高中物理专题复习之弹簧模型中的极值问题
关于高级高中物理弹簧弹力问题归类总结归纳
弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-=1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度Fa M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于图图 3-7-1图 3-7-3地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0 说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( ) A.0 B.大小为23g ,方向竖直向下C.大小为23g ,方向垂直于木板向下 D. 大小为23g , 方向水平向右 【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos N F g a g m θ=== 【答案】 C. 四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.图图图【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ== 解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--= 解得:()sin A B A F m m g a m θ-+=因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d k θ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的图形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大? (2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?【解析】 由题意可知,弹簧开始的压缩量0mgx k=,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得: 022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002x mg kF +=,解得: 032mgF =.]【答案】022gx 32mg 图图 3-7-8说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。
高三物理复习物理模型组合讲解——弹簧模型(功能问题)
模型组合讲解——弹簧模型(功能问题)[模型概述]弹力做功对应的弹簧势能,分子力做功所对应的分子势能、电场力做功对应的电势能、重力做功对应的重力势能有区别,但也有相似。
例:(2005年江苏高考)如图1所示,固定的水平光滑金属导轨,间距为L,左端接有阻值为R的电阻,处在方向竖直,磁感应强度为B的匀强磁场中,质量为m的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略。
初始时刻,弹簧恰处于自然长度,导体在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触。
(1)求初始时刻导体棒受到的安培力。
(2)若导体棒从初始时刻到速度第一次为零时,则这一过程中安培力所做的功W1和电阻R上产生的焦耳热Q1分别为多少?(3)导体棒往复运动,最终将静止于何处?从导体棒开始运动直到最终静止的过程中,电阻R上产生的焦耳热Q为多少?图1解析:(1(2)由功和能的关系,得安培力做电阻R上产生的焦耳热(3[模型要点]在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系或能量转化和守恒定律求解,图象中的“面积”功也是我们要熟悉掌握的内容。
高考不作定理要求,可作定性讨论。
因此,在求弹力的功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解。
分子力、电场力、重力做正功,对应的势能都减少,反之增加。
都具有相对性系统性。
弹簧一端连联物、另一端固定:当弹簧伸长到最长或压缩到最短时,物体速度有极值,弹簧的弹性势能最大,此时也是物体速度方向发生改变的时刻。
若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零。
若关联物与接触面粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零。
此时有两个方案:一是严格带符号运算,q考虑正和负,所得W的正、负直接表明电场力做功的正、负;二是只取绝对值进行计算,所得W只是功的数值,至于做正功还是负功?可用力学知识判定。
高中物理弹簧问题考点大全及常见典型考题
常见弹簧类问题分析高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g /k2=m l g/k2.此题若求m l移动的距离又当如何求解?参考答案:C2.S1和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为m A和m B的两个小物块,m A>m B,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ).A.S1在上,A在上B.S1在上,B在上C.S2在上,A在上D.S2在上,B在上参考答案:D3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k1(大弹簧)和k2(小弹簧)分别为多少?(参考答案k1=100N/m k2=200N/m)4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解设L1线上拉力为T l,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡T l cosθ=mg,T l sinθ=T2,T2=mgtanθ,剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?清对该解法作出评价并说明理由.解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间T2=mgcosθ, a=gsinθ(2)若将图中的细线L l改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.二、与动力学相关的弹簧问题5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的相互作用)则M与m之间的关系必定为 ( )A.M>mB.M=mC.M<mD.不能确定参考答案:B6.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧脱离之前)重物的运动情况是( ) 参考答案:CA.一直加速运动 B.匀加速运动C.先加速运动后减速运动 D.先减速运动后加速运动[解析] 物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者分离.7.如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()参考答案:CA.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下(试分析小球在最低点的加速度与重力加速度的大小关系)8.如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是 ()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B一直减速运动D.物体在B点受到的合外力为零参考答案:C9.如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。
4.轻弹簧弹力作用下的临界和极值问题
4.轻弹簧弹力作用下的临界和极值问题一 知能掌握通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两物体速度相同;使物体恰好要离开地面;相互接触的物体弹力变为零时,它们恰好要脱离等。
此类题的解题关键是利用好临界条件,得到解题有用的物理结论。
这类问题是弹簧问题中的热点和难点,它往往能够比较全面的考察考生的分析综合能力。
解决这类问题的方法是:根据物体所处的运动状态运用牛顿定律、功能关系或者能量守恒定律、胡克定律等列出方程——以弹簧的伸长量或弹簧的弹力为自变量进行动态分析,从中找出临界状态、极值状态、转折状态以及对应的条件——计算并进行必要的讨论。
二 探索提升两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。
“恰 好分开”既可以认为已经分开,也可以认为还未分开。
认为已分开,那么这两个物体间的弹 力必然为零;认为未分开,那么这两个物体的速度、加速度必然相等。
同时利用这两个结论,就能分析出当时弹簧所处的状态。
这种临界问题又分以下三种情况:1.仅靠弹簧弹力将两物体弹出,那么这两个物体必然是在弹簧原长时分开的。
除了弹簧弹力,还有其它外力作用而使相互接触的两物体分离。
但其中一个物体质量不计,在弹簧原长时分开的【典例1】如图所示,两个木块A 、B 叠放在一起,B 与轻弹簧相连,弹簧下端固定在水平面上,用竖直向下的力F 压A ,使弹簧压缩量足够大后,停止压缩,系统保持静止。
这时,若突然撤去压力F ,A 、B 将被弹出且分离。
下列判断正确的是 A .木块A 、B 分离时,弹簧的长度恰等于原长 B .木块A 、B 分离时,弹簧处于压缩状态,弹力大小等于B 的重力C .木块A 、B 分离时,弹簧处于压缩状态,弹力大小等于A 、B 的总重力D .木块A 、B 分离时,弹簧的长度可能大于原长【答案】A【解析】解:以A 为对象,既然已分开,那么A 就只受重力,加速度竖直向下,大小为g ;又未分开,A 、B 加速度相同,因此B 的加速度也是竖直向下,大小为g ,说明B 受的合力为重力,所以弹簧对B 没有弹力,弹簧必定处于原长。
2017年高考物理专题集锦(一):高中弹簧类问题归类剖析
高中弹簧类问题归类剖析弹簧是高中物理中常见的一种理想化模型,中学物理只研究轻弹簧。
轻弹簧作为媒介物,经常与小球或木块组成一个系统,存在着力、运动状态、能量的联系。
所以弹賛 类问题物理情景复杂,过程较多,综合性很强。
由于分析综合、判断能力欠缺,学生对此类问题普遍感到困难,本文将就此类问题作一归类剖析,为考生的复习备考提供帮助。
一、与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题。
比如物体速度达到最大;弹簧形变量达到最大;相互接触的物体恰好要分离等。
此类问题的解题关键是挖 掘隐含条件,针对不同状态,依据牛顿第二定律列出状态方程,再结合数学知识处理问题。
【例1】A 、B 两个木块叠放在竖直轻弹簧上,如图1所示,已知m A =m B =lkg,轻弹簧的劲度系数为100 N/m 。
若在木块A 上作用一个竖直向上的力F ,使木块A由静止开始以2 m/s 2的加速度竖直向上做匀加速运动,取g=10m/s 2,求:(1)使木块A 竖直向上做勻加速运动的过程中,力F 的最大值是多少?(2)A 、B 分离时二者的速度是多少?【解析】(1)对A 受力分析如图2所示,根据牛顿第二定律,得BA A A F F m g m a +-=,所以当FBA=0 时,F 最大,即12m A A F m g m a N =+=(2) A 、B 分离时,F AB =0,A 、B 具有相同的加速度a以B 为研究对象受力分析如图3所示,根据牛顿第二定律可得B B k x m g m a ∆-=A ,B 分离时弹簧压缩量0.12B B m g m a x m k+∆== 初始位置弹簧的压缩量00.20B A m g m g x m k +∆== A 、B 上升的高度00.08h x x m =∆-∆=—Ax=0. 08 mA,B 的速度/v s =。
【总结】(1)两物体分离条件:弹簧连接体在运动过程中的分离条件是接触不挤压,即分离物体之间的弹力为零,也就是F N =0。
高考热点专题——有关弹簧问题的分析与计算
高考热点专题——有关弹簧问题的分析与计算弹簧类问题在高中物理中占有相当重要的地位,且涉及到的物理问题多是一些综合性较强、物理过程又比较复杂的问题,从受力的角度看,弹簧上的弹力是变力;从能量的角度看,弹簧是个储能元件;因此,关于弹簧的问题,能很好的考察学生的分析综合能力,备受高考命题专家的青睐。
解决这些问题除了一般要用动量守恒定律和能量守恒定律这些基本规律之外,搞清物体的运动情景,特别是弹簧所具有的一些特点,也是正确解决这类问题的重要方法。
在有关弹簧类问题中,要特别注意使用如下特点和规律:1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
2. 弹簧的弹力不能突变,它的变化要经历一个过程,这是由弹簧形变的改变要逐渐进行决定的。
在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3、弹簧上的弹力是变力,弹力的大小随弹簧的形变量发生变化,求弹力的冲量和弹力做功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。
弹簧的弹力与形变量成正比例变化,故它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,往往有临界值。
如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。
4、对于只有一端有关联物体,另一端固定的弹簧,其运动过程可结合弹簧振子的运动规律去认识,突出过程的周期性、对称性及特殊点的应用。
如当弹簧伸长到最长或压缩到最短时,物体的速度最小(为零),弹簧的弹性势能最大,此时,也是关联物的速度方向发生改变的时刻。
若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零。
高中物理重要方法典型模型突破14-模型专题(6)-弹簧模型
专题十四 模型专题(6) 弹簧模型【重点模型解读】弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考查了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考查了对于一些重要方法和思想的运用。
1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.4.典型实例:图示或释义 规律或方法与弹簧相关的平衡问题弹簧类平衡问题常常以单一问题出现,涉及的知识主要是胡克定律、物体的平衡条件,求解时要注意弹力的大小与方向总是与弹簧的形变相对应,因此审题时应从弹簧的形变分析入手,找出形变量x 与物体空间位置变化的对应关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来列式求解与弹簧相关的动力学问题 (1)弹簧(或橡皮筋)恢复形变需要时间,在瞬时问题中,其弹力的大小往往可以看成不变,即弹力不能突变。
而细线(或接触面)是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,即弹力可突变,一般题目中所给细线和接触面在没有特殊说明时,均可按此模型处理(2)对于连接体的加速问题往往先使用整体法求得其加速度,再用隔离法求得受力少的物体的加速度,并利用加速度的关系求解相应量与弹簧相关的功能问题弹簧连接体是考查功能关系问题的经典模型,求解这类问题的关键是认真分析系统的物理过程和功能转化情况,再由动能定理、机械能守恒定律或功能关系列式,同时注意以下两点:①弹簧的弹性势能与弹簧的规格和形变程度有关,对同一根弹簧而言,无论是处于伸长状态还是压缩状态,只要形变量相同,则其储存的弹性势能就相同;②弹性势能公式E p =12kx 2在高考中不作要求(除非题中给出该公式),与弹簧相关的功能问题一般利用动能定理或能量守恒定律求解 【典例讲练突破】【例1】如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2【拓展】此题若求m l移动的距离又当如何求解?【练1】如图所示,A、B两物体静止在粗糙水平面上,其间用一根轻弹簧相连,弹簧的长度大于原长。
29模型组合讲解:弹簧最值模型
.模型弹簧最值”: “模型组合讲解姚维明太原市第十二中学模型建构:由于弹簧总是与其他物体直接或间接地”问题,“在高考复习中,常常遇到有关弹簧最值联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
【模型】弹簧及其关联体【特点】①研究力与速度的最值,往往建立动力学方程、能量守恒方程;②研究高度的最值,往往建立能量守恒、运动学方程;③简谐运动的最值,往往用到对称点,两端点。
模型典案:一、最大、最小拉力问题的轻弹簧,两端分别连接着=600N/m【典案1】一个劲度系数为k,将它们竖直静止地放在水平地面上,、B=15kg的物体A质量均为m开始向上,使物体AF在物体A如图1所示,现加一竖直向上的外力物体刚离开地面(设整个加速过程弹簧都,B上做匀加速运动,经0.5s2)。
求此过程中所加外力的最大和最小10m/s处于弹性限度内,且g=值。
的重力,弹簧压缩量〖解析〗开始时弹簧弹力恰等于Amg?l25m??0.此时弹簧弹力恰等于物体刚要离开地面,,0.5s末B1 图k122s/?4maatl?2?m?025.??l'?l。
刚开A物体有的重力,,代入数据得,故对B2N?N60?15×4F?ma为最大且有为最小且物体刚要离开地面时,F,B始时F min N?360mg?maFmg?mg?ma?2F?。
,解得maxmax二、最大高度问题的钢板与直立弹簧的上端连接,弹簧下端固定在地m如图2所示,质量为【典案2】处自由下落打在钢板A x的。
面上,平衡时弹簧的压缩量为x一物体从钢板正上方距离为300上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动。
已知物块质量处自由下落,则物块与钢板回到A2m仍从m时,它们恰能回到O点;若物体质量为也为O点的距离。
O点时还有向上的速度,求物块向上运动到达的最高点与v表示物块与钢板设〖解析〗物块碰撞钢板前作自由落体运动,0gx6v?碰撞时的速度,则:①00碰速度向下运动,因碰撞时间极短,物块与钢板碰撞后一起以v 1mv2mv?撞时遵循动量守恒,即:②10E点时,弹簧O,当它们一起回到刚碰完时弹簧的弹性势能为2 图p..12mgx2m?)vE?2(,根据机械能守恒有:③无形变,弹性势能为001p2v的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:设2m表示质量为2mv32mv?④20,由机械能守恒定律得:O点时具有一定速度v 碰撞后,当它们回到1122vm)3mgx?E?(3(3m)v?⑤02p22其竖直上升,物块以v2m的物块与钢板一起回到O点时两者分离,分离后,当质量为上升的最大高度:2v?h⑥g2x0?h。
动量之弹簧类问题
动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。
求此过程中所加外力的最大和最小值。
图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。
一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。
图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。
今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。
图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。
现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。
弹簧问题总结高考 高考弹簧问题及应对策略
弹簧问题总结高考高考弹簧问题及应对策略轻弹簧是一种理想化的物理模型,以轻弹簧为载体,设置一定的物理情景,可以考查弹力的概念,牛顿第二定律及变力做功等知识点。
在这些知识点中弹簧与其关联物之间总存在力、运动状态和能量的联系,对学生的要求较高,有较高的区分度,因此成为高考的热点难点。
本人在多年高手教学中摸索出一些经验,应对高考中的弹簧问题主要从以下几个方面:一.弹簧的形变量与物体的运动相联系这类题的考查主要是要求学生弹簧状态的改变中找到物体运动的距离,从弹力的变化中找出物体的加速度变化情况,确定速度的变化情况。
应对策略①弹簧的形变量与物体的运动距离密切相连,如果弹簧的初末状态均为压缩(伸长)压缩量为x1、x2,弹簧一端的物体运动距离x=x1-x2或x=x2-x1,如果弹簧的初末状态一个为压缩,一个为伸长,则弹簧一端的运动物体运动距离x=x1+x2。
②物体的运动引起弹簧弹力的改变,对物体应用牛顿第二定律或平衡条件分析物体的速度变化情况。
例1.(2005年全国理综III卷)如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A、B,它们的质量分别为mA、mB,弹簧的劲度系数为k,C为一固定挡板。
系统处一静止状态,现开始用一恒力F沿斜面方向拉物块A使之向上运动,求物块B刚要离开C时物块A的加速度a和从开始到此时物块A的位移d,重力加速度为g。
解:令x1表示未加F时弹簧的压缩量,由胡克定律和牛顿定律可知令x2表示B刚要离开C时弹簧的伸长量,a表示此时A的加速度,由胡克定律和牛顿定律可知:mgsinθ=kx1①kx2=mBgsinθ②F-mAgsinθ-kx2=mAa③得由题意d=x1+x2⑤由①②⑤式可得二.弹簧的瞬时问题这类题的考查主要针对弹簧两端都有物体时弹簧的弹力不能发生突变,即弹簧形变瞬间不发生变化,弹力不变。
应对策略:一个力发生变化的瞬间,弹簧的弹力大小方向都不变,绳的弹力杆的弹力瞬间发生变化,正确的受力分析后根据牛顿第二定律求解。
高考物理弹簧类问题的几种模型及其处理方法归纳
弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。
其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。
2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。
弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
分析:上提m1之前,两物块处于静止的平衡状态,所以有:,,其中,、分别是弹簧k1、k2的压缩量。
牛顿第二定律弹簧瞬间极值问题超重失重
什么是超重失重?
超重:视重不小于重 力站在电梯里,感觉自己重了
情况:向上加速时、向下减速时
实质:具有向上旳加速度
失重:视重不大于重 力电梯里感觉自己轻飘飘旳
假如是站 在体重秤 上,则 “视重” 旳变化
情况:向上减速时、向下加速时
实质:具有向下旳加速度
比重力大 比重力小
超重失重不是重力旳变化
超重失重不是物体所受重力旳变化, 而是物体在某个体系内具有向上或向 下旳加速度造成“视重”旳变化。
视重即物体对支持物旳压力
“视重”旳变化:例如人对底板旳压 力增大或减小(就是感觉自己变重变 轻)、人感觉手里东西变重变轻等。
超重失重经典题
质量为m旳物体在升降机中旳台秤上, 视数为0.8mg,问升降机旳运动状态?
某人在地面上最多举起60kg旳重物,而 在一电梯内可举起80kg旳重物,则电梯 加速度为____?若电梯以2.5m/s2加速上 升,则最多又能举起____kg旳物体?
实质:竖直方向旳合力与竖直方向旳加速度有关联
先分析弹簧初始状 态下旳力
水平面上v-t图像与受力
物体在水平面上运动,受水平拉力和不 受水平拉力旳v-t图像如下,哪条可能是 受拉力旳?
注意拉力也有可能 是用于减速旳
光滑斜道下滑极值经典模型
A、B、C三条光滑途径,滑完哪条时间 最短?
都是利用不变量去 表达变化旳量
记住此45°模型
记住此都相等模型
牛顿第二定律旳应用
弹簧瞬间与极值问题
弹簧瞬间——剪断绳/弹簧
如图所示,三个质量相同旳物块悬挂 稳定后,忽然剪断AB绳,各加速度多 大?若是剪断BC弹簧呢?
弹簧旳力瞬间不变(形变不瞬变)
A
绳上旳力可瞬间变
2025人教版高中物理必修一知识点-专题进阶课六 弹簧模型
专题进阶课六弹簧模型核心归纳1.胡克定律(1)内容:在弹性限度内,弹簧发生弹性形变时,弹力F的大小跟伸长或缩短的长度x 成正比。
(2)表达式:F=kx①k为劲度系数,由本身的材料、长度、绕圈横截面积等决定。
②x为形变量,即弹簧伸缩后的长度L与原长L0的差:x=|L-L0|,不能将x当作弹簧的长度L。
2.涉及弹簧的瞬时性问题(1)轻弹簧、橡皮条模型的形变量大,形变恢复需要较长时间,在瞬时性问题中,它们的自由端连接有物体时其弹力的大小不能突变,往往可以看成是不变的。
提醒:若弹簧只有一端有附着物时弹力突变为零。
(2)几类瞬时性问题比较:类别形变特点弹力方向能否突变橡皮条明显沿橡皮条收缩方向不能轻弹簧明显沿弹簧轴线方向不能轻绳微小沿绳收缩方向能轻杆微小不确定能3.轻弹簧连接体模型(1)同条件同加速度轻弹簧连接体模型的动力学计算问题:力的质量正比例分配原则法:一起加速运动的物体,物体间的相互作用力按质量正比例分配。
(2)轻弹簧连接体模型接触与脱离的临界极值问题刚好脱离时物体间的弹力恰好为零,两物体此时的速度、加速度均相同。
典题例析角度1涉及弹簧的牛顿第二定律【典例1】(2024·淄博高一检测)质量均为5kg的物块1、2放在水平面上并用轻质弹簧测力计相连,如图所示,物块1的表面光滑,物块2与地面间的动摩擦因数为0.2,整个系统在水平拉力F作用下向左做匀加速运动,此时弹簧测力计的示数为15N;若拉力变为2F,其他条件不变,重力加速度大小取g=10m/s2,则此时弹簧测力计的示数为()A.30NB.25NC.20ND.15N【解析】选B。
当拉力F作用时,对整体,加速度a=-B21+2,对物块2:F T-μm2g=m2a,F T=15N,联立得F=20N;若拉力变为2F,对整体,加速度a1=2-B21+2=3m/s2,对物块2:F T'-μm2g=m2a1,代入数据得F T'=25N,故选B。
最新7-高中物理弹簧类模型中的最值问题资料
弹簧类模型一、最大、最小拉力问题例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2)。
求此过程中所加外力的最大和最小值。
解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量∆l mg km ==025.,0.5s 末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,∆∆l l m '.==025,故对A 物体有2122∆l at =,代入数据得a m s =42/。
刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有F mg mg ma max --=,解得F mg ma N max =+=2360。
二、最大高度问题例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。
一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。
解析:物块碰撞钢板前作自由落体运动,设v 0表示物块与钢板碰撞时的速度,则:v gx 006= ① 物块与钢板碰撞后一起以v 1速度向下运动,因碰撞时间极短,碰撞时遵循动量守恒,即:mv mv 012= ②刚碰完时弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为0,根据机械能守恒有:E m v mgx p +=1222120() ③ 设v 2表示质量为2m 的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:2302mv mv = ④ 碰撞后,当它们回到O 点时具有一定速度v ,由机械能守恒定律得: E m v mgx m v p +=+12331232202()() ⑤ 当质量为2m 的物块与钢板一起回到O 点时两者分离,分离后,物块以v 竖直上升,其上升的最大高度:h v g=22 ⑥ 解①~⑥式可得h x =02。
高考物理弹簧模型知识点
2019高考物理弹簧模型知识点2019高考物理弹簧模型知识点弹簧模型是以轻质弹簧为载体,与具体实际问题相结合,考查运动学、动力学、能量守恒、动量守恒、振动问题、功能关系、物体的平衡等相关问题。
有关弹簧的知识,是高考考查的重点,同时也是高考的难点,几乎每年的高考都会考查该内容,所以备考时要引起足够的重视.轻弹簧是一种理想化的物理模型,分析问题时不需要考虑弹簧本身的质量和重力.处理弹簧模型时,需要掌握以下知识点:1.弹簧弹力的计算弹簧弹力的大小可以由胡克定律来计算,即弹簧发生形变时,在弹性限度内,弹力的大小与弹簧伸长(或缩短)的长度成正比,数学表达式为,其中是一个比例系数,叫弹簧的劲度系数.弹簧的弹力不是一个恒定的力,而是一个变力,其大小随着弹簧形变量的变化而变化,同时还与弹簧的劲度系数有关。
2.弹簧弹力的特点(1)弹簧弹力的大小与弹簧的形变量有关,当弹簧的劲度系数保持不变时,弹簧的形变量,弹簧的形变量发生变化,弹簧的弹力相应地发生变化;形变量不变,弹力也力也就保持不变,由于弹簧的形变不能发生突变,故弹簧的弹力也不能瞬间发生变化,这与绳子的受力情况不同.(2)当轻弹簧受到外力的作用时,无论弹簧是处于平衡状态还是处于加速运动状态,弹簧各个部分所受的力的大小是相同的.(3)弹簧弹力的方向与弹簧的形变有关,在拉伸和压缩两种情况下,弹力的方向相反.在分析弹簧弹力的方向时,一定要全面考虑,如果题目没有说明是哪种形变,那么就需要考虑两种情况.(4)根据胡克定律可知,弹力的大小与形变量成正比,方向与形变的方向相反,可以将胡克定律的表达式写成F=kx,即弹簧弹力是一个线性回复力,故在弹力的作用下,物体会做简谐运动.3.弹性势能与弹力的功弹簧能够存储弹性势能,其大小为Ep=kx2/2,在高中阶段不需要掌握该公式,但要知道形变量越大,弹性势能就越大,在形变量相同的情况下,弹性势能是相等的;一般情况下,通常利用能量守恒定律来求弹簧的弹性势能,由于弹簧弹力是一个变力,弹力的功就是变力的功,可以用平均力来求功,也可以通过功能关系和能量守恒定律来求解.4.常见的弹簧类问题(l)弹簧的平衡与非平衡问题;(2)弹簧的瞬时性问题;(3)弹簧的碰撞问题;(4)弹簧的简谐运动问题;(5)弹簧的功能关系问题;(6)弹簧的临界问题;(7)弹簧的极值问题;(8)弹簧的动量守恒和能量守恒问题;(9)弹簧的综合性问题.5.处理弹簧模型的策略(l)判断弹簧与连接体的位置,分析物体的受力情况;(2)判断弹簧原长的位置,现长的位置,以确定弹簧是哪种形变以及形变量的大小;(3)分析弹簧弹力的变化情况,弹箦弹力不能发生突变,以此来分析计算物体的运动状态;(4)根据相应的物理规律列方程求解,例如,物体处于平衡时,运用平衡条件和胡克定律求解.模型1 考查弹簧的瞬时性问题弹簧弹力的大小与弹簧形变有关,而弹簧的形变在瞬间是不能突变的,即弹簧形变的改变需要一定的时间,所以弹簧弹力在瞬间不能够突变,这与绳模型是有区别的,不要混淆两者的区别,否则就会出错.模型2 考查弹簧中的碰撞问题弹簧中的碰撞问题是一类综合性很强的题目,一般综合了动量守恒、机械能守恒、功能关系和能量转化等.如果弹簧作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能,能量相互转化.在运动过程中,动能与势能相互转化。
弹簧专题(3)临界问题
如图,质量为M=4kg、倾角为θ=37°的斜面体置于光滑水平 面上, 平行于斜面的轻细线的一端系一质量为m=1kg的小 球,另一端固定于斜面上,一水平向左的外力F作用在斜面 上,
(1)当F为多大时,斜面对小球的弹力刚好为零
(2)当用F=25N的水平外力拉斜面体, 斜面对小球的弹力及 细线对小球的拉力?
(3)当细绳与水平面夹角为30°时,此时F为多大?
(1)F 200 N 3
(2)拉力T 10 N,弹力N 5N
F
(3)F 50 3N
• 质量为M=3.0kg、倾角为θ=37º的斜面体 放在水平面上,一质量为m=1.0kg的物块 与一原长为L0=10cm轻弹簧相连,弹簧的
另一端固定在斜面体的顶部,不计一切摩 擦,取g=10m/s2,已知弹簧的劲度系数为 k=200N/m,则当水平向右的外力F=40N 时,稳定时弹簧的长度为多少?
3.25cm
FABຫໍສະໝຸດ • 如图在光滑水平面上,静止放着质量分别 为3kg、6kg 的A、B两个物体.拉力FA、 FB分别作用在A、B上,大小均随时间变化 ,其规律为:FA=(9-2t)N, FB=(3+2t)N, 问从t=0开始,到A、B相互分离为止,A、 B的共同位移是多少?
4.17m
FA A B
FB
弹簧专题(三) 临界(脱离)问题
• 通过弹簧相联系的物体,在运动过程中 经常涉及临界极值问题,如:
• 物体速度达到最大; 加速度a=0 • 使物体恰好要离开地面; 接触面弹力N=0
• 相互接触的物体恰好要脱离; 两者加速度a相等
• 此类问题的解题关键是利用好临界条件,得 到解题有用的物理量和结论.
• 在运动过程中始终不分开 ( AB )
4.轻弹簧弹力作用下的临界和极值问题
4. 轻弹簧弹力作用下的临界和极值问题一知能掌握通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两物体速度相同;使物体恰好要离开地面;相互接触的物体弹力变为零时,它们恰好要脱离等。
此类题的解题关键是利用好临界条件,得到解题有用的物理结论。
这类问题是弹簧问题中的热点和难点,它往往能够比较全面的考察考生的分析综合能力。
解决这类问题的方法是:根据物体所处的运动状态运用牛顿定律、功能关系或者能量守恒定律、胡克定律等列出方程——以弹簧的伸长量或弹簧的弹力为自变量进行动态分析,从中找出临界状态、极值状态、转折状态以及对应的条件——计算并进行必要的讨论。
二探索提升两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。
“ 恰好分开”既可以认为已经分开,也可以认为还未分开。
认为已分开,那么这两个物体间的弹力必然为零;认为未分开,那么这两个物体的速度、加速度必然相等。
同时利用这两个结论,就能分析出当时弹簧所处的状态。
这种临界问题又分以下三种情况:1.仅靠弹簧弹力将两物体弹出,那么这两个物体必然是在弹簧原长时分开的。
除了弹簧弹力,还有其它外力作用而使相互接触的两物体分离。
但其中一个物体质量不计,在弹簧原长时分开的【典例1】如图所示,两个木块A、 B 叠放在一起, B 与轻弹簧相连,弹簧下端固定在水平面上,用竖直向下的力 F 压A,使弹簧压缩量足够大后,停止压缩,系统保持静止。
这时,若突然撤去压力F,A、B 将被弹出且分离。
下列判断正确的是A.木块A、B 分离时,弹簧的长度恰等于原长B.木块A、B分离时,弹簧处于压缩状态,弹力大小等于B 的重力C.木块A、B分离时,弹簧处于压缩状态,弹力大小等于A、B 的总重力D.木块A、B 分离时,弹簧的长度可能大于原长【答案】A解析】解:以 A 为对象,既然已分开,那么 A 就只受重力,加速度竖直向下,大小为g;又未分开, A 、 B 加速度相同,因此 B 的加速度也是竖直向下,大小为g,说明 B 受的合力为重力,所以弹簧对 B 没有弹力,弹簧必定处于原长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
一、最大、最小拉力
例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个加速过程弹簧都处于
弹性限度内,且g =10m/s 2)。
求此过程中所加外力的最大和最小值。
图1
解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量∆l mg k
m =
=025.,0.5s 末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,∆∆l l m '.==025,故对A 物体有
2122∆l at =,代入数据得a m s =42/。
刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有F mg mg ma max --=,解得F mg ma N max =+=2360。
二、最大高度
例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。
一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。
图2
解析:物块碰撞钢板前作自由落体运动,设v 0表示物块与钢板碰撞时的速度,则:
v gx 006= ①
物块与钢板碰撞后一起以v 1速度向下运动,因碰撞时间极短,碰撞时遵循动量守恒,即:mv mv 012= ②
刚碰完时弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为0,根据机械能守恒有:E m v mgx p +=12
22120() ③ 设v 2表示质量为2m 的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:2302mv mv = ④
碰撞后,当它们回到O 点时具有一定速度v ,由机械能守恒定律得:
E m v mgx m v p +=+123312
32202()() ⑤ 当质量为2m 的物块与钢板一起回到O 点时两者分离,分离后,物块以v 竖直上升,其上升的最大高度:
h v g
=2
2 ⑥ 解①~⑥式可得h x =02。
三、最大速度、最小速度
例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。
今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。
图3
解析:A 下落到与B 碰前的速度v 1为:
v gh 12= ①
A 、
B 碰后的共同速度v 2为:mv m m v 12=+() ②
B 静止在弹簧上时,弹簧的压缩量为x 0,且:
mg kx =0 ③
A 、
B 一起向下运动到最大速度v 时的位移为x ,此时A 、B 的加速度为0,即有:20mg k x x =+() ④
由机械能守恒得:
212212
2222mgx m v m v E p +
=+()()∆ ⑤ ∆E m v p =1222() ⑥ 解①~⑥得:v mg k gh =+214
例4. 在光滑水平面内,有A 、B 两个质量相等的木块,m m kg A B ==2,中间用轻质弹簧相连。
现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。
图4
解析:当撤除恒力F 后,A 做加速度越来越小的加速运动,弹簧等于原长时,加速度等于零,A 的速度最大,此后弹簧压缩到最大,当弹簧再次回复原长时速度最小,根据动量守恒得:2mv mv mv A B =+ ①
根据机械能守恒得:1001212
22=+mv mv A B ② 由以上两式解得木块A 的最小速度v =0。
四、最大转速和最小转速
例5. 有一水平放置的圆盘,上面放一个劲度系数为k 的轻弹簧,其一端固定于轴O 上,另一端系着质量为m 的物体A ,物体A 与盘面间最大静摩擦力为F fm ,弹簧原长为L ,现将弹簧伸长∆L 后置于旋转的桌面上,如图5所示,问:要使物体相对于桌面静止,圆盘转速n 的最大值和最小值各是多少?
图5
解析:当转速n 较大时,静摩擦力与弹簧弹力同向,即:
k L F m n L L fm ∆∆+=+()()212
π ① n k L F m L L fm
112=++π∆∆()
当转速n 较小时,静摩擦力与弹簧弹力反向,即:
k L F m n L L fm ∆∆-=+()()222π ②
n k L F m L L fm
21
2=-+π∆∆()
所以圆盘转速n 的最大值和最小值分别为:
12πk L F m L L fm ∆∆++()和12πk L F m L L fm
∆∆-+()。
五、最大加速度
例6. 两木块A 、B 质量分别为m 、M ,用劲度系数为k 的轻质弹簧连在一起,放在水平地面上,如图6所示,用外力将木块A 压下一段距离静止,释放后A 做简谐运动,在A 振动过程中,木块B 刚好始终未离开地面,求木块A 的最大加速度。
图6
解析:撤去外力后,A 以未加外力时的位置为平衡位置作简谐运动,当A 运动到平衡位置上方最大位移处时,B 恰好对地面压力为零,此时A 的加速度最大,设为a m 。
对A :由牛顿第二定律有k x x mg ma m ()-+=0
对B :k x x Mg ()-=0
所以a M m g m
m =+(),方向向下。
六、最大振幅
例7. 如图7所示,小车质量为M ,木块质量为m ,它们之间静摩擦力最大值为F f ,轻质弹簧劲度系数为k ,振动系统沿水平地面做简谐运动,设木块与小车间未发生相对滑动,小车振幅的最大值是多少?
图7
解析:在最大位移处,M 和m 相对静止,它们具有相同的加速度,所以对整体有:kA M m a =+() ①
对m 有: F ma f = ②
所以由①②解得:A F M m km f =+()。
七、最大势能
例8. 如图8所示,质量为2m 的木板,静止放在光滑的水平面上,木板左侧固定着一根劲度系数为k 的轻质弹簧,弹簧的自由端到小车右端的距离为L 0,一个质量为m 的小木块从板的右端以初速度v 0开始沿木块向左滑行,最终回到木板右端,刚好不从木板右端滑出,设木板与木块间的动摩擦因数为μ,求在木块压缩弹簧过程中(一直在弹性限度内)弹簧所具有的最大弹性势能。
图8
解:弹簧被压缩至最短时,具有最大弹性势能E pm ,设m 在M 上运动时,摩擦力做的总功产生内能为2E ,从初状态到弹簧具有最大弹性势能及从初状态到末状态,系统均满足动量守恒定律,即: mv m m v 02=+() ①
由初状态到弹簧具有最大弹性势能,系统满足能量守恒:
1212
3022mv m v E E pm =++() ② 由初状态到末状态,系统也满足能量守恒且有:
1212
32022mv m v E =+() ③ 由①②③求得:E mv pm =1602 从以上各例可以看出,尽管弹簧类问题综合性很强,物理情景复杂,物理过程较多,但只要我们仔细分析物理过程,找出每一现象所对应的物理规律,正确判断各物理量之间的关系,此类问题一定会迎。