合考察三角函数的图象和性质,当不注意正切函数的定义域或是函数分段不准确时,就会解错这个题目.

题型3 用三角恒等变换求值:其主要方法是通过和与差的,二倍角的三角变换公式解决.

例5 (2008高考山东卷理5)

已知πcos sin 6αα??-+= ???7πsin 6α?

?+ ??

?的值是

A

. B

C .45

-

D .

45

分析:所求的7πsin sin()66παα?

?+=+ ??

?,将已知条件分拆整合后解决.

解析:

C

.34cos sin sin cos sin 6522565ππααααα???

?-+=?+=?+= ? ????

?,所以

74sin sin 665ππαα?

??

?+

=-+=- ? ?

?

???

. 点评:本题考查两角和与差的正余弦、诱导公式等三角函数的知识,考查分拆与整合的数 学

思想和运算能力.解题的关键是对πcos sin 6αα?

?-+=

??

? 例6(2008高考浙江理8)

若cos 2sin αα+=则tan α= A .

2

1

B .2

C .2

1

-

D .2-

分析:可以结合已知和求解多方位地寻找解题的思路.

(

)α?+=

sin ??==1tan 2?=,

再由()sin 1α?+=-知道()22

k k π

α?π+=-

∈Z ,所以22

k π

απ?=-

-,

所以sin cos 2tan tan 2tan 222sin cos 2k π?ππ?απ??π?

???-- ?

??????=--=--=== ? ???????-- ???. 方法二:将已知式两端平方得

方法三:令sin 2cos t αα-=,和已知式平方相加得255t =+,故0t =, 即sin 2cos 0αα-=,故tan 2α=.

方法四:我们可以认为点()cos ,sin M αα

在直线2x y +=

而点M 又在单位圆221x y +=

上,解方程组可得5

x y ?=-????=??

从而tan 2y x α==

.这个解法和用方程组22

cos 2sin sin cos 1

αααα?+=??+=??求解实质上是一致的. 方法五:α只能是第三象限角,排除C .D .,这时直接从选择支入手验证,

由于1

2计算麻烦,我们假定tan 2α=

,不难由同角三角函数关系求出

sin αα==B . 点评:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知

()1

sin cos ,0,5

βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一

问)”之类的题目 ,背景是熟悉的,但要解决这个问题还需要考生具有相当的知识迁移能力.

题型4 正余弦定理的实际应用:这类问题通常是有实际背景的应用问题,主要表现在航海和测量上,解决的主要方法是利用正余弦定理建立数学模型.

例7.(2008高考湖南理19)在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A .某时刻测得一艘匀速直线行驶的船只位于

点A 北偏东45且与点A

相距B ,经过40分钟又测得该船已行驶到点A 北偏东45θ+ (

其中sin θ=

,090θ<<)且与点A

相距C . (1)求该船的行驶速度(单位:海里/小时);

(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由. 分析:根据方位角画出图形,如图.第一问实际上就是求BC 的长,在ABC ?中用余弦定理即可解决;第二问本质上求是求点E 到直线BC 的距离,即可以用平面解析几何的方法,也可以通过解三角形解决.

解析:(1

)如图,AB =

AC =

,sin BAC θθ∠==

由于090θ<<

,所以cos 26

θ==

由余弦定理得BC

=

= 所以船的行驶速度为

23

=/小时). (2)方法一 : 如上面的图所示,以A 为原点建立平面直角坐标系, 设点,B C 的坐标分别是()()1122,,,B x y C x y

,BC 与x 轴的交点为D . 由题设有, 1140

2

x y AB ==

=, 2cos )30x AC CAD θ=∠=-=, 所以过点,B C 的直线l 的斜率20

210

k ==,直线l 的方程为240y x =-. 又点(

)0,55E

-到直线l 的距离7d =

=,所以船会进入警戒水域.

解法二: 如图所示,设直线AE 与BC 的延长线相交于点Q .在ABC ?中,由余弦定理得,

222cos 2AB BC AC ABC AB BC +-∠

=?222

=10.

从而sin ABC

∠===

在ABQ

?

中,由正弦定理得,

sin

40

sin(45)

AB ABC

AQ

ABC

===

-∠

由于5540

AE AQ

=>=,所以点Q位于点A和点E之间,且15

EQ AE AQ

=-=.

过点E作EP BC

⊥于点P,则EP为点E到直线BC的距离.

在QPE

?

Rt中,

所以船会进入警戒水域.

点评:本题以教材上所常用的航海问题为背景,考查利用正余弦定理解决实际问题的能力,解决问题的关键是根据坐标方位画出正确的解题图.本题容易出现两个方面的错误,一是对方位角的认识模糊,画图错误;二是由于运算相对繁琐,在运算上出错.

题型5 三角函数与平面向量的结合:三角函数与平面向量的关系最为密切,这二者的结合有的是利用平面向量去解决三角函数问题,有的是利用三角函数去解决平面向量问题,更多的时候是平面向量只起衬托作用,三角函数的基本问题才是考查的重点.

例8(2009年杭州市第一次高考科目教学质量检测理科第18题)已知向量

)1,

(sin

),

2

cos

,

cos

2(x

x

ω

ω=

=,(0

>

ω),令x

f?

=

)

(,且)

(x

f的周期为π.

(1) 求

4

f

π??

?

??

的值;(2)写出()

f x在]

2

,

2

[

π

π

-上的单调递增区间.

分析:根据平面向量数量积的计算公式将函数()

f x的解析式求出来,再根据)

(x

f的周期为π就可以具体确定这个函数的解析式,下面只要根据三角函数的有关知识解决即可.

解析:(1) x

x

x

b

a

x

ω

ω2

cos

sin

cos

2

)

(+

=

?

=x

ω2

cos

2

sin+

=)

4

2

sin(

2

π

ω+

=x,

∵)

(x

f的周期为π.∴1

=

ω,)

4

2

sin(

2

)

(

π

+

=x

x

f,1

2

cos

2

sin

)

4

(=

π

+

π

=

π

∴f.

(2) 由于)

4

2

sin(

2

)

(

π

+

=x

x

f,

当π

π

π

π

π

k

x

k2

2

4

2

2

2

+

+

+

-(Z

k∈)时,()

f x单增,

即ππππk x k +≤≤+-

8

83(Z k ∈),∵∈x ]2,2[ππ-

∴()f x 在]2

,2[ππ-上的单调递增区间为]8,83[π

π-.

点评:本题以平面向量的数量积的坐标运算为入口,但本质上是考查的三角函数的性质,这是近年来高考命题的一个热点. 例9 (2009江苏泰州期末15题)

已知向量()3sin ,cos a αα=,()2sin ,5sin 4cos b ααα=-,3,22παπ??

∈ ???

,且a b ⊥.

(1)求tan α的值;

(2)求cos 23απ??

+ ???

的值.

分析:根据两个平面向量垂直的条件将问题转化为一个三角函数的等式,通过这个等式探究第一问的答案,第一问解决后,借助于这个结果解决第二问.

解析:(1)∵a b ⊥,∴0a b ?=.而()3sin ,cos a αα=,()2sin ,5sin 4cos b ααα=-, 故226sin 5sin cos 4cos 0a b αααα?=+-=,由于cos 0α≠,∴26tan 5tan 40αα+-=, 解得4tan 3

α=-,或1tan 2

α=.∵3π 2π2α??∈

???

,,tan 0α<, 故1

tan 2

α=(舍去).∴4tan 3

α=-. (2)∵3π 2π2α??

???

,,∴3ππ24α∈(,)

. 由4

tan 3

α=-,求得1tan 22α

=-,tan 22

α

=(舍去).

∴sin

cos 22α

α=

=,

cos 23απ??

+= ???

ππcos cos sin sin 2323αα-=12= 点评:本题以向量的垂直为依托,实质上考查的是三角恒等变换.在解题要注意角的范围对解题结果的影响.

题型6 三角形中的三角恒等变换:这是一类重要的恒等变换,其中心点是三角形的内角和是

π,有的时候还可以和正余弦定理相结合,利用这两个定理实现边与角的互化,然后在利用三角变换的公式进行恒等变换,是近年来高考的一个热点题型.

例10.(安徽省皖南八校2009届高三第二次联考理科数学17题)三角形的三内角A ,B ,

C 所对边的长分别为a ,b ,c ,设向量(,),(,)m c a b a n a b c =--=+,若//m n , (1)求角B 的大小;

(2)求sin sin A C +的取值范围.

分析:根据两个平面向量平行的条件将向量的平行关系转化为三角形边的关系,结合余弦定理解决第一问,第一问解决后,第二问中的角,A C 就不是独立关系了,可以用其中的一个表达另一个,就把所要解决的问题归结为一个角的三角函数问题. 解析:(1)//,()()()m n c c a b a a b ∴---+,

222

2

2

2

,1a c b c ac b a ac

+-∴-=-∴=.

由余弦定理,得1cos ,23

B B π

==.

(2)

2,3

A B C A C π

π++=∴+=

, 点评:本题从平面向量的平行关系入手,实质考查的是余弦定理和三角形中的三角恒等变换,解决三角形中的三角恒等变换要注意三角形内角和定理和角的范围对结果的影响. 题型7 用平面向量解决平面图形中的问题:由于平面向量既有数的特征(能进行类似数的运算)又具有形的特征,因此利用平面向量去解决平面图形中的问题就是必然的了,这在近年的高考中经常出现.考试大纲明确指出用会用平面向量解决平面几何问题.

例11. 如图,已知点G 是ABO ?的重心,点P 在OA 上,点Q 在OB 上,且PQ 过ABO ? 的重心G ,OP mOA =,OQ nOB =,试证明

11

m n

+为常数,并求出这个常数. 分析:根据两向量共线的充要条件和平面向量基本定理,把题目中需要的向量用基向量表达出来,本题的本质是点,,P G Q 共线,利用这个关系寻找,m n 所满足的方程.

解析:令OA a =,OB b =,则OP ma =,OQ nb =,设AB 的中点为M , 显然

1().2OM a b =+,因为G 是ABC ?的重心,所以21

()33

OG OM a b ==?+.由

P 、G 、Q 三点

共线,有PG 、GQ 共线,所以,有且只有一个实数λ,使 PG GQ λ=,而

111

()()333

PG OG OP a b ma m a b =-=+-=-+,

111

()()333

GQ OQ OG nb a b a n b =-=-+=-+-,

所以1111

()[()]3333

m a b a n b λ-+=-+-.

又因为a 、b 不共线,由平面向量基本定理得???????-=-=-)31(313131

n m λλ,消去λ, 整理得3mn m n =+,故

31

1=+n

m .结论得证.这个常数是3. 【点评】平面向量是高中数学的重要工具,它有着广泛的应用,用它解决平面几何问题是一个重要方面,其基本思路是根据采用基向量或坐标把所要解决的有关的问题表达出来,再根据平面向量的有关知识加以处理.课标区已把几何证明选讲列入选考范围,应引起同学们的注意.

题型8 用导数研究三角函数问题:导数是我们在中学里引进的一个研究函数的重要工具,利用导数探讨三角函数问题有它极大的优越性,特别是单调性和最值.

例12. 已知函数22()cos 2sin cos sin f x x t x x x =+-,若函数()f x 在区间(,]126ππ

上是增函数,

求实数t 的取值范围.

分析:函数的()f x 导数在(,]126

ππ

大于等于零恒成立.

解析:函数()f x 在区间(,]126ππ上是增函数,则等价于不等式()0f x '≥在区间(,]126ππ

上恒成

立,即()2sin 22cos 20f x x t x '=-+≥在区间(,]126ππ上恒成立, 从而tan 2t x ≥在区间(,]

126ππ

上恒成立, 而函数tan 2y x =在区间(,]126ππ上为增函数,所以函数tan 2y x =在区间(,]126ππ

的最大值为max tan(2)6

y π

=?=

t ≥为所求.

点评:用导数研究函数问题是导数的重要应用之一,是解决高中数学问题的一种重要的思想

意识.本题如将()f x 化为()sin 2cos 2)f x t x x x ?=+=+的形式,则?与t 有关,讨论起来极不方便,而借助于导数问题就很容易解决.

题型9 三角函数性质的综合应用:将三角函数和其它的知识点相结合而产生一些综合性的试题,解决这类问题往往要综合运用我们的数学知识和数学思想,全方位的多方向进行思考. 例13. 设二次函数2()(,)f x x bx c b c R =++∈,已知不论α,β为何实数,恒有(sin )0f α≥和

(2cos )0f β+≤.

(1)求证:1b c +=- ; (2)求证:3c ≥;

(3)若函数(sin )f α的最大值为8,求b ,c 的值.

分析:由三角函数的有界性可以得出()10f =,再结合有界性探求.

解析:(1)因为1sin 1α-≤≤且(sin )0f α≥恒成立,所以(1)0f ≥,又因为 12cos 3β≤+≤且

(2cos )0f β+≤恒成立,所以(1)0f ≤, 从而知(1)0f =,10b c ++=,即1b c +=-.

(2)由12cos 3β≤+≤且(2cos )0f β+≤恒成立得(3)0f ≤, 即 930b c ++≤,将1b c =--代如得9330c c --+≤,即3c ≥.

(3)222

11(sin )sin (1)sin (sin )()22

c c f c c c αααα++=+--+=-

+-, 因为122c

+≥,所以当sin 1α=-时max

[(sin )]8f α=, 由1810b c b c -+=??++=? , 解得 4b =-,3c =. 点评:本题的关键是1b c +=-,由(sin )0(2cos )0

f f αβ≥??+≤? 利用正余弦函数的有界性得出

()()10

10f f ≥???

≤??

,从而(1)0f =,使问题解决,这里正余弦函数的有界性在起了重要作用. 【专题训练与高考预测】 一、选择题

1.若[0,2)απ∈sin cos αα=-,则α的取值范围是( )

A .[0,]2π

B .[,]2

ππ

C .3[,

]2

ππ D .3[

,2)2

π

π

2.设α是锐角,且lg(1cos )m α-=,1

lg

1cos n α

=+,则lgsin α=

( ) A .m n - B .11()2m n - C .2m n - D .11

()2n m

-

3.若00||2sin15,||4cos15a b ==,a 与b 的夹角为30。

,则a b ?= ( )

A

2

B

. C

.D .

12

4.若O 为ABC ?的内心,且满足()(2)0OB OC OB OC OA -?+-=,则ABC ?的形状为

( )

A .等腰三角形

B .正三角形

C .直角三角形

D .钝角三角形

5.在ABC ?中,若C

c

B b A a cos cos cos =

=,则ABC ?是

( )

A .直角三角形

B .等边三角形

C .钝角三角形

D .等腰直角三角形

6.已知向量)02(,

=→

-OB 、)22(,=→

-OC 、)sin 2cos 2(αα,=→

-CA ,则直线OA 与直线OB 的夹角的取值范围是

( )

A .]12

512[

π

π,

B .]12

54[ππ,

C .]2

125[

ππ, D .]4

0[π,

二、填空题

7.6622sin cos 3sin cos x x x x ++的化简结果是__________.

8.若向量a 与b 的夹角为θ,则称a b ?为它们的向量积,其长度为||||||sin a b a b θ?=?,已知

||1a =,||5b =,且4a b ?=-,则||a b ?=_______________.

9. 一货轮航行到某处,测得灯塔S 在货轮的北偏东15?,与灯塔S 相距20海里,随后货轮按北偏

西30?的方向航行30分钟后,又得灯塔在货轮的东北方向,则货轮的速度为每小时 海里. 三、解答题

10. 已知:1tan()3πα+=-,22sin 2()4cos 2tan()10cos sin 2π

αααβαα-++=-.

(1)求tan()αβ+的值; (2)求tan β的值.

11. 已知函数(

)222sin ()612f x x x ππ?

?=-+- ??? ()x R ∈.

(1)求函数()f x 的最小正周期;

(2)求使函数()f x 取得最大值的x 的集合.

12.已知向量(cos ,sin )a αα=, (cos ,sin )b ββ=, 25

a b -=. (1)求cos()αβ-的值; (2)若02

π

α<<, 02

πβ-

<<, 且5

sin 13

β=-

, 求sin α. 【参考答案】

1.解析:B 由已知可得sin 0α≥,且cos 0α≤,故得正确选项B .

2.解析:C lg(1cos )n α+=-与lg(1cos )m α-=相加得2lg(1cos )m n α-=-,∴2lgsin m n α=-,

故选C .

3.解析:B 4sin 30cos302sin 60a b ?===。。。

B .

4.解析:A 已知即()0CB AB AC ?+=,即边BC 与顶角BAC ∠的平分线互相垂直,这表明ABC

?是一个以AB 、AC 为两腰的等腰三角形.

5.解析:B 依题意,由正弦定理得sin cos A A =,且sin cos B B =,sin cos C C =,故得. 6.解析:A 由2||=→

-CA 为定值,∴A 点的轨迹方程为2)2()2(22=-+-y x ,由图形易知所求角的

最大、最小值分别是该圆的切线与x 轴的夹角,故得.

7. 解析:1 原式223422422(sin cos )3sin cos 3sin cos 3sin cos x x x x x x x x =+--+1=.

8.解析:3 由夹角公式得4cos 5θ=-,∴3sin 5θ=,∴3

||1535

a b ?=??=.

9.

解析:设轮速度为x 海里/小时,作出示意图,由正弦定理得1

202sin 30sin105x

=

??

解得x =.

10.解析:(1)∵1tan()3

πα+=- ∴1

tan 3α=-,

∵22sin(2)4cos tan()10cos sin 2παααβαα-++=-22

sin 24cos 10cos sin 2αα

αα

+=- ∴12

5

3tan()11653

αβ-++==+ .

(2)∵tan tan[()]βαβα=+-tan()tan 1tan()tan αβααβα+-=++ ,∴5131

163tan 51431163

β+

==-?.

11.解析:(1)因为(

))1cos 2612f x x x ππ?

?=-+-- ??

?

所以()f x 的最小正周期22

T π

π=

=. (2)当()f x 取最大值时,sin 213x π?

?-= ??

?,此时2232x k πππ-=+

()k Z ∈,即

512

x k π

π=+

()k Z ∈,所以所求x 的集合为512x x k ππ?

?=+

???

?

()k Z ∈.

12.解析:(1)(cos ,sin )a αα=, (cos ,sin )b ββ=,

()cos cos sin sin a b αβαβ∴-=--,.

25

5

a b -=

5

=

, 即 ()422cos 5αβ--=, ()3cos 5

αβ∴-=. (2)0,0,02

2

π

π

αβαβπ<<

-

<<∴<-<,

()3cos 5αβ-=, ()4

sin .5αβ∴-=

5sin 13β=-, 12

cos 13

β∴=,

()()()sin sin sin cos cos sin ααββαββαββ∴=-+=-+-????4123533

51351365

??=?+?-= ???.

函数零点易错题、三角函数重难点教师版)

函数零点易错题 三角函数重难点 教师版 函数的零点是函数图象的一个重要的特征,同时也沟通了函数、方程、不等式以及算法等内容,在分析解题思路、探求解题方法中起着重要的作用,因此要重视对函数零点的学习.下面就函数的零点判定中的几个误区进行剖析,希望对大家有所帮助. 1. 因"望文生义"而致误 例1.函数23)(2+-=x x x f 的零点是 ( ) A.()0,1 B.()0,2 C.()0,1,()0,2 D.1,2 错解:C 错解剖析:错误的原因是没有理解零点的概念,"望文生义",认为零点就是一个点.而函数的零点是一个实数,即使()0=x f 成立的实数x ,也是函数 ()x f y =的图象与x 轴交点的横坐标. 正解:由()0232=+-=x x x f 得,x =1和2,所以选D. 点拨:求函数的零点有两个方法,⑴代数法:求方程()0=x f 的实数根,⑵几何法:由公式不能直接求得,可以将它与函数的图象联系起来,函数的图象与x 轴交点的横坐标. 即使所求. 2. 因函数的图象不连续而致误 例2.函数()x x x f 1 +=的零点个数为 ( ) A.0 B.1 C.2 D.3 错解:因为2)1(-=-f ,()21=f ,所以()()011<-f f ,函数()x f y =有一个零点,选B.

错解剖析:分析函数的有关问题首先考虑定义域,其次考虑函数()x x x f 1+=的图象是不是连续的,这里的函数图像是不连续的,所以不能用零点判定定理. 正解:函数的定义域为()()+∞?∞-,00,,当0>x 时,()0>x f ,当0-f f ,函数()32-=x x f 在区间[]1,1-内没有零点. 错解剖析:上述做法错误地用了函数零点判定定理,因为函数()x f 在区间[]b a ,上的函数图像是连续曲线,且()()0>b f a f ,也可能在[]b a ,内有零点.如函数 ()12-=x x g 在区间[]1,1-上有()()011>-g g ,但在[]1,1-内有零点2 1±=x . 正解:当∈x []1,1-时,()132-≤-=x x f ,函数()x f y =在[]1,1-上的图象与x 轴没有交点,即函数()32-=x x f 在区间[]1,1-内没有零点. 法二:由032=-x 得?±=2 3x []1,1-,故函数()32-=x x f 在区间[]1,1-内没有零点.

培优锐角三角函数辅导专题训练含详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

人教数学锐角三角函数的专项培优易错试卷练习题附答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.(6分)某海域有A ,B 两个港口,B 港口在A 港口北偏西30°方向上,距A 港口60海里,有一艘船从A 港口出发,沿东北方向行驶一段距离后,到达位于B 港口南偏东75°方向的C 处,求该船与B 港口之间的距离即CB 的长(结果保留根号). 【答案】. 【解析】 试题分析:作AD ⊥BC 于D ,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据 正切的定义求出CD 的长,得到答案. 试题解析:作AD ⊥BC 于D ,∵∠EAB=30°,AE ∥BF ,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD= ,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°, ∴∠C=60°,在Rt △ACD 中,∠C=60°,AD=,则tanC= ,∴CD= =, ∴BC= .故该船与B 港口之间的距离CB 的长为 海里. 考点:解直角三角形的应用-方向角问题. 2.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为 1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=, 2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到

1cm)? 【答案】 【解析】 于F,根据锐角三角函数的定义用θ1、θ2表示出DF、EF的值,又可证过A作AF CD 四边形ABCE为平行四边形,故有EC=AB=25cm,再再根据DC=DE+EC进行解答即可. 3.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm. (1)AE的长为 cm; (2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值; (3)求点D′到BC的距离. 【答案】(1);(2)12cm;(3)cm. 【解析】 试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案: ∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.

三角函数中的易错题

三角函数中的易错题 三角函数是中学数学的重要内容,但涉及知识重复、题型多样,解题方法灵活多变,但不少学生由于对知识理解的不深或思维不严密,做题过程中往往由于忽视一些条件而导致错误,现针对学生们容易出现的一些问题给予点拨。 一.例1、求函数y= x x 2tan 1tan 2- 的最小正周期 错解:∵ y=x x 2tan 1tan 2-= tan 2x ∴ T= π/2 假如 T=π/2 是y=x x 2tan 1tan 2- 的最小正周期 则有∫(0+π/2)=∫(0) 成立 而实际上 当x=0+π/2时,函数y= x x 2tan 1tan 2- 无意义 ∴T=π/2不是函数y= x x 2tan 1tan 2-的最小正周期 正解: y= x x 2tan 1tan 2- 其定义域为x=k π±π/4 x ≠k π+π/2 由图像可知:函数y= x x 2tan 1tan 2- 最小正周期应为π 练习: 求函数y=x x x x cos 3cos sin 3sin ++ 的周期T [T= π ] 二、例2、设sin α+ sin β =1/3 求sin α-cos 2β的最值。 错解:sin α=1/3-sin β 由 -1≤sin α≤1 知 -1≤1/3-sin β≤1 ∴-2/3≤sin β≤4/3 ∵sin β≤1 ∴-2/3≤sin β≤1 ∴sin α-cos β=1/3-sin β-(1-sin β)=(sin β-1/2)-11/12 当 sin β=1/2时,有最小值-11/12

当sinβ=-1时, 有最大值4/3 分析:最大值不对,原因在于未注意函数的有界性 正解:sinα-cosβ=(sinβ-1/2)-11/12 当sinβ=1/2时,有最小值-11/12 当sinβ=2/3时, 有最大值4/9 练习:若sinαsinβ=1/3 则cosαcosβ的取值范围。[-2/3,2/3]三、例3、在△ABC中,sinA=3/5, cosB=5/13 求cosC 错解:∵sinA=3/5 ∴cosA=±4/5 ∵cosB=5/13 ∴sinB=12/13 ∴cosC=-cos(A+B)=16/65或56/65 分析:A、B、C是三角形的内角,当A+B<π时应深入讨论A、B的实际变化范围。 即由sinA=3/5 而1/2<3/5π 不合题意 ∴只有π/6

培优锐角三角函数之欧阳光明创编

锐角三角函数 欧阳光明(2021.03.07) 题型:锐角三角函数基本概念(1) 例:已知α为锐角,下列结论: (1)sin α+cos α=1;(2)若α>45°,则sin α>cos α;(3)若 cos α>21,则α<60°;(4)ααsin 1)1(sin 2-=-。正确的有()A.(1)(2)(3)(4) B.(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3) 变式: 1、下列各式中,不正确的是() A.160cos 60sin 0202=+ B .130cos 30sin 00=+ C.0055cos 35sin = D.tan45°>sin45° 2、已知∠A 满足等式A A cos sin 12=-,那么∠A 的取值范围是() A.0°<∠A ≤90° B.90°<∠A<180° C.0°≤∠A<90° D.0°≤∠A ≤90° 3.α是锐角,若sin α=cos150,则α= 4。若sin53018\=0.8018,则cos36042\= 题型:锐角三角函数基本概念(2) 例:已知 sin α·cos α=81,且45°<α<90°,则COS α-sin α的值为() A.23B.2 3- C.43D.23± 变式: 1、已知△ABC 中,∠C=90°,下列各式中正确的是()

A.sinA+cosB=sinC B.sinA+sinB=sinC C.2cos 2sin C B A += D.2tan 2tan C B A += 2、已知sin α+cos α=m,sin α×cos α=n ,则m,n 的关系式() A.m=n B.m=2n+1 C.122+=n m D.n m 212 -= 题型:求三角函数值 例:如图,菱形的边长为5,AC 、BD 相交于点O , AC=6,若a ABD =∠,则下列式子正确的是() A.sin α=54 B.cos α=53 C.tan α=34 D.cot α=34 变式:1、设0°<α<45°,sin αcos α=167 3,则sin α= 2、已知sin α-cos α=5 1,0°<α<180°,则tan α的值是( )43B.43- C.34D.34- 3、如图,在正方形ABCD 中,M 为AD 的中点,E 为AB 上一点,且BE=3AE ,求sin ∠ECM 。 4、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。 (1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。 题型:三角函数值的计算(1) 例:计算:000020246tan 45tan 44tan 42sin 48sin ??-+= 变式:1、计算: 2002020010)60cot 4()60tan 25.0(?= 2、计算:0 000002000027tan 63tan 60cot 360sin 60cot 45cos )45sin 30)(cos 45cos 60(sin -++- 题型:三角函数值的计算(2)

培优锐角三角函数

锐角三角函数 题型:锐角三角函数基本概念(1) 例:已知α为锐角,下列结论: (1)sin α+cos α=1;(2)若α>45°,则sin α>cos α;(3)若cos α> 2 1 ,则α<60°;(4)ααsin 1)1(sin 2-=-。正确的有( )A.(1) (2)(3)(4) B.(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3) 变式: 1、下列各式中,不正确的是( ) A.160cos 60sin 0 2 2 =+ B .130cos 30sin 0 =+ C.0 55cos 35sin = °>sin45° 2、已知∠A 满足等式A A cos sin 12=-,那么∠A 的取值范围是( ) °<∠A ≤90° °<∠A<180° °≤∠A<90° °≤∠A ≤90° 3.α是锐角,若sin α=cos150,则α= 4。若sin53018\=,则cos36042\= 题型:锐角三角函数基本概念(2) 例:已知sin α·cos α= 8 1 ,且45°<α<90°,则COS α-sin α的值为( ) A. 23 B.23- C.4 3 D.23± 变式: 1、已知△ABC 中,∠C=90°,下列各式中正确的是( ) A.sinA+cosB=sinC +sinB=sinC C.2cos 2sin C B A += D.2 tan 2tan C B A += 2、已知sin α+cos α=m,sin α×cos α=n ,则m,n 的关系式( ) A.m=n =2n+1 C.122 +=n m D.n m 212 -= 题型:求三角函数值 例:如图,菱形的边长为5,AC 、BD 相交于点O ,AC=6,若a ABD =∠,则 下列式子正确的是( ) A.sin α= 54 α=53 α=34 α=3 4 变式:1、设0°<α<45°,sin αcos α= 16 7 3,则sin α= 2、已知sin α-cos α= 51,0°<α<180°,则tan α的值是( )43 B.43- C.34 D.3 4- 3、如图,在正方形ABCD 中,M 为AD 的中点,E 为AB 上一点,且BE=3AE ,求sin ∠ECM 。

高中数学三角函数易错题精选

三角部分易错题选 一、选择题: 1.为了得到函数?? ? ? ?- =62sin πx y 的图象,可以将函数x y 2cos =的图象( ) A 向右平移 6π B 向右平移3π C 向左平移6π D 向左平移3 π 答案: B 2.函数?? ? ? ??+=2tan tan 1sin x x x y 的最小正周期为 ( ) A π B π2 C 2 π D 23π 答案: B 3.曲线y=2sin(x+)4πcos(x-4π)和直线y=2 1 在y 轴右侧的交点按横坐标从小到大依次记为 P 1、P 2、P 3……,则|P 2P 4|等于 ( ) A .π B .2π C .3π D .4π 正确答案:A 4.下列四个函数y=tan2x ,y=cos2x ,y=sin4x ,y=cot(x+ 4π),其中以点(4 π ,0)为中心对称的三角函数有( )个 A .1 B .2 C .3 D .4 正确答案:D 5.函数y=Asin(ωx+?)(ω>0,A ≠0)的图象与函数y=Acos(ωx+?)(ω>0, A ≠0)的图象在区间 (x 0,x 0+ω π )上( ) A .至少有两个交点 B .至多有两个交点 C .至多有一个交点 D .至少有一个交点 正确答案:C 6. 在?ABC 中,2sinA+cosB=2,sinB+2cosA=3,则∠C 的大小应为( ) A . 6 π B . 3 π C . 6 π或π65 D . 3π或3 2π 正确答案:A 错因:学生求∠C 有两解后不代入检验。 7.已知tan α tan β是方程x 2 +33x+4=0的两根,若α,β∈(-2 ,2π π),则α+β=( ) A . 3 π B . 3 π或-π32 C .- 3 π或π32 D .-π3 2 正确答案:D 错因:学生不能准确限制角的范围。 8. 若sin cos θθ+=1,则对任意实数n n n ,sin cos θθ+的取值为( ) A. 1 B. 区间(0,1) C. 121 n - D. 不能确定 解一:设点(sin cos )θθ,,则此点满足 x y x y +=+=???1 1 22

锐角三角函数(培优)

知识要点 1、 锐角三角函数定义? 斜边的对边αα∠= sin 斜边的邻边αα∠=cos 的邻边的对边 ααα∠∠= t a n 的对边的邻边ααα∠∠=cot 2、 特殊角的三角函数值300 、450 、600 、的记忆规律: 3、 角度变化与锐角三角函数的关系 当锐角α在00∽900 之间变化时,正弦(切)值随着角度的增大而增大;余弦(切)值随着角度的增大而减少。 4、 同角三角函数之间有哪些关系式 平方关系:sin 2A +cos 2 A =1; 商数关系:sinA/cosA =tanA ; 倒数关系:tanA ·tan B =1; 5、 互为余角的三角函数有哪些关系式? Sin (900-A )=cosA ; cos (900-A )=sin A ; tan (900 -A )=ctan A ; 一、选择题 1.在Rt △ABC 中,∠C =900 ,∠A =∠B ,则sinA 的值是( ).A . 2 1 B .22 C .23 D .1 2.在△ABC 中,∠A =105°,∠B =45°,tanC 的值是( ). A . 2 1 B .33 C .1 D .3 3.在Rt △ABC 中,如果各边的长度都缩小至原来的 5 1 ,那么锐角A 的各个三角函数值( ). A .都缩小 5 1 B .都不变 C .都扩大5倍 D .仅tan A 不变 4.如图,菱形ABCD 对角线AC =6,BD =8,∠ABD =α.则下列结论正确的是( ). A .sin α= 54 B .cos α= 53 C .tan α= 34 D .tan α= 4 3 5.在Rt △ABC 中,斜边AB 是直角边AC 的3倍,下列式子正确的是( ). A .423sin = A B .3 1 cos =B C .42tan =A D .tan 4B = 6.已知ΔABC 中,∠C =90?,CD 是AB 边上的高,则CD :CB 等于( ). A .sinA B .cosA C .tanA D . 1 tan A 7.等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ).A. 513 B. 1213 C.10 13 D.512 8.如图,在△EFG 中,∠EFG =90°,FH ⊥EG ,下面等式中,错误..的是( ). A. sin EF G EG = B. sin EH G EF = C. sin GH G FG = D. sin FH G FG = 9.身高相同的三个小朋友甲、乙、丙风筝,他们放出的线长分别为300米、250米、200米,线与地面所成的角为30°、45°、60°(风筝线是拉直的),则三人所放的风筝( ).

必修4第一章三角函数难题易错题集锦

1.(2010?嘉祥县校级模拟)已知函数 (ω>0), ,且f (x )在区间 单调递减,则ω的值为( ) 2.(2006?奉贤区一模)函数,则集合{x|f (f (x ))=0} 元素的个数有( ) 3.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为 4.(2011?安徽)已知函数f (x )=sin (2x+φ),其中φ为实数,若f (x )≤|f ()|对x ∈R 恒成立,且)()2 (ππ f f >,则f (x )的单调递增区间是( ) 5.已知ω>0,函数f (x )=cos (﹣ωx )在(,π)上单调递减,则ω的取值范围是( ) 6.(2014?大庆一模)已知函教f (x )=Asin (ωx+φ)(A >0,ω>0)的图象与直线y=b (0<b <A )的三个相邻交点的横坐标分别是2,4,8,则f (x )的单调递增区间是( ) 7.(2013?和平区校级二模)函数f (x )在R 上既是奇函数又是减函数,且当θ∈(0,)时,f (2cos 2θ+2msin θ)+f (﹣2m ﹣3)>0恒成立,则实数m 的取值范围是 . 8.(2012?安徽模拟)函数)2 sin()(?π +=x a x f 的一个零点为,且 , 对于下列结论:①;②;③ ④f (x )的单 调减区间是 ;⑤f (x )的单调增区间是

.其中正确的结论是.(填写所有正确的结论编号) 9.(2014?陕西校级一模)方程在区间[0,π]内的所有实根之和为.(符号[x]表示不超过x的最大整数). 10.(2009?静安区一模)(理)已知函数a cos 4 )(sin cos ) (的 =) 2 sin ( x a x x - x - x - f+ 定义域为,则实数a的取值范围是.11.(2014秋?宿豫区校级期中)已知函数f(x)=2x2﹣3x+1.(1)当0≤x≤时,求y=f(sinx)的最大值;(2)问a取何值时,方程f(sinx)=a﹣sinx在[0,2π)上有两解 12.(2013春?下城区校级期中)已知函数f(x)=,x∈[0,) (1)若g(x)=f(x)+,求g(x)的最小值及相应的x值 (2)若不等式(1﹣sinx)?f(x)>m(m﹣sinx)对于恒成立,求实数m的取值范围. 13.设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若f(x)≤|f()|对一切x∈R恒成立,则 ①f()=0;②|f()|<|f()|;③f(x)既不是奇函数也不是偶函数; ④f(x)的单调递增区间是[kπ+,kπ+](k∈Z);⑤经过点(a,b)的所有直线均与函数f(x)的图象相交.以上结论正确的是(写出所有正确结论的编号).

锐角三角函数培优题目

锐角三角函数培优题目 三角函数揭示了直角三角形中边与锐角之间的关系,是数形结合的桥梁之一,有以下丰富的性质: 1.单调性; 2.互余三角函数间的关系; 3.同角三角函数间的关系. 平方关系:sin 2α+cos 2α=1; 商数关系:tgα=ααcos sin ,ctgα=α αsin cos ; 倒数关系:tgαctgα=1. 【例题求解】 【例1】 已知在△ABC 中,∠A 、∠B 是锐角,且sinA = 135,tanB=2,AB=29cm , 则S △ABC = . 思路点拨 过C 作CD ⊥AB 于D ,这样由三角函数定义得到线段的比,sinA= 135=AC CD ,tanB=2=BD CD ,设CD=5m ,AC =13m ,CD =2n ,BD =n ,解题的关键是求出m 、n 的值. 注:设△ABC 中,a 、b 、c 为∠A 、∠B 、∠C 的对边,R 为△ABC 外接圆的半径,不 难证明:与锐角三角函数相关的几个重要结论: (1) S △ABC =C ab B ac A bc sin 21sin 21sin 21== ; (2)R C c B b A a 2sin sin sin ===. 【例2】 在△ABC 中.∠ACB =90°,∠ABC =15°,BC=1,则AC=( ) A .32+ B .32- C .0.3 D .23- 思路点拨 由15°构造特殊角,用特殊角的三角函数促使边角转化. 注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形. (2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换.

高中数学三角函数易错题

高中数学易做易错题 专题一:三角比 1.若角α终边上一点P的坐标为(θ cos,θ sin)(Z k k∈ + ≠, 2 π π θ),则θ α-=。错解:由θ αtan tan=得π θ αk = -(Z k∈)。 正解:同时θ αsin sin=,θ αcos cos=,∴π θ αk2 = -(Z k∈)。 2.已知β α β αtan 3 tan , sin 2 sin= =,求α 2 cos。 错解:由1 cot csc2 2= -β β消去β得1 cot 9 csc 42 2= -α α,解得 8 3 cos2= α。 分析:遗漏0 sin= α的情形。还有1 cos2= α的情形。 3.已知α、β∈(0,π), 13 5 ) sin( , 2 1 2 tan= + =β α α ,求β cos。 错解: 5 4 4 1 1 2 1 2 2 tan 1 2 tan 2 sin 2 = + ? = + = α α α, 5 3 4 1 1 4 1 1 2 tan 1 2 tan 1 cos 2 2 = + - = + - = α α α ∵α、β∈(0,π),∴ 13 12 169 25 1 ) ( sin 1 ) cos(2± = - ± = + - ± = +β α β α, ∴α β α α β α α β α βsin ) sin( cos ) cos( ] ) cos[( cos+ + + = - + = ∴ 65 16 cos- = β,或 65 56 cos= β。 分析:∵) sin( 13 5 5 4 sinβ α α+ = > =,∴ 2 π β α> +,∴ 13 12 ) cos(- = +β α,∴ 65 16 cos- = β。

锐角三角函数-基础+培优

A B C D α A (第7题) 1l 3l 2l 4l A D E B 图 C 一、锐角三角函数定义:sin αα∠= 的() ( ) cos αα∠=的()() tan α= () () 例1.在△ABC 中,∠C =90°,sinA =3 2 ,求cosA 、tanB . 例2.△ABC 中,已知∠ACB =90°,CD ⊥AB 于D ,AC =63,BD =3. (1)求cosA (2)求BC 的长及△ABC 的面积. 例3.如图,在△ABC 中,∠C =90°,∠B =30°,AD 是∠BAC 的角平分线,与BC 相交于点D ,且AB =43,求AD 的长. 例4.如图1,已知AD 是等腰△ABC 底边上的高,且tan ∠B=43 ,AC 上有一点E ,满足AE:CE=2:3则tan ∠ADE 的值是 练习.1.在7,35,90==∠=AB B 中,则BC 的长为( ) (A ) 35sin 7 (B ) 35 cos 7(C ) 35cos 7 (D ). 35tan 7 2.在Rt △ABC 中,斜边AB 是直角边AC 的3倍,下列式子正确的是( ). A .423sin = A B .3 1 cos =B C .42tan =A D .2tan B = 3.已知ΔABC 中,∠C =90 ,CD 是AB 边上的高,则CD :CB 等于( ). A .sinA B .cosA C .tanA D . 1 tan A 4. Rt△ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,那么c 等于( ) A.cos sin a A b B + B.sin sin a A b B + C sin sin a b A B +. D.cos sin a b A B + 5. 如图,在Rt△ABC 中,∠ACB=90°,CD⊥AB,垂足为D .若AC=5,BC=2,则sin∠ACD 的值为 6. 在Rt △ABC 中,∠C =90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cot A = a b .则下列关系式中不成立...的是( )(A )tan A ·cot A =1 (B )sin A =tan A ·cos A (C )cos A =cot A ·sin A (D )tan 2A +cot 2A =1 7.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= . 8.如图,已知矩形ABCD 的两边AB 与BC 的比为4:5,E 是AB 上的一点,沿CE 将ΔEBC 向上翻折,若B 点恰好落在边AD 上的F 点,则tan ∠DCF 等于 C B A E F D 第8题 C M B A 第7题 D B C A C B 第2题

中考数学锐角三角函数(大题培优)及答案

中考数学锐角三角函数(大题培优)及答案 一、锐角三角函数 1.如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°.小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF=1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.(参考数 值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36) 【答案】6.4米 【解析】 解:∵底部B 点到山脚C 点的距离BC 为6 3 米,山坡的坡角为30°. ∴DC=BC?cos30°=3 639=?=米, ∵CF=1米, ∴DC=9+1=10米, ∴GE=10米, ∵∠AEG=45°, ∴AG=EG=10米, 在直角三角形BGF 中, BG=GF?tan20°=10×0.36=3.6米, ∴AB=AG-BG=10-3.6=6.4米, 答:树高约为6.4米 首先在直角三角形BDC 中求得DC 的长,然后求得DF 的长,进而求得GF 的长,然后在直角三角形BGF 中即可求得BG 的长,从而求得树高 2.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60??,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值.

【答案】(1)120米;(2)23 5 . 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3,在Rt △ABC 中,求得DC= 3 3 AC=203,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ? =6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3, 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴DC=3AC=203 ∴DE=503 ∴tan ∠A 'A D= tan ∠'A DC= 'A E DE =503= 2 35 答:从无人机'A 上看目标D 的俯角的正切值是 2 35 . 【点睛】 本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键. 3.如图,在△ABC 中,AB=7.5,AC=9,S △ABC = 81 4 .动点P 从A 点出发,沿AB 方向以每秒5个单位长度的速度向B 点匀速运动,动点Q 从C 点同时出发,以相同的速度沿CA 方向向A 点匀速运动,当点P 运动到B 点时,P 、Q 两点同时停止运动,以PQ 为边作正△PQM

中考数学锐角三角函数(大题培优 易错 难题)附详细答案

中考数学锐角三角函数(大题培优易错难题)附详细答案 一、锐角三角函数 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

最新初中数学锐角三角函数的易错题汇编含答案(1)

最新初中数学锐角三角函数的易错题汇编含答案(1) 一、选择题 1.如图,从点A 看一山坡上的电线杆PQ ,观测点P 的仰角是45?,向前走6m 到达B 点, 测得顶端点P 和杆底端点Q 的仰角分别是60?和30°,则该电线杆PQ 的高度( ) A .623+ B .63+ C .103- D .83+ 【答案】A 【解析】 【分析】 延长PQ 交直线AB 于点E ,设PE=x 米,在直角△APE 和直角△BPE 中,根据三角函数利用x 表示出AE 和BE ,列出方程求得x 的值,再在直角△BQE 中利用三角函数求得QE 的长,则问题求解. 【详解】 解:延长PQ 交直线AB 于点E ,设PE=x . 在直角△APE 中,∠A=45°, AE=PE=x ; ∵∠PBE=60° ∴∠BPE=30° 在直角△BPE 中,33x , ∵AB=AE-BE=6米, 则3, 解得:3 则3.

在直角△BEQ 中,QE=33BE=33 (33+3)=3+3. ∴PQ=PE-QE=9+33-(3+3)=6+23. 答:电线杆PQ 的高度是(6+23)米. 故选:A . 【点睛】 本题考查解直角三角形的实际应用,解答关键是根据题意构造直角三角形解决问题. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( ) A .500sin55m o B .500cos55m o C .500tan55m o D .500cos55m o 【答案】B 【解析】 【分析】 根据已知利用∠D 的余弦函数表示即可. 【详解】 在Rt △BDE 中,cosD= DE BD , ∴DE=BD ?cosD=500cos55°. 故选B . 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键. 3.如图,AB 是O e 的弦,直径CD 交AB 于点E ,若3AE EB ==,15C ∠=o ,则OE 的长为( ) A 3 B .4 C .6 D .33【答案】D 【解析】

中考数学锐角三角函数(大题培优)及详细答案

中考数学锐角三角函数(大题培优)及详细答案 一、锐角三角函数 1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°. (1)求∠BPQ的度数; (2)求该电线杆PQ的高度(结果精确到1m).备用数据:, 【答案】(1)∠BPQ=30°; (2)该电线杆PQ的高度约为9m. 【解析】 试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可; (2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解. 试题解析:延长PQ交直线AB于点E, (1)∠BPQ=90°-60°=30°; (2)设PE=x米. 在直角△APE中,∠A=45°, 则AE=PE=x米; ∵∠PBE=60° ∴∠BPE=30° 在直角△BPE中,33 米, ∵AB=AE-BE=6米, 则3 , 解得:3

则BE=(33+3)米. 在直角△BEQ中,QE= 3 3 BE= 3 3 (33+3)=(3+3)米. ∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米). 答:电线杆PQ的高度约9米. 考点:解直角三角形的应用-仰角俯角问题. 2.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7). 【答案】32.4米. 【解析】 试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解. 试题解析:如图,过点B作BE⊥CD于点E, 根据题意,∠DBE=45°,∠CBE=30°. ∵AB⊥AC,CD⊥AC, ∴四边形ABEC为矩形, ∴CE=AB=12m, 在Rt△CBE中,cot∠CBE=BE CE , ∴33 在Rt△BDE中,由∠DBE=45°,得3 ∴CD=CE+DE=123)≈32.4.答:楼房CD的高度约为32.4m.

锐角三角函数学而思培优

第九讲 锐角三角函数 板块一 锐角三角函数 【例1】⑴(2010年人大附统练)如图,在ABC △中,AB AC =,45A =?∠,AC 的垂直平分线分别交AB 、 AC 于D 、E 两点,连接CD ,如果1AD =,那么tan BCD =∠ 。 ⑵(2007海淀二模)如图,四边形ABCD 、A 1B 1BA 、…、A 5B 5B 4A 4都是边长为1的小正方形。已知 ∠ACB =α,∠A 1CB 1=α1,…,∠A 5CB 5=α5。则tanα·tanα1+tanα1·tanα2+…+tanα4·tanα5的值 为( ) A .1 B .5 C .45 D .56 ⑶(2010年济宁市)如图,是一张宽m 的矩形台球桌ABCD ,一 球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点。如果MC n =,CMN α∠=。那么P 点与B 点的距离为 。 【例2】⑴(2010年人大附统练)已知ABC △,90C =?∠,设sin A m =,当A ∠是最小的内角时,m 的 取值范围是( ) A .1 02 m << B .02m << C .0m < D .0m << B 5 B 4 B 3 B 2B 1 A 5A 4A 3A 2A 1B A C D E D C B A B N

12?5? D C B A ⑵(十一学校2009年初三数学学习能力测试)已知1 sin cos 8 αα?=,且4590α<<°°,则 cos sin αα-的值是( ) A B . C . 34 D . ⑶(北京二中分校2009学年度第一学期初三质量检测)因为1sin 302= °,1 sin 2102 =-°,所以 ()sin 210sin 18030sin 30=+=-°°°° ;因为sin 452= ° ,sin 2252 =°,所以 ()sin 225sin 18045sin 45=+=-°°°°;由此猜想并推理知:一般地,当α为锐角时,有()sin 180sin αα+=-°。由此可知sin 240=°( ) A .1 2 - B . C . D . 板块二 解直角三角形及应用 【例3】(2009浙江台州)如图,有一段斜坡BC 长为10米,坡角 12CBD ∠=?,为方便残疾人的轮椅车通行,现准备把 坡角降为5?。 ⑴求坡高CD ; ⑵求斜坡新起点A 与原起点B 的距离(精确到0.1米) (参考数据:sin120.21cos120.98tan50.09?≈?≈?≈,,) 【例4】面积专题: 题源:(2010年人大附统练)如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为 α,则它们重叠部分(图中阴影部分)的面积为( ) A . 1sin α B .1 cos α C .sin α D .1

相关文档
最新文档