物理中求极值的常用方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理解题中求极值的常用方法
运用数学工具处理物理问题的能力是高考重点考查的五种能力之一,其中极值的计算在教学中频繁出现。因为极值问题范围广、习题多,会考、高考又经常考查,应该得到足够重视。另外很多学生数、理结合能力差,这里正是加强数理结合的“切人点”。学生求极值,方法较少,教师应该在高考专题复习中提供多种求极值的方法。求解物理极值问题可以从物理过程的分析着手,也可以从数学方法角度思考,下面重点对数学方法求解物理极值问题作些说明。
1、利用顶点坐标法求极值
对于典型的一元二次函数y=ax 2+bx+c,
若a>0,则当x=-a b 2时,y 有极小值,为y min =a b ac 442-;
若a<0,则当x=-a
b
2时,y 有极大值,为y max =a b ac 442-;
2、利用一元二次函数判别式求极值 对于二次函数y=ax 2+bx+c ,用判别式法 利用Δ=b 2-4ac ≥0。(式中含y) 若y ≥A ,则y min =A 。 若y ≤A ,则y max =A 。
3、利用配方法求极值
对于二次函数y=ax 2+bx+c ,函数解析式经配方可变为y=(x-A)2+常数:(1)当x =A 时,常数为极小值;或者函数解析式经配方可变为y = -( x -A )2+常数。(2)当x =A 时,常数为极大值。
4、利用均值定理法求极值 均值定理可表述为
≥+2
b
a a
b ,式中a 、b 可以是单个变量,也可以是多项式。 当a =b 时, (a+b)min =2ab 。
当a =b 时, (a+b) max =2
)(2
b a +。
5、利用三角函数求极值
如果所求物理量表达式中含有三角函数,可利用三角函数的极值求解。若所求物理量表达式可化为“y=Asin ααcos ”的形式,则y=
21Asin2α,在α=45º时,y 有极值2
A 。 对于复杂的三角函数,例如y=asin θ+bcos θ,要求极值时先需要把不同名的三角函数sin θ和cos θ,变成同名的三角函数,比如sin(θ+ф) 。这个工作叫做“化一”。首先应作辅助角如所示。
考虑asin θ+bcos θ= (
θθcos sin 2
2
2
2
b
a b b
a a ++
+)
=22b a + (cos фsin θ+sin фcos θ)
=22b a +sin(θ+ф) 其最大值为22b a +。 6、用图象法求极值
通过分析物理过程遵循的物理规律,找到变量之间的函数关系,作出其图象,由图象可求得极值。 7、用分析法求极值
分析物理过程,根据物理规律确定临界条件求解极值。下面针对上述7种方法做举例说明。 例1:如图2所示的电路中。电源的电动势ε=12伏,内阻r =0.5欧,外电阻R 1=2欧,R 2=3欧,滑动变阻器R 3=5欧。求滑动变阻器的滑动头P 滑到什么位置,电路中的伏特计的示数有最大值?最大值是多少?
分析:设aP 间电阻
为x ,外电路总电阻为R. 则:
R 1
R 3
a
p b
V
r 、ε
R 2
图2
φ
a b 图1
10
)8)(2(532)
53)(2()
)((3
21321X X X X R R R X R R X R R -+=
++-++=
++-++=
先求出外电阻的最大值R max 再求出伏特计示数的最大值U max 。本题的关键是求R max ,下面用四种方法求解R max 。
[方法一] 用顶点坐标法求解
抛物线方程可表示为y =ax 2+bx+c 。
考虑R =10
)8)(2(x x -+=1016
62++-x x ,
设y =-x 2+6x+16,
当x =a
b
2-= —)1(26-=3时,R max (3)=101636)3(2+⨯+- =2.5Ω。
[方法二] 用配方法求解
考虑R =10
)
8)(2(x x -+ =101662++-x x =1025)3(2+--x 。
即x =3Ω时,R max =5.210
25
=Ω。
[方法三] 用判别式法求解
考虑R =10
16
62++-x x ,则有-x 2+6x+16-10R =0,
Δ=b 2-4ac =36-4(-1)(16-10R)>0,即:100-40R ≥0, R ≤2.5Ω,即R max =2.5Ω。
[方法四] 用均值定理法求解 考虑R =
10
)
8)(2(x x -+,设a =2+x ;b =8-x 。
当a =b 时,即2+x =8-x , 即x =3Ω时,R max (3)=
10
)
38)(32(-+ =2.5Ω。
也可以用上面公式(a+b)max =2
)]8)(2[(2
x x -+=25,
R max =
10)(max b a +=10
25
=2.5Ω。
以上用四种方法求出R max =2.5Ω,下边求伏特计的最大读数。 I min =
r
R +m ax ε
=
5
.05.212
+=4(A)。U max =ε- I min r =12-4⨯0.5=10(V)。即变阻器的滑动头P 滑到R 3
的中点2.5Ω处,伏特计有最大值,最大值为10伏。
例2:如图3所示。光滑轨道竖直放置,半圆部分的半径为R ,在水平轨道上停着一个质量为M =0.99kg 的木块,一颗质量为m =0.01Kg 的子弹,以V 0=400m/s 的水平速度射入木块中,然后一起运动到轨道最高点水平抛出,试分析:当圆半径R 多大时,平抛的水平位移是最大?且最大值为多少?
[解析]子弹与木块发生碰撞的过程,动量守恒,设共同速度为V 1,则: mV 0=(m+M)V 1, 所以:V 1=
0V M m m +=s m s m /4/40099
.001.001
.0=⨯+
设在轨道最高点平抛时物块的速度为V 2,由于轨道光滑,故机械能守恒:
2221)(2
1
)(2)(21V M m gR M m V m M +++=+ 所以:V 2=)/(])(4)[(2
1M m gR m M V M m ++-+
=R R Rg V 40161044422
1-=⨯-=
-
则平抛后的位移可以表示为:
s =V 2t =V 210
4)4016(4R
R g R ⨯
-=⨯
图3