钽电容器失效分析概述

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钽电容器失效分析概述

1、前言

要对电容器进行严谨的失效分析,有必要全面了解电容器的结构。电容器因其使用的材料及其结构不同分为不同的类型:钽电容器、陶瓷电容器、铝电容器等(见表1)。每种电容器因其提供独有的特性而具有特殊的应用。如同三明治一样,简单的电容器是把一个绝缘体材料夹在两个导体之间,通过导体施加偏置电压。电容器容量(C)由如下等式给出,其中e,A和t分别表示介电常数,表面积以及厚度。

C = eA/t (等式1)

表1 不同类型的电容器

电子设备的小型化要求在更小的容积下提供更高的容量。在小容积下获得高容量的一种方式是增加等式1中的“A”表面积。不同类型电容器获得的方式是不同的。比如钽电容器,可通过使用多孔钽阳极来获得(高比表面积),通常阳极块是由钽粉连同钽丝一起压制并烧结后制成的。然后用电化学的方式在高比表面积多孔钽阳极块上生成无定形Ta2O5电介质。一般Ta2O5电介质层只有几十个纳米厚。然后使用阴极材料浸渍多孔阳极块(MnO2 或是导电层),在小的容积中生成高容量(见图1)。一般固体钽电容器使用在100V以下,其中多数情况下是使用在50V以下。湿式钽电容器(阴极是液体)工作电压可以高一些,可以达到几百伏。

图1 (a)钽电容器结构示意图

(b)所示的是钽阳极块内部的钽/电介质/MnO2阴极

(c)所示的是阳极块内部的钽/电介质/导电聚合物阴极

对于陶瓷和薄膜电容器来说,其电介质层和电极材料是分别交互堆积的,这种交互堆积的电极可以避免极性相对的电极接触。图2所示的是陶瓷电容器的典型结构。几十到上百(陶瓷电容器中)甚至上千(薄膜电容器)电极层堆积起来,已获得需要的容量。

图2 陶瓷电容器的典型结构

因为不同类型电容器的材料和结构有明显的差异(见表1,图1和图2),所以引起电容器失效的原因也有所不同。因此,每一种条件都需有特定的失效分析方法。需要注意的是失效电容器的失效分析是一种全面的因果分析,包括对电路和应用条件的分析。本文所论述的是片式钽电容器的失效分析概述。

钽电容器的电失效模式可以分成三种类型:高漏电流/短路、高等效串联电阻以及开路/低容量,多数的失效集中在高漏电流/短路上。每一种失效模式都有其自身可能的原因,因此失效分析方法要由失效类型来确定,这在下面会讨论。在讨论破坏性分析之前,有必要在不进一步损坏破坏电容器的条件下尽可能多的获取有关钽电容器的物理和电性能的数据。接触到与电容器有关的背景信息和使用条件,例如电路板的贴装、贮存、使用参数、环境条件、无故障工作时间等等,要尽可能多的收集数据并进行分析,因为单一数据是不能确定出电容器失效的根本原因。图3所列的是片式钽电容器最常见的失效原因(分为使用过程和生产过程两部分),这将有助于对钽电容器进行失效分析。值得注意的是,由使用条件或是生产异常所引起的电容器失效是非常相似的。

图3 引起钽电容器失效的常见原因

(a)高漏电流/短路(b)高ESR

2、非破坏性分析

由于对失效定义的解释是变化的,因此失效分析人员了解电容器失效的类型就变得很重要。在所有的情况中,电容器的验货检验是可以和其产品规范相比较的。此外,无损检验技术的结果将有助于确定一条能查明导致电容器失效根本原因的途径。

理论上讲,失效电容器最初应该能在电路板上进行检查。这要证实电容器的安装极性是正确的。如果在没有任何外部应力存在的情况下,电容器的检查(电路板状态)及其环境应有利于识别。焊接点的分析应尽可能的识别出手工返工的状态。其次,电容器的外部和内部结构应可检查。电容器的外部检查一般使用立体显微镜进行控制,立体显微镜能显示出诸如模塑环氧的裂缝、褪色、热/机械损伤、返工等缺陷。外部缺陷的确定是钽电容器失效的原因之一,但是失效的结果并不关键,因为它有可能将根本原因分析错误。X光检测可以检查电容器的内部结构及其任何异常状态(阳极未对准,弱正极或是负极接触等)。随着X光分辨率的改善和计算机运行速度加快,X光断层照相术正成为分析电容器内部结构的一种有益的工具。

物理检查和X光检查之后,对验货状态的电容器电性参数也要进行记录。当然这要以不进一步损伤电容器的方式进行。毋容置疑,电容器必须要与电路进行电隔离。所有的钽电容器制造商

都会将其生产的电容器以特有的方式进行标识,一般会提供出制造商名称、容量、额定电压、日期/批次代码以及极性。这样做的一个重要原因是确保失效的电容器不是假冒好品。

对于电容器电性,所要做的第一件事情就是检查钽电容器的直流电阻,一般使用万用表检查。这样做是要使有效电流维持在很低的水平下。小于∞的直流电流表明电容器具有高电流或是处于短路状态。接着,在适当频率下使用LCR测试仪在0.5或是1Vrms条件检测容量、损耗因子(DF)以及ESR。需要注意的是短路电容器的容量、DF和ESR是不满足规范要求的。由于电容器具有“自愈”功能,因此测试漏电流必须要十分小心。MnO2钽电容器和聚合物钽电容器的自愈机理是有差别的。

3、高漏电流/短路失效

如果电容器具有小于∞的DCR,说明在电容器的正负极之间存在导电路径。假设电容器与电路之间被隔离,要么是泄漏通道通过钽阳极块(电介质层已经被损坏),要么旁路钽阳极块,在正负极之间形成了导电路径。应该检查电容器,以确保在外部不存在电路桥。正如图3中所示,可能还有一些引起导电路径的原因,这可以大体分为使用或是生产两种方式。

在进行任何破坏性分析之前了解电容器内部的失效点位置是非常有益的,特别是对大壳号和多阳极钽电容器来说。图4所示的是高漏电流电容器的热成像图,其中电容器耐受了额定电压,并在短时间内施加了非常少量的电流。在失效点局部的内热会引起局部温度的轻微提升,这可以通过热成像系统记录下来。热成像和X光分析结合使用可以精确的确定出失效部位。这种方法增加失效分析成功几率,并可缩短失效分析的时间。然后横切电容器直到失效点,阳极和电极的任何异常都能分析到。如果电容器不存在外形异常,其DCR一般在几百千欧到几百兆欧这样的范围内,不会观察到热量点,为确保产品真的具有高漏电流,应该额定电压下测量该值。

相关文档
最新文档