数学分析第四版华东师大版21章_重积分

合集下载

数学分析第四版华东师大版21章_重积分

数学分析第四版华东师大版21章_重积分
| | n
f (i ,i ) i I .
i 1
则称f (x, y)在区域D上可积.
二重积分
当f (x, y) 0时,
二重积分D f (x, y)dxdy的几何意义是
以z f (x, y)为顶, D为底面的曲顶柱体的体积. 特别地,当f (x, y) 1时,
f (x, y)在D上的二重积分D f (x, y)d
解答
根据积分区域D的图形正确写出
D的平面直角坐标表示:
D {(x, y) : 0 x R,0 y R x}
由二重积分的计算公式,
R
Rx
| D | D1 dxdy 0 dx0 1 dy
R
0 (R
x)dx
R2 .
2
解答
根据积分区域D的图形也可以写出
D的平面直角坐标的另一种表示 :
D {(x, y) : 0 x R y,0 y R}
例题
试计算二重积分
D (x y)dxdy,
其中D [0,1][0,1].
解答
由二重积分转化成累次积分的公式,
D
(x
y)dxdy
11
0 dx0 (x
y)dy
1
0
(x
1 2
)dx
1.
例题
试计算二重积分
D y sin(xy)dxdy,
其中D [0, ][0,1].
解答
由二重积分转化成累次积分的公式,
二重积分的性质
3.(线性性质)设D为平面上可求面积的有界闭区域, f (x, y), g(x, y)在D上都可积, k1, k2为常数,则k1 f (x, y) k2 g(x, y) 在D上也可积, 且
D k1 f (x, y) k2g(x, y)d k1 D f (x, y)d k2 D g(x, y)d .

21-9——华东师范大学数学分析课件PPT

21-9——华东师范大学数学分析课件PPT
I
第3步: D J(u,v)dudv.
第4步: D J (u,v)dudv.
数学分析 第二十一章 重积分
高等教育出版社
*§9 在一般条件下重积分变量变换公式的证明
第1步的证明 设(u0,v0 ) int , 0,取正数
J u0,v0 满足1 2 J u0,v0 J u0,v0 .
v
dudv
4n
,
由定理16.2,存在u0,v0 In int . 于是 0,
J u0,v0 I
J u,vdudv I .
I
数学分析 第二十一章 重积分
高等教育出版社
*§9 在一般条件下重积分变量变换公式的证明
第2步的证明 若有正方形I int 使
T I J u,vdudv 0,
I
将I等分为4个小正方形,则4个小正方形中必有一个
a xu,v x u,v b yu,v y u,v
a b a b .
2 2M 2 2M 2M 2M 2
同理
v1
v
2
数学分析 第二十一章 重积分
高等教育出版社
*§9 在一般条件下重积分变量变换公式的证明
设 I1 是与 I同中心的正方形,边长是1 ,从而
(u1,v1) I .于是
u1 v1
u v
,
由此
u1 v1
u v
a c
b d
x y
u1 u1
, ,
v1 v1
x y
u, u,
v v
.
数学分析 第二十一章 重积分
高等教育出版社
*§9 在一般条件下重积分变量变换公式的证明
于是
u1 u a x u1,v1 x u,v b y u1,v1 y u,v a xu,v xu,v b yu,v yu,v

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-重积分(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-重积分(圣才出品)

证明:假设 f 在 D 上可积,但在 D 上无界,那么,对 D 的任一分割

必在某个小区域 上无界.
当 i≠k 时,任取

由于 f 在 上无界,从而存在 从而
使得
另一方面,由 f 在 D 上可积知:存在
对任一 D 的分割

时,T 的任一积分和
都满足
1 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台
时).即 f(x,y)在 D 上不可积.
因此
的极
7.证明:若 f(x,y)在有界闭区域 D 上连续,g(x,y)在 D 上可积且不变号,则
存在一点
使得
证明:不妨设
令 M,m 分别是 f 在 D 上的最大、最小值,从而

=0,则由上式

则必大于 0,于是
于是任取
即可.
3 / 48
圣才电子书

为D内
证明:设 D 在 x 轴和 y 轴上的投影区间分别为[a,b]和[c,d].
考虑
9 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台

由于
因此
所以
,同理可证


7.设 D=[0,1]×[0,1],
其中 表示有理数 x 化成既约分数后的分母.证明 f(x,y)在 D 上的二重积分存在而两个
同理可证先 y 后 x 的累次积分不存在.
8.设 D=[0,1]×[0,1],
其中 意义同第 7 题.证明 f(x,y)在 D 上的二重积分不存在而两个累次积分存在.
10 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台

证明:因为在正方形的任何部分内,函数 f 的振幅等于 1.所以二重积分不存在.对固

数学分析21.5三重积分(含习题及参考答案)

数学分析21.5三重积分(含习题及参考答案)

第二十一章 重积分5三重积分一、三重积分的概念引例:设一空间立体V 的密度函数为f(x,y,z),为求V 的质量M , 将V 分割成n 个小块V 1,V 2,…,V n . 每个小块V i 上任取一点(ξi ,ηi ,ζi ), 则 M=i ni i i i T V f ∆∑=→10),,(lim ζηξ, 其中△V i 是小块V i 的体积, T =}{max 1的直径i ni V ≤≤.概念:设f(x,y,z)是定义在三维空间可求体积有界区域V 上的有界函数. 用若干光滑曲面所组成的曲面网T 来分割V ,把V 分成n 个小区域 V 1,V 2,…,V n .记V i 的体积为△V i (i=1,2,…,n),T =}{max 1的直径i ni V ≤≤.在每个V i 中任取一点(ξi ,ηi ,ζi ), 作积分和i ni i i i V f ∆∑=1),,(ζηξ.定义1:设f(x,y,z)为定义在三维空间可求体积的有界闭区域V 上的函数,J 是一个确定的数. 若对任给的正数ε,总存在某一正数δ,使得对于V 的任何分割T ,只要T <δ,属于分割T 的所有积分和都有J V f i ni iii-∆∑=1),,(ζηξ<ε,则称f(x,y,z)在V 上可积,数J 称为函数f(x,y,z)在V 上的三重积分,记作J=⎰⎰⎰VdV z y x f ),,(或J=⎰⎰⎰Vdxdydz z y x f ),,(,其中f(x,y,z)称为被积函数,x, y, z 称为积分变量,V 称为积分区域.注:当f(x,y,z)=1时,⎰⎰⎰VdV 在几何上表示V 的体积.三积重分的条件与性质:1、有界闭域V 上的连续函数必可积;2、如界有界闭区域V 上的有界函数f(x,y,z)的间断点集中在有限多个零体积的曲面上,则f(x,y,z)在V 上必可积.二、化三重积分为累次积分定理21.15:若函数f(x,y,z)在长方体V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意(x,y)∈D=[a,b]×[c,d], g(x,y)=⎰he dz z y xf ),,(存在,则积分⎰⎰Ddxdy y x g ),(也存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰Dhedz z y x f dxdy ),,(.证:用平行于坐标轴的直线作分割T ,把V 分成有限多个小长方体 V ijk =[x i-1,x i ]×[y j-1,y j ]×[z k-1,z k ].设M ijk , m ijk 分别是f(x,y,z)在V ijk 上的上确界和下确界,对任意(ξi ,ηj )∈[x i-1,x i ]×[y j-1,y j ], 有m ijk △z k ≤⎰-kk z z j i dz z f 1),,(ηξ≤M ijk △z k .现按下标k 相加,有∑⎰-kz z j i kk dz z f 1),,(ηξ=⎰he j i dz zf ),,(ηξ=g(ξi ,ηj ),以及∑∆∆∆kj i k j i ijkz y x m,,≤j i ji j i y x g ∆∆∑,),(ηξ≤∑∆∆∆kj i k j i ijk z y x M ,,.两边是分割T 的下和与上和. 由f(x,y,z)在V 上可积,当T →0时, 下和与上和具有相同的极限,∴g(x,y)在D 上可积,且⎰⎰⎰Dhedz z y x f dxdy ),,(=⎰⎰⎰Vdxdydz z y x f ),,(.推论:若V={(x,y,z)|(x,y)∈D, z 1(x,y)≤z ≤z 2(x,y)} ⊂[a,b]×[c,d]×[e,h]时,其中D 为V 在Oxy 平面上的投影,z 1(x,y), z 2(x,y)是D 上的连续函数,函数f(x,y,z)在V 上的三重积分存在,且对任意(x,y)∈D, G(x,y)=⎰),(),(21),,(y x z y x z dz z y x f 亦存在,则积分⎰⎰Ddxdy y x G ),(存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰D dxdy y x G ),(=⎰⎰⎰Dy x z y x z dz z y x f dxdy ),(),(21),,(.证:记F(x,y,z)=⎩⎨⎧∈∈V V z y x ,Vz y x ,z y x f \),,(0),,(),,(0 , 其中V 0=[a,b]×[c,d]×[e,h].对F(x,y,z)应用定理21.15,(如图)则有⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰0),,(V dxdydzz y x F=⎰⎰⎰⨯d][c,b][a,),,(hedz z y x F dxdy =⎰⎰⎰Dy x z y x z dz z y x f dxdy ),(),(21),,(.例1:计算⎰⎰⎰+Vy x dxdydz22,其中V 为由平面x=1, x=2, z=0, y=x 与z=y 所围区域(如图).解:设V 在xy 平面上投影为D ,则 V={(x,y,z)|z 1(x,y)≤z ≤z 2(x,y),(x,y)∈D},其中D={(x,y)|0≤y ≤x,1≤x ≤2}, z 1(x,y)=0, z 2(x,y)=y, 于是⎰⎰⎰+V y x dxdydz 22=⎰⎰⎰+D y y x dz dxdy 022=⎰⎰+D dxdy y x y 22=⎰⎰+21022x dy y x y dx=⎰212ln 21dx =2ln 21.例2:计算⎰⎰⎰++Vdxdydz z y x )(22,其中V 是由⎩⎨⎧==0x y z 绕z 轴旋转一周而成的曲面与z=1所围的区域.解:V={(x,y,z)|22y x +≤z ≤1,(x,y)∈D}, 其中D={(x,y)|x 2+y 2≤1},⎰⎰⎰++Vdxdydz z y x )(22=⎰⎰⎰+++Dyx dz z y x dxdy 12222)(=⎰⎰⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+-+Ddxdy y x y x 2121)(2222=⎰⎰⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-πθ201022121rdrr r d=⎰πθ20407d =207π.定理21.16:若函数f(x,y,z)在长方体V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意x ∈[a,b], 二重积分I(x)=⎰⎰Ddydz z y x f ),,(存在,则积分⎰⎰⎰baDdydz z y x f dx ),,(也存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰baDdydz z y x f dx ),,(.证:用平行于坐标轴的直线作分割T ,把V 分成有限多个小长方体 V ijk =[x i-1,x i ]×[y j-1,y j ]×[z k-1,z k ], 记D jk =[y j-1,y j ]×[z k-1,z k ], 设M ijk , m ijk 分别是f(x,y,z)在V ijk 上的上确界和下确界, 对任意ξi ∈[x i-1,x i ], 有m ijk △D jk ≤⎰⎰jkD i dydz z y f ),,(ξ≤M ijk △D jk .现按下标j,k 相加,有∑⎰⎰k j D i jkdydz z y f ,),,(ξ=⎰⎰Di dydz z y f ),,(ξ=I(ξi ),以及∑∆∆∆kj i k j i ijkz y x m,,≤i ii x I ∆∑)(ξ≤∑∆∆∆kj i k j i ijk z y x M ,,.两边是分割T 的下和与上和. 由f(x,y,z)在V 上可积,当T →0时, 下和与上和具有相同的极限,∴I(x)在D 上可积,且⎰⎰⎰baDdydz z y x f dx ),,(=⎰⎰⎰Vdxdydz z y x f ),,(.推论:(如图)若V ⊂[a,b]×[c,d]×[e,h], 函数f(x,y,z)在V 上的三重积分存在,且对任意固定的z ∈[e,h], 积分φ(z)=⎰⎰zD dxdy z y x f ),,(存在,其中D z是截面{(x,y)|(x,y,z)∈V}, 则⎰he dz z )(ϕ存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰h edz z )(ϕ=⎰⎰⎰heD zdxdy z y x f dz ),,(.证:证法与定理21.16证明过程同理.例3:计算I=⎰⎰⎰⎪⎪⎭⎫ ⎝⎛++V dxdydz c z b y a x 222222, 其中V 是椭球体222222c z b y a x ++≤1.解:I=⎰⎰⎰⎪⎪⎭⎫ ⎝⎛++V dxdydz c z b y a x 222222=⎰⎰⎰V dxdydz a x 22+⎰⎰⎰V dxdydz b y 22+⎰⎰⎰Vdxdydz c z 22.其中⎰⎰⎰V dxdydz a x 22=⎰⎰⎰-a a V xdydz dx a x 22,V x 表示椭圆面2222c z b y +≤1-22ax 或⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-2222222211a x c z a xb y ≤1. 它的面积为π⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-222211a x c a x b =πbc ⎪⎪⎭⎫⎝⎛-221a x. ∴⎰⎰⎰V dxdydz a x 22=⎰-⎪⎪⎭⎫ ⎝⎛-a a dx a x a bcx 22221π=154πabc. 同理可得:⎰⎰⎰V dxdydz b y 22=⎰⎰⎰V dxdydz cz 22=154πabc.∴I=3(154πabc)=54πabc.三、三重积分换元法规则:设变换T :x=x(u,v,w), y=y(u,v,w), z=z(u,v,w),把uvw 空间中的区域V ’一对一地映成xyz 空间中的区域V ,并设函数x=x(u,v,w), y=y(u,v,w), z=z(u,v,w)及它们的一阶偏导数在V ’内连续且函数行列式J(u,v,w)=wz v z uz w yv y u yw x v x u x ∂∂∂∂∂∂∂∂∂≠0, (u,v,w)∈V ’. 则当f(x,y,z)在V 上可积时,有 ⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V dudvdw w v u J w v u z w v u y w v u x f |),,(|)),,(),,,(),,,((.常用变换公式: 1、柱面坐标变换:T :⎪⎩⎪⎨⎧+∞<<∞-=≤≤=+∞<≤=z z ,z ,r y r ,r x πθθθ20sin 0cos , J(r,θ,z)=100cos sin 0sin cos θθθθr r -=r, 即有 ⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V dz rdrd z r r f θθθ),sin , cos (.V ’为V 在柱面坐标变换下的原象.注:(1)虽然柱面坐标变换并非是一对一的,且当r=0时,J(r,θ,z)=0,但结论仍成立.(2)柱面坐标系中r=常数, θ=常数, z=常数的平面分割V ’变换到xyz 直角坐标系中,r=常数是以z 轴为中心轴的圆柱面,θ=常数是过z 轴的半平面,z 的常数是垂直于z 轴的平面(如图).例4:计算⎰⎰⎰+Vdxdydz y x )(22, 其中V 是曲面2(x 2+y 2)=z 与z=4为界面的区域.解法一:V={(x,y,z)|2(x 2+y 2)≤z ≤4, (x,y)∈D}, D={(x,y)|x 2+y 2≤2}.⎰⎰⎰+Vdxdydz y x )(22=⎰⎰⎰++4)(22222)(y x Ddzy x dxdy=⎰⎰+-+Ddxdy y x y x )](24)[(2222=⎰⎰-202220)24(rdrr r d πθ=⎰-2053)2(4dr r r π=⎰-2053)2(4dr r r π=38π.解法二:V 在xy 平面上的投影区域D=x 2+y 2≤2. 按柱坐标变换得 V ’={(r,θ,z)|2r 2≤z ≤4, 0≤r ≤2, 0≤θ≤2π}.∴⎰⎰⎰+V dxdydz y x )(22=⎰⎰⎰'V dz drd r θ2=⎰⎰⎰42320202r dz r dr d πθ=38π.2、球坐标变换:T :⎪⎩⎪⎨⎧≤≤=≤≤=+∞<≤=πθϕπϕθϕθϕ20cos 0sin sin 0cos sin ,r z ,r y r ,r x ,J(r,φ,θ)=0sin cos sin sin cos sin sin sin sin cos cos cos sin ϕϕθϕθϕθϕθϕθϕθϕr co r r r r --=r 2sin φ≥0, 即有⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V d drd rr r r f θϕϕϕθϕθϕsin )cos ,sin sin , cos sin (2,V ’为V 在球坐标变换T 下的原象.注:(1)球坐标变换并不是一对一的,并且当r=0或φ=0或π时,J=0. 但结论仍成立.(2)球坐标系中r=常数, φ=常数, θ=常数的平面分割V ’变换到xyz 直角坐标系中,r=常数是以原点为中心的球面, φ=常数是以原点为顶点, z 轴为中心轴的 圆锥面,θ=常数是过z 轴的半平面(如图).例5:求由圆锥体z ≥22y x +cot β和球体x 2+y 2+(z-a)2≤a 2所确定的立体体积,其中β∈⎪⎭⎫⎝⎛2,0π和a(>0)为常数.解:球面方程x 2+y 2+(z-a)2=a 2可表示为r=2acos φ, 锥面方程z=22y x +cot β可表示为φ=β. ∴V ’={(r,φ,θ)|0≤r ≤2acos φ, 0≤φ≤β, 0≤θ≤2π}. ∴⎰⎰⎰VdV =⎰⎰⎰ϕβπϕϕθcos 202020sin a dr r d d =⎰βϕϕϕπ033sin cos 316d a =343a π(1-cos 4β).例6:求I=⎰⎰⎰Vzdxdydz , 其中V 为由222222c z b y a x ++≤1与z ≥0所围区域.解:作广义球坐标变换:T :⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin cr z br y ar x , 则J=abcr 2sin φ. V 的原象为V ’={(r,φ,θ)|0≤r ≤1, 0≤φ≤2π, 0≤θ≤2π} ∴⎰⎰⎰Vzdxdydz =⎰⎰⎰⋅1022020sin cos dr abcr cr d d ϕϕϕθππ=⎰2022sin 4πϕϕπd abc =42abc π.习题1、计算下列积分:(1)⎰⎰⎰+Vdxdydz z xy )(2, 其中V=[-2,5]×[-3,3]×[0,1];(2)⎰⎰⎰Vzdxdydz y x cos cos , 其中V=[0,1]×[0,2π]×[0,2π];(3)⎰⎰⎰+++Vz y x dxdydz3)1(, 其中V 是由x+y+z=1与三个坐标面所围成的区域; (4)⎰⎰⎰+Vdxdydz z x y )cos(, 其中V 由y=x , y=0, z=0及x+z=2π所围成.解:(1)⎰⎰⎰+VdV z xy )(2=⎰⎰⎰+--1023352)(dz z xy dy dx =⎰⎰--⎪⎭⎫⎝⎛+335231dy xy dx =⎰-522dx =14.(2)⎰⎰⎰VzdV y x cos cos =⎰⎰⎰202010cos cos ππzdz ydy xdx =21.(3)⎰⎰⎰+++Vz y x dxdydz 3)1(=⎰⎰⎰---+++y x x z y x dz dy dx 1031010)1(=⎰⎰-⎥⎦⎤⎢⎣⎡-++x dy y x dx 1021041)1(121=⎰⎪⎭⎫ ⎝⎛-+-+1041211121dx x x =1652ln 21-. (4)⎰⎰⎰+VdV z x y )cos(=⎰⎰⎰-+xxdz z x y dy dx 20020)cos(ππ=⎰⎰-xydydx x 020)sin 1(π=⎰-20)sin 1(21πdx x x =21162-π.2、试改变下列累次积分的顺序: (1)⎰⎰⎰+-yx xdz z y x f dy dx 01010),,(;(2)⎰⎰⎰+220110),,(y x dz z y x f dy dx .解:(1)积分区域V={(x,y,z)|0≤z ≤x+y, 0≤y ≤1-x, 0≤x ≤1}; ∵V 在xy 平面上的投影区域D xy ={(x,y)|0≤y ≤1-x, 0≤x ≤1} ∴I=⎰⎰⎰+-yx xdz z y x f dy dx 01010),,(=⎰⎰⎰+-yx ydz z y x f dx dy 01010),,(.∵V 在yz 平面上的投影区域D yz ={(y,z)|0≤y ≤1, 0≤z ≤1} ∴I=⎰⎰⎰-yydx z y x f dz dy 10010),,(+⎰⎰⎰--yy z y dx z y x f dz dy 1110),,(=⎰⎰⎰--yy z zdx z y x f dy dz 1010),,(+⎰⎰⎰-yz dx z y x f dy dz 10110),,(.∵V 在xz 平面上的投影区域D yz ={(x,z)|0≤x ≤1, 0≤z ≤1} ∴I=⎰⎰⎰-xxdy z y x f dz dx 10010),,(+⎰⎰⎰--xx z x dy z y x f dz dx 1110),,(=⎰⎰⎰--xx z zdy z y x f dx dz 1010),,(+⎰⎰⎰-xz dy z y x f dx dz 10110),,(.(2)积分区域V={(x,y,z)|0≤z ≤x 2+y 2, 0≤y ≤1, 0≤x ≤1};∵V 在xy 平面上的投影区域D xy ={(x,y)|0≤y ≤1, 0≤x ≤1}; 在yz 平面上的投影区域D yz ={(x,y)|0≤y ≤1, 0≤z ≤1+y 2}; 在xz 平面上的投影区域D yz ={(x,y)|0≤x ≤1, 0≤z ≤1+x 2}; ∴I=⎰⎰⎰+2201010),,(y x dz z y x f dy dx =⎰⎰⎰+220110),,(y x dz z y x f dx dy=⎰⎰⎰10010),,(2dx z y x f dz dy y +⎰⎰⎰-+1110222),,(y z y ydxz y x f dz dy=⎰⎰⎰10110),,(dx z y x f dy dz z +⎰⎰⎰--111212),,(yz z dx z y x f dy dz .=⎰⎰⎰10010),,(2dy z y x f dz dx x +⎰⎰⎰-+1110222),,(x z x x dyz y x f dz dx=⎰⎰⎰10110),,(dy z y x f dx dz z +⎰⎰⎰--111212),,(x z z dy z y x f dx dz .3、计算下列三重积分与累次积分:(1)⎰⎰⎰Vdxdydz z 2, 其中V 由x 2+y 2+z 2≤r 2和x 2+y 2+z 2≤2rz 所确定;(2)⎰⎰⎰--+-22222221010y x yx x dz z dy dx .解:(1) 由x 2+y 2+z 2≤2rz, 得S: x 2+y 2≤2rz-z 2, 0≤z ≤2r , 又由x 2+y 2+z 2≤r 2, 得Q: x 2+y 2≤r 2-z 2,2r≤z ≤r ∴⎰⎰⎰Vdxdydz z 2=⎰⎰⎰Sr dxdy z dz 220+⎰⎰⎰Qrr dxdyz dz 22=⎰-2022)2(r dz z rz z π+⎰-rr dz z r z 2222)(π=480595r π. (2)应用柱坐标变换:V ’={(r,θ,z)|r ≤z ≤22r -, 0≤r ≤1, 0≤θ≤2π}, ∴⎰⎰⎰--+-22222221010y x yx x dz z dy dx =⎰⎰⎰-2221020r rdz z rdr d πθ=⎰---1322]2)2[(6dr r r r r π.=⎰---10322]2)2[(6dr r r r r π=)122(15-π.4、利用适当的坐标变换,计算下列各曲面所围成的体积. (1)z=x 2+y 2, z=2(x 2+y 2), y=x, y=x 2;(2)2⎪⎭⎫ ⎝⎛+b y a x +2⎪⎭⎫ ⎝⎛c z =1 (x ≥0, y ≥0, z ≥0, a>0, b>0, c>0). 解:(1)V={(x,y,z)|x 2+y 2≤z ≤2(x 2+y 2), (x,y)∈D}, 其中D={(x,y)|0≤x ≤1, x 2≤y ≤x }. ∴⎰⎰⎰V dxdydz =⎰⎰+Ddxdy y x )(22=⎰⎰+xx dyy x dx 2)(2210=⎰⎥⎦⎤⎢⎣⎡-+-1063223)()(dx x x x x x =353. (2)令x=arsin 2φcos θ, y=brcos 2φcos θ, z=crsin θ, 则J=0cos sin cos cos sin 2sin cos cos cos cos cos sin 2sin sin cos sin 2222θθθϕϕθϕθϕθϕϕθϕθϕcr c br br b ar ar a ---=2abcr 2cos φsin φcos θ,又V ’={(r,φ,θ)|0≤r ≤1, 0≤φ≤2π, 0≤θ≤2π}. ∴⎰⎰⎰Vdxdydz =⎰⎰⎰1022020sin cos cos 2dr r d d abc ππϕϕϕθθ=3abc.5、设球体x 2+y 2+z 2≤2x 上各点的密度等于该点到坐标原点的距离,求这球体的质量.解:依题意,球体的质量M=⎰⎰⎰≤++++xz y x dV z y x 2222222,应用球面变换得V ’={(r,θ,φ)|-2π≤θ≤2π, 0≤φ≤π, 0≤r ≤2sin φcos θ}. ∴M=⎰⎰⎰-θϕπππϕϕθcos sin 203022sin dr r d d =⎰⎰-πππϕϕθθ05224sin cos 4d d =58π.6、证明定理21.16及其推论. 证:证明过程见定理21.16及其推论.7、设V=⎭⎬⎫⎩⎨⎧≤++1),,(222222c z b y a x z y x , 计算下列积分:(1)⎰⎰⎰---Vdxdydz c z b y a x 2222221;(2)⎰⎰⎰++Vc z by ax dxdydz e 222222.解:应用球面变换得V ’={(r,θ,φ)| 0≤θ≤2π, 0≤φ≤π, 0≤r ≤1}. (1)⎰⎰⎰---VdV cz b y a x 2222221=⎰⎰⎰-10220201sin dr r abcr d d ϕϕθππ =42πabc . (2)⎰⎰⎰++Vc z b y ax dV e222222=⎰⎰⎰12020sin dr e abcr d d r ϕϕθππ=)2(4-e abc π.。

数学分析课本-习题及答案第二十一章

数学分析课本-习题及答案第二十一章

第十一章 重积分§1 二重积分的概念1.把重积分⎰⎰D xydxdy 作为积分和的极限,计算这个积分值,其中D=[][]1,01,0⨯,并用直线网x=n i ,y=nj (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为其界点.2.证明:若函数f 在矩形式域上D 可积,则f 在D 上有界.3.证明定理:若f 在矩形区域D 上连续,则f 在D 上可积.4.设D 为矩形区域,试证明二重积分性质2、4和7.性质2 若f 、g 都在D 上可积,则f+g 在D 上也可积,且()⎰+D g f =⎰⎰+D D g f . 性质4 若f 、g 在D 上可积,且g f ≤,则 ⎰⎰≤D Dg f , 性质7(中值定理) 若f 为闭域D 上连续函数,则存在()D ,∈ηξ,使得()D ,f f D∆ηξ=⎰. 5.设D 0、D 1和D 2均为矩形区域,且210D D D =,∅=11D int D int , 试证二重积分性质3.性质3(区域可加性) 若210D D D =且11D int D int ∅=,则f 在D 0上可积的充要条件是f 在D 1、D 2上都可积,且⎰0D f =⎰⎰+21D D f f , 6.设f 在可求面积的区域D 上连续,证明:(1)若在D 上()0y ,x f ≥,()0y ,x f ≠则0f D>⎰; (2)若在D 内任一子区域D D ⊂'上都有⎰'=D 0f ,则在D 上()0y ,x f ≡。

.7.证明:若f 在可求面积的有界闭域D 上连续,,g 在D 上可积且不变号,则存在一点()D ,∈ηξ,使得()()⎰⎰D dxdy y ,x g y ,x f =()ηξ,f ()⎰⎰Ddxdy y ,x g .8.应用中值定理估计积分⎰⎰≤-++10y x 22ycos x cos 100dxdy 的值§2 二重积分的计算1.计算下列二重积分:(1)()⎰⎰-Ddxdy x 2y ,其中D=[][]2,15,3⨯;(2)⎰⎰D2dxdy xy ,其中(ⅰ)D=[][]3,02,0⨯,(ⅱ)D=[]3,0 []2,0⨯; (3)()⎰⎰+Ddxdy y x cos ,其中D=[]π⨯⎥⎦⎤⎢⎣⎡π,02,0; (4)⎰⎰+D dx dy x y 1x ,其中D=[][]1,01,0⨯. 2. 设f(x,y)=()()y f x f 21⋅为定义在D=[]⨯11b ,a []22b ,a 上的函数,若1f 在[]11b ,a 上可积,2f 在[]22b ,a 上可积,则f 在D 上可积,且⎰D f =⎰⎰⋅1122b a b a 21f f . 3.设f 在区域D 上连续,试将二重积分()⎰⎰Ddxdy y ,x f 化为不同顺序的累次积分:(1)D 由不等式x y ≤,a y ≤,b x ≤()b a 0≤≤所确的区域:(2)D 由不等式222a y x ≤+与a y x ≤+(a>0)所确定的区域;(3)D=(){}1,≤+y x y x .4.在下列积分中改变累次积分的顺序:(1) ()⎰⎰20x 2x dy y ,x f dx ; (2) ()⎰⎰----11x 1x 122dy y ,x f dx ; (3)()⎰⎰10x 02dy y ,x f dy +()()⎰⎰-31x 3210dy y ,x f dx .5.计算下列二重积分:(1)⎰⎰D2dxdy xy ,其中D 由抛物线y=2px 与直线x=2p (p>0)所围的区域; (2)()⎰⎰+D 22dxdy y x,其中D=(){1x 0y ,x ≤≤, y x ≤ }x 2≤; (3)⎰⎰-D x a 2dx dy (a>0),其中D 为图(20—7)中的阴影部分; (4)⎰⎰Ddxdy x ,其中D=(){}x y x y ,x 22≤+; (5)⎰⎰D dxdy xy ,其中为圆域222a y x ≤+.6.写出积分()⎰⎰ddxdy y ,x f 在极坐标变换后不同顺序的累次积分:(1)D 由不等式1y x 22≤+,x y ≤,0y ≥所确定的区域;(2)D 由不等式2222b y x a ≤+≤所确定的区域;(3)D=(){}0x ,y y x y ,x 22≥≤+.7.用极坐标计算二重积分: (1) ⎰⎰+D22dxdy y x sin ,其中D=(){222y x y ,x +≤π }24π≤; (2)()⎰⎰+Ddxdy y x ,其中D=(){}y x y x y ,x 22+≤+; (3)()⎰⎰+'D22dxdy y x f ,其中D 为圆域222R y x ≤+.8.在下列符号分中引入新变量后,试将它化为累次积分:(1) ()⎰⎰--20x 2x 1dy y ,x f dx ,其中u=x+y,v=x-y;(2) ()dxdy y ,x f D⎰⎰,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x=v cos U 4, v sin U y 4=.(3)()⎰⎰dxdy y ,x f ,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x+y=u,y=uv.9.求由下列曲面所围立体V 的体积:(1) v 由坐标平面及x=2,y=3,x+y+Z=4所围的角柱体;(2) v 由z=22y x +和z=x+y 围的立体; (3) v 由曲面9y 4x Z 222+=和2Z=9y 4x 22+所围的立体.11.试作适当变换,计算下列积分:(1)()()⎰⎰-+Ddxdy y x sin y x ,D=(){π≤+≤y x 0y .x }π≤-≤y x 0;(2)⎰⎰+D y x y dxdy e,D=(){1y x y ,x ≤+,0x ≥,}0y ≥.12.设f:[a,b]→R 为连续函数,应用二重积分性质证明:()≤⎥⎦⎤⎢⎣⎡⎰2b a dx x f ()()⎰-b a 2dx x f a b , 其中等号仅在f 为常量函数时成立。

数学分析第二十一章重积分第一次课

数学分析第二十一章重积分第一次课

的面积为零. 定理21.3 若曲线K是定义在[a, b]上的连续函数f ( x)的图象,
则曲线K的面积为零.
证明 由于f ( x)在[a, b]上连续, 从而在[a, b]上一致连续.
0, 0, 使当分划a x0 xn b满足 max {xi } 时,
yk mik yk f (i , y )dy M ik yk . yk 1 s s d 因此 mik yk F (i ) c f (i , y )dy M ik yk , k 1 k 1 r s r r s mik yk xi F (i )xi M ik yk xi . i 1k 1 i 1 i 1k 1 r 由f ( x, y )的可积性得 lim F (i )xi f ( x, y )d . D T 0 i 1 r b b d 由定积分定义得 lim F (i )xi F ( x)dx dx f ( x, y )dy. a a c T 0 i 1 b d D f ( x, y)dxdy a dx c f ( x, y)dy.
和式S (T )
i 1
M i i , s(T ) mi i , 分别称为f ( x, y )关于分割
i 1
n
n
T的上和与下和 定理21.4 f ( x, y )在D上可积的充要条件是 : lim S (T) lim s(T).
T 0 T 0
定理21.5 f ( x, y )在D上可积的充要条件是 : 0, D的 某个分割T, 使得 S (T ) s (T ) . 定理21.6 有界闭区域D上的连续函数必可积. 定理21.7 设f ( x, y )是定义在有界闭区域D上的有界函数.

数学分析21.7n重积分(含习题及参考答案)

数学分析21.7n重积分(含习题及参考答案)

第二十一章 重积分7 n 重积分引例:设物体V 1中点的坐标为(x 1,y 1,z 1), V 2中点的坐标为(x 2,y 2,z 2), 它们的密度函数分别为连续函数ρ1(x 1,y 1,z 1)与ρ2(x 2,y 2,z 2), 且 设它们之间的引力系数为1. 在V 1中取质量微元ρ1dx 1dy 1dz 1, 在V 2中取质量微元ρ2dx 2dy 2dz 2. 由万有引力定律知, V 1的微元对V 2的微元的吸引力在x 轴上的投影为32221112121)(rdz dy dx dz dy dx x x -ρρ, 其中r=221221221)()()(z z y y x x -+-+-.将两个物体的所有微元间的吸引力在x 轴上投影的量相加,就 得到物体V 1与V 2间的引力在x 轴上投影的值. 它是一个六重积分, 即F x =⎰⎰⎰⎰⎰⎰-Vdz dy dx dz dy dx rx x z y x z y x 22211132122221111))(,,(),,(ρρ.这是在由六维数组(x 1,y 1,z 1,x 2,y 2,z 2)构成六维空间中六维区域V=V 1×V 2上的积分. 吸引力在y 和z 轴上的投影也同样可由六个自变量的积分来表示.概念:规定n 维长方体区域:V=[a 1,b 1]×[a 2,b 2]×…×[a n ,b n ]的体积为 (b 1-a 1)×(b 2-a 2)×…×(b n -a n ). 又存在以下n 维体体积: n 维单纯形:x 1≥0,x 2≥0,…,x n ≥0, x 1+x 2+…+x n ≤h. n 维球体:x 12+x 22+…+x n 2≤R 2.设n 元函数f(x 1,x 2,…,x n )定义在n 维可求体积的区域V 上. 通过对V 的分割、近似求和、取极限的过程,即得到n 重积分: I=n n Vdx dx dx x x x f ⋯⋯⋯⋯⎰⎰2121),,,(.性质:1、若f(x 1,x 2,…,x n )在n 维有界区域V 上连续,则存在n 重积分. 2、若积分区域为长方体[a 1,b 1]×[a 2,b 2]×…×[a n ,b n ],则有 I=n n Vdx dx dx x x x f ⋯⋯⋯⎰⎰2121),,,(=⎰⎰⎰⋯⋯nnb a n n b a b a dx x x x f dx dx ),,,(21212211.3、当V 由不等式组a 1≤x 1≤b 1, a 2(x 1)≤x 2≤b 2(x 1),…, a n (x 1,…,x n-1)≤x n ≤b n (x 1,…,x n-1) 表示时,则有I=⎰⎰⎰--⋯⋯⋯⋯),,,(),,,(21)()(21121121121211),,,(n n n nx x x b xx x a n n x b x a b a dx x x x f dx dx .4、设变换T :⎪⎪⎩⎪⎪⎨⎧⋯=⋯⋯⋯=⋯=),,,(),,,(),,,(2121222111n n n nn x x x x x x ξξξξξξξξξ把n 维ξ1,ξ2,…,ξn 空间区域V ’ 一对一地映射成n 维x 1,x 2,…,x n 空间的区域V ,且在V ’上函数行列式J=),,,(),,,(2121n n x x x ξξξ⋯∂⋯∂=n nn n n n x x x x x x x x x ξξξξξξξξξ∂∂⋯∂∂∂∂⋯⋯⋯⋯∂∂⋯∂∂∂∂∂∂⋯∂∂∂∂212221212111恒不为零,则有n 重积分换元公式:I= n n n Vdx dx x x f ⋯⋯⎰⋯⎰11),,(个=n n n n n Vd d J x x f ξξξξξξ⋯⋯⋯⋯⎰⋯⎰1111||)),,(,),,,((个.例1:求n 维单纯形T n :x 1≥0,x 2≥0,…,x n ≥0, x 1+x 2+…+x n ≤h 的体积. 解:作变换x 1=h ξ1,x 2=h ξ2,…,x n =h ξn , 则J=h n , 单纯形T n 的体积为△T n =h nn n D d d d ξξξ⋯⎰⋯⎰211个=h n a n . 其中D 1={(ξ1,ξ2,…,ξn )|ξ1+ξ2+…+ξn ≤1, ξ1≥0, ξ2≥0,…, ξn ≥0},则a n =1211101--⋯⎰⋯⎰-⎰n n T n d d d d n ξξξξ个, 其中T n-1={(ξ1,ξ2,…,ξn-1)|ξ1+ξ2+…+ξn-1≤1-ξn , ξ1≥0, ξ2≥0,…, ξn-1≥0}. 又对积分a n 作变换ξ1=(1-ξn )ζ1,…, ξn-1=(1-ξn )ζn-1, 则J=(1-ξn )n-1,a n = 12111012)1(---⋯⎰⋯⎰-⎰n n D n n n d d d d ζζζξξ个= a n-1⎰--101)1(n n n d ξξ=na n 1-, 其中D 2={(ζ1, ζ2,…, ζn-1)| ζ1+ζ2+…+ζn-1≤1, ζ1≥0, ζ2≥0,…, ζn-1≥0}.当n=1时,a 1=1, ∴a n =!1n , 于是单纯形T n 的体积为△T n =!n h n .例2:求n 维球体V n :x 12+x 22+…+x n 2≤R 2的体积.解法一:作变换x 1=R ξ1,x 2=R ξ2,…,x n =R ξn , 则J=R n , 球体V n 的体积为△V n =R nn n d d d n ξξξξξ⋯⎰⋯⎰≤+⋯+211221 个=R n b n . 其中b n =121111122121---≤+⋯+-⋯⎰⋯⎰-⎰n n n d d d d nn ξξξξξξξ 个=⎰-11n d ξ△V n-1=b n-1⎰---11212)1(n n n d ξξ. 令ξn =cos θ, 则有b n =b n-1⎰-01cos sin πθθd n =2b n-1⎰20sin πθθd n . 又⎰20sin πθθd n =⎪⎪⎩⎪⎪⎨⎧+=+=-12!)!12(!)!2(22!!2!)!12(m n ,m m m n ,m m π, 及b 1=2, ∴△V n =R nb n =⎪⎪⎩⎪⎪⎨⎧+=+=+12!)!12()2(22!122m n ,m R m n ,m R m m mm ππ.解法二:作变换x 1=rcos φ1,x 2=rsin φ1cos φ2, x 3=rsin φ1sin φ2cos φ3,…, x n-1=rsin φ1sin φ2…sin φn-2cos φn-1, x n =rsin φ1sin φ2…sin φn-1, 则 J=r n-1sin n-2φ1sin n-3φ2…sin 2φn-3sin φn-2, 积分区域为:0≤r ≤R, 0≤φ1,φ2,…,φn-2≤π, 0≤φn-1≤2π, 从而 △V n =⎰⎰⎰⎰------⋯⋯πππϕϕϕϕϕϕ20122312102001sin sin sin n n n n n n Rd r d d dr=⎰⎰⎰----⋯πππϕϕϕϕϕ2010220112sin sin n n n n n d d d n R =⎪⎪⎩⎪⎪⎨⎧+=+=+12!)!12()2(22!122m n ,m R m n ,m R m m mm ππ.注:特别地,当n=1,2,3时,有△V 1=2R ,△V 2=πR 2,△V 3=34πR 3.求n 维空间中的曲面面积:设x n =f(x 1,…,x n-1), f(x 1,…,x n-1)∈△⊂R n-1为n 维空间中的曲面,则其面积为 11212111---∆⋯⎪⎪⎭⎫ ⎝⎛∂∂+⋯+⎪⎪⎭⎫⎝⎛∂∂+⎰⋯⎰n n n nn dx dx x x x x 个.例3:求n 维单位球面x 12+x 22+…+x n 2=1的面积.解:n 维单位球面上半部为:x n =)(12121-+⋯+-n x x (2121-+⋯+n x x ≤1), 又21211⎪⎪⎭⎫ ⎝⎛∂∂+⋯+⎪⎪⎭⎫ ⎝⎛∂∂+-n n n x x x x =n x 1, ∴上半球面面积为 21△S=n n n x x x dx dx n 11112121--≤+⋯+⋯⎰⋯⎰- 个=)(1212111112121---≤+⋯++⋯+-⋯⎰⋯⎰-n n n x x x x dx dx n个=⎰---+⋯+-+⋯+------≤+⋯++⋯+-⋯⎰⋯⎰)(1)(1212112121222122212121)(1n n n x x x x n n n n x x xx dx dx dx个. 又⎰--+⋯+-+⋯+----+⋯+-)(1)(12121122212221)(1n n x x x x n n x x dx =π, ∴21△S=π21212121--≤+⋯+⋯⎰⋯⎰-n n x x dx dx n个=πb n-2, 其中b n-2=21212121--≤+⋯+⋯⎰⋯⎰-n n x x dx dx n个为n-2维空间中单位球体体积.由例2得n 维球面面积为:△S=2πb n-2=⎪⎪⎩⎪⎪⎨⎧+=-=-12!)!12()2(22)!1(2m n ,m m n ,m mmππ.注:特别地,当n=1,2,3时,有△S 1=2,△S 2=2π,△S 3=4π.习题1、计算五重积分⎰⎰⎰⎰⎰Vdxdydzdudv , 其中V :x 2+y 2+z 2+u 2+v 2≤r 2.解:根据例2的结论,当n=5时V 5=!!5)2(225πr =15852r π.2、计算四重积分⎰⎰⎰⎰++++----Vdxdydzdu u z y x u z y x 2222222211, V :x 2+y 2+z 2+u 2≤1.解:令x=rcos φ1, y=rsin φ1cos φ2, z=rsin φ1sin φ2cos φ3, u=rsin φ1sin φ2sin φ3, 原式=⎰⎰⎰⎰+-102123222030201sin sin 11dr r rr d d d ϕϕϕϕϕπππ =⎰⎰+-132011211sin 4dr r r r d πϕϕπ=2π2⎰+-1032211dr r r r =π2(1-4π).3、求n 维角锥x i ≥0,nn a x a x a x +⋯++2211≤1, a i >0 (i=1,2,…,n)的体积. 解:令ξi =iia x (i=1,2,…,n), 则V=n n a x dx dx n i ii ⋯⎰∑⋯⎰≤=111个=a 1…a n n n d d n i i ξξξ⋯⎰∑⋯⎰≤=111个.由例1得V=!1n a 1…a n .4、把Ω:x 12+x 22+…+x n 2≤R 2上的n(n ≥2)重积分n n n dx dx x x x f ⋯+⋯++⎰⋯⎰122221Ω)(个化为单重积分,其中f(u)为连续函数. 解:令x 1=rcos φ1, x 2=rsin φ1cos φ2,…, x n-1=rsin φ1sin φ2…sin φn-2cos φn-1,x n =rsin φ1sin φ2…sin φn-2sin φn-1, 则nn n dx dx x x x f ⋯+⋯++⎰⋯⎰122221Ω)(个=⎰⎰⎰⎰⎰------⋯⋯ππππϕϕϕϕϕϕϕ2012231202020101sin sin sin )(n n n n n Rn d d d d dr r f r ,∵⎰π0sin tdt n =2⎰20cos πtdt n =⎪⎭⎫⎝⎛+Γ⎪⎭⎫⎝⎛+Γ2221n n π. ∴原式=⎰-⎪⎭⎫ ⎝⎛ΓR n hdr r f r h 012)(22π.。

21.8 反常二重积分 数学分析课件(华师大 四版) 高教社ppt 华东师大教材配套课件

21.8 反常二重积分 数学分析课件(华师大 四版) 高教社ppt 华东师大教材配套课件

*点击以上标题可直接前往对应内容定义1设(,)f x y 为定义在无界区域D 上的二元函数. 若对于平面上任一包围原点的光滑封闭曲线,γ(,)f x y γE γ在曲线所围的有界区域与D 的交集E D D γγ= (图21-42)上二重可积.{}22min(,).d x yx y γγ=+∈若存在有限极限:xy2142-图γOE γDDγ令定义1lim (,)d ,d D f x y γγσ→∞⎰⎰γ且与的取法无关, 重积分收敛, (,)d lim (,)d ;(1)d DD f x y f x y γγσσ→∞=⎰⎰⎰⎰否则称(,)f x y 在D 上的反常二重积分发散, 或简(,)d Df x y σ⎰⎰发散.称(,)f x y 在D 上的反常二则称并记定理21.17为一列包围原点的光滑封闭曲线序列,{}22(i)inf(,)();n n d x yx y n γ=+∈→+∞→∞(ii)sup (,)d ,nnD I f x y σ=<+∞⎰⎰,n n DE D = n γn E 其中为所围的有界区域.常二重积分(1) 必定收敛, (,)d .Df x y I σ=⎰⎰设在无界区域D 上(,)0,f x y ≥12,,,γγ ,n γ 满足这时反并且,E '的区域记为.D E D ''= 并记→∞=+∞lim ,n x d 因为.n D D D '⊂⊂因此存在n , 使得≥(,)0,f x y 由于所以有(,)d (,)d .nD D f x y f x y I σσ'≤≤⎰⎰⎰⎰另一方面,因为sup (,)d ,nnD I f x y σ=⎰⎰0,ε>0,n 故对任给的总有证设'γ为任何包围原点的光滑封闭曲线,它所围成使得(,)d .nD f x y I σε>-⎰⎰(,)d .D f x y I σε'>-⎰⎰再由(,)d ,D I f x y I εσ'-<≤⎰⎰由定理21.17 的证明容易看到有以下定理:0,n D D '⊃因而对于充分大的有可知反常二重积分(,)d Df x y σ⎰⎰存在, 且等于I .定理21.18若在无界区域D 上(,)0,f x y ≥则反常二重积分(1) 收敛的充要条件是:上(,)f x y 可积,且积分值有上界.例1证明反常二重积分22()e d x y Dσ-+⎰⎰收敛,=+∞⨯+∞[0,)[0,).D 部分. 证设是以原点为圆心R 为半径的圆在第一象限R D 在D 的任何有界子区域其中D 为第一象限部分, 即22()e0,x y -+>所以二重积分因为22()e d Rx y D σ-+⎰⎰的值随着R 的增大而增大.22()ed Rx y D σ-+⎰⎰所以22()lim ed Rx y R D σ-+→∞⎰⎰显然对D 的任何有界子区域,D '总存在足够大的R , 使得,R D D '⊂于是22()ed x y D σ-+'⎰⎰又因2220πd e d (1e ),4Rr R r r θπ--==-⎰⎰2lim (1e ).44R R ππ-→∞=-=22()ed Rx y D σ-+≤⎰⎰π.2≤2ed .x σ+∞-⎰的值为此, 考察=⨯[0,][0,]a S a a 上的积分22()ed .a x y S σ-+⎰⎰因为-+⎰⎰22()e d ax y S σ--=⎰⎰22ed ed aax y x y ()22e d ,axx -=⎰因此由定理21.17, 反常二重积分22()e d x y Dσ-+⎰⎰收敛,并且由定理21.16有22()πe d .(2)4x y Dσ-+=⎰⎰由(2) 式还可推出在概率论中经常用到的反常积分故得2ed .2x x π+∞-=⎰下面的例子是应用反常二重积分补证第十九章中有例2 证明: 若0,0,p q >>则()()(,).()p q p q p q ΓΓB Γ=+Γ=2,x u d 2d ,x u u =证对于函数, 令则于是21210()e d 2e d .p xp u p xx uu Γ+∞+∞----==⎰⎰从而2221210()()4ed ed p xq y p q xx yyΓΓ+∞+∞----=⋅⎰⎰关函数与Γ函数的联系公式.B 2221210lim4ed e d .RR p x q y R xx yy ----→∞=⋅⎰⎰令=⨯[0,][0,],R D R R 由二重积分化为累次积分的计算公式, 222121()ed Rp q x y D xyσ---+⎰⎰所以222121()()()lim 4ed Rp q x y R D p q xyσΓΓ---+→∞=⎰⎰222121()4ed ,(4)p q x y Dxyσ---+=⎰⎰式右边的反常二重积分,记这里为平面上第一象限.D {}222(,)|,0,0.r D x y x y r x y =+≤≥≥有2221210ed e d .RRp x q y xx yy ----=⋅⎰⎰和例1 一样,下面讨论(4)于是有222121()()()4ed ,p q x y Dp q xyσΓΓ---+=⎰⎰222121()lim4ed .rp q x y r D xyσ---+→∞=⎰⎰对上式积分应用极坐标变换,+----→∞=⎰⎰22()22121200()()lim4d (cos )(sin )e d .rp q p q r r p q rr r πθθθΓΓ221212()120lim 2(cos )(sin )d 2e d rp q p q r r rrπθθθ--+--→∞=⋅⎰⎰2121202(cos )(sin )d ().p q p q πθθθΓ--=⋅+⎰再由第十九章§3 的(10) 式就得到()()(,)().p q p q p q ΓΓB Γ=+则得定理21.19(,)f x y D 设在无界区域的任何有界子区域上证(只证充分性) 设⎰⎰|(,)|d Df x y σ收敛于M .作辅|(,)|(,)(,),2f x y f x y f x y ++=|(,)|(,)(,).2f x y f x y f x y --=可积. 要条件是:助函数:|(,)|d D f x y σ⎰⎰收敛.反常二重积分收敛的充则反常二重积分(,)d Df x y σ⎰⎰显然有0(,)|(,)|,0(,)|(,)|,f x y f x y f x y f x y +-≤≤≤≤因而任给有界区域,D σ⊂恒有(,)d |(,)|d ,f x y f x y M σσσσ+≤=⎰⎰⎰⎰(,)d |(,)|d .f x y f x y M σσσσ-≤=⎰⎰⎰⎰+(,)f x y -(,)f x y 所以与在D 上的反常二重积分都收敛.+-=-(,)(,)(,),f x y f x y f x y 所以(,)f x y 在D 上的反常二重积分也收敛.又因关于必要性的证明, 有兴趣的读者可参阅菲赫金哥尔茨著的微积分学教程第三卷第一分册.注对于反常定积分, 绝对收敛的反常积分一定收敛,反之不然.分一定收敛, 反之亦然.为直线上的点是有序的, 而在平面上的点是无序的.而在反常二重积分中, 绝对收敛的反常积出现这种区别的原因, 是因定理21.20 (柯西判别法)=+22.r x y (i)若当r 足够大时, |(,)|(),p cf x y c r≤为正常数2p >⎰⎰(,)d Df x y σ则当时, 反常二重积分收敛;(,)f x y |(,)|,p cf x y r≥(ii) 若在D 上满足其中D 包含有以原点为顶点的无限扇形区域,反常二重积分⎰⎰(,)d Df x y σ发散.(,)f x y 设在无界区域D 的任何有界子区域上可积,D 中的点(,)x y 到原点的距离为2p ≤则当时定义2设P 为有界区域D 的一个聚点,(,)f x y 在D 上除(,)f x y D -∆在上可积, →-⎰⎰0lim (,)d d D f x y σ∆若极限∆存在且有限, 并与的取法无关, 无界函数的二重积分点外皆有定义, 且在的任何空心邻域内无界,P P 为D 中任何含有P 的小区域,∆∆的直径. 又设d 表示上的反常二重积分收敛,0(,)d lim(,)d ;d DD f x y f x y σσ∆→-=⎰⎰⎰⎰(,)f x y 在D 则称记作(,)d Df x y σ⎰⎰否则称反常积分发散.与无界区域上的反常重积分一样,常重积分也可建立相应的收敛性定理.也与定理21.20类同, 请读者自证.对无界函数的反其证明方法定理21.21 (柯西判别法)定义, 则下面两个结论成立:(i) 若在点P 的附近有(,),cf x y r α≤其中c 为常数,2200()(),r x x y y =-+-则当<2α(,)d D f x y σ⎰⎰时, 反常二重积分收敛;设在有界区域D 上除点00(,)P x y 外处处有(,)f x y P 是它的瑕点, 点(,),cf x y rα≥且D 含有以点P 为顶点的角形区域, 反常二重积分(,)d Df x y σ⎰⎰发散.(ii)若在点P 的附近有≥2α时, 则当复习思考题总结反常定积分与反常二重积分有哪些相同与不同之处.数学分析第二十一章重积分高等教育出版社。

数学分析21.4二重积分的变量变换(含习题及参考答案)

数学分析21.4二重积分的变量变换(含习题及参考答案)

第二十一章 重积分 4二重积分的变量变换一、二重积分的变量变换公式定积分的变量变换:设f(x) 在[a,b]上连续,x=φ(t)当t 从α变到β时,严格单调地从a 变到b ,且φ(t)连续可导,则⎰b a dx x f )(=⎰'βαϕϕdt t t f )())((. 当α<β(即φ’(t)>0)时,记X=[a,b], Y=[α,β],则X=φ(Y), Y=φ-1(X),则 上面的公式可以写成⎰X dx x f )(=⎰-')(1)())((X dt t t f ϕϕϕ.当α>β(即φ’(t)<0)时,又可改写成⎰X dx x f )(=-⎰-')(1)())((X dt t t f ϕϕϕ,即当φ(t)严格单调且连续可微时,有⎰X dx x f )(=⎰-')(1)())((X dt t t f ϕϕϕ.引理:设变换T :x=x(u,v), y=y(u,v)将uv 平面上由按段光滑封闭曲线所围的闭区域△一对一地映成xy 平面上的闭区域D ,函数x(u,v), y(u,v)在△内分别具有一阶连续偏导数且它们的函数行列式 J(u,v)=),(),(v u y x ∂∂≠0, (u,v)∈△,则区域D 的面积μ(D)=⎰⎰∆dudv v u J ),(. 证:当y(u,v)在△内具有二阶连续偏导数时, (后面章节证明只具有一阶连续导数的情况)∵T 为一对一变换, 且J(u,v)≠0, ∴T 把△的内点变成D 的内点, △的按段光滑边界曲线L △变换到D 时,其边界曲线L D 也按段光滑. 设曲线L △的参数方程为u=u(t), v=v(t) (α≤t ≤β), 由L △光滑知, u ’(t), v ’(t)在[α,β]上至多除去有限个第一类间断点外,在其他点上连续. ∵L D =T(L △), ∴x=x(t)=x(u(t),v(t)), y=y(t)=y(u(t),v(t)) (α≤t ≤β). 若规定t 从α变到β时,对应于L D 的正向,则根据格林公式,取P(x,y)=0, Q(x,y)=x, 有 μ(D)=⎰DL xdy =⎰'βαdt t y t x )()( =⎰⎥⎦⎤⎢⎣⎡'∂∂+'∂∂βαdt t v v y t u u y t v t u x )()())(),((, 又在uv 平面上,⎰∆⎥⎦⎤⎢⎣⎡∂∂+∂∂L dv v y du u y v u x ),(=⎰⎥⎦⎤⎢⎣⎡'∂∂+'∂∂±βαdt t v v y t u u y t v t u x )()())(),((, 其中t 从α变到β时,对应于L △的方向决定了上式的符号性质. ∴μ(D)=⎰∆⎥⎦⎤⎢⎣⎡∂∂+∂∂±L dv v y du uy v u x ),(=⎰∆∂∂+∂∂±L dv v y v u x du u y v u x ),(),(. 令P(u,v)=x(u,v)u y ∂∂, Q(u,v)=x(u,v)vy∂∂, 在uv 平面上应用格林公式,得 μ(D)=⎰⎰∆⎪⎭⎫⎝⎛∂∂-∂∂±dudv v P u Q , 又y(u,v)具有二阶连续偏导数,即有 u v y v u y ∂∂∂=∂∂∂22,∴v P u Q ∂∂-∂∂=J(u,v). ∴μ(D)=⎰⎰∆±dudv v u J ),(. 又μ(D)非负,而J(u,v)在△上不为零且连续,即其函数值在△上不变号, ∴μ(D)=⎰⎰∆dudv v u J ),(.定理21.13:设f(x,y)在有界闭域D 上可积,变换T :x=x(u,v), y=y(u,v)将uv 平面由按段光滑封闭曲线所围成的闭区域△一对一地映成xy 平面上的闭区域D ,函数x(u,v), y(u,v)在△内分别具有一阶连续偏导数且它们的函数行列式J(u,v)=),(),(v u y x ∂∂≠0, (u,v)∈△,则 ⎰⎰Ddxdy y x f ),(=⎰⎰∆dudv v u J v u y v u x f ),()),(),,((.证:用曲线网把△分成n 个小区域△i ,在变换T 作用下,区域D 也相应地被分成n 个小区域D i . 记△i 及D i 的面积为μ(△i )及μ(D i ) (i=1,2,…,n).由引理及二重积分中值定理,有μ(D i )=⎰⎰∆idudv v u J ),(=|J(u i ,v i )|μ(△i ),其中(u i ,v i )∈△i (i=1,2,…,n). 令ξi =x(u i ,v i ), ηi =y(u i ,v i ), 则 (ξi ,ηi )∈D i (i=1,2,…,n). 作二重积分⎰⎰Ddxdy y x f ),(的积分和,则得△上f(x(u,v),y(u,v))|J(u,v)|的积分和,即σ=)(),(1i ni i i D f μηξ∑==)(),()),(),,((1i ni i i i i i i v u J v u y v u x f ∆∑=μ. 由变换T 连续知,当区域△的分割T △:{△1,△2,…,△n }的细度∆T →0时, 区域D 相应的分割T D :{D 1,D 2,…,D n }的细度D T →0. ∴⎰⎰Ddxdy y x f ),(=⎰⎰∆dudv v u J v u y v u x f ),()),(),,((.例1:求⎰⎰+-Dyx y x dxdy e,其中D 是由x=0, y=0, x+y=1所围区域.解:令u=x-y, v=x+y, 则得变换T :x=21(u+v), y=21(v-u), 且J(u,v)=),(),(v u y x ∂∂=v y uyv x ux∂∂∂∂∂∂∂∂=21212121- =21>0. 在变换T 的作用下,得 区域D={(x,y)|x ≥0, y ≥0, x+y ≤1}的原象△={(u,v)|-v ≤u ≤v, 0≤v ≤1}, ∴⎰⎰+-Dyx y x dxdy e=⎰⎰∆⋅dudv e vu21=⎰⎰-v v v udu e dv 1021=⎰--101)(21vdv e e =)(411--e e .例2:求抛物线y 2=mx, y 2=nx 和直线y=ax, y=bx 所围区域D 的面积μ(D) (0<m<n, 0<a<b). 解:D={(x,y)|2b m ≤x ≤2a n ,ax ≤y ≤bx,nx ≤y 2≤mx}.作变换x=2v u , y=v u ,把D 对应到uv 平面上的△=[m,n]×[a,b]且J(u,v)=232121vu vv uv--=4v u >0. ∴μ(D)=⎰⎰Ddxdy =⎰⎰∆dudv v u4=⎰⎰n m b a du v u dv 4=⎰-b a dv v m n 42221 =3333226))((b a a b m n --.二、用极坐标计算二重积分定理21.14:设f(x,y)满足定理21.13的条件,且有极坐标变换 T :⎩⎨⎧==θθsin cos r y r x , 0≤r<+∞, 0≤θ≤2π, 则J(r,θ)=θθθθcos sin sin cos r r -=r>0.xy 平面上的有界闭域D 与r θ平面上区域△对应,则成立⎰⎰Ddxdy y x f ),(=⎰⎰∆θθθrdrd r r f )sin ,cos (.证:若D 为圆域{(x,y)|x 2+y 2≤R 2}, 则△为r θ平面上的区域[0,R]×[0,2π]. 设D ε为在圆环{(x,y)|0<ε2≤x 2+y 2≤R 2}中除去圆心角为ε的扇形所得 区域BB ’A ’A(如图1),则在变换T 下,D ε对应r θ平面上的矩形区域 △ε=[ε,R] ×[0,2π-ε](如图2). T 在D ε与△ε之间为一一变换,且J(r,θ)>0. 由定理21.13,有⎰⎰εD dxdy y x f ),(=⎰⎰∆εθθθrdrd r r f )sin ,cos (.∵f(x,y)在有界闭域D 上有界,令ε→0即得⎰⎰Ddxdy y x f ),(=⎰⎰∆θθθrdrd r r f )sin ,cos (.若D 是一般的有界闭区域,则取足够大的R>0,使D 包含在圆域D R ={(x,y)|x 2+y 2≤R 2}内, 并在D R 上定义函数: F(x,y)=⎩⎨⎧∉∈D y x ,Dy x ,y x f ),(0),(),( ,F 在D R 内至多在有限条按段光滑曲线上间断, ∴⎰⎰RD dxdy y x F ),(=⎰⎰∆Rrdrd r r F θθθ)sin ,cos (, 其中△R 为r θ平面上的矩形区域[0,R] ×[0,2π]. 由F 的定义即得:⎰⎰Ddxdy y x f ),(=⎰⎰∆θθθrdrd r r f )sin ,cos (.二重积分在极坐标下化为累次积分.1、若原点O ∉D ,且xy 平面上射线θ=常数与D 的边界至多交于两点(如图1),则△必可表示为r 1(θ)≤r ≤r 2(θ), α≤θ≤β, 于是有⎰⎰Ddxdy y x f ),(=⎰⎰)()(21)sin ,cos (θθβαθθθr r rdr r r f d .同理,若xy 平面上的圆r=常数与D 的边界至多交于两点(如图2),则△必可表示为θ1(r)≤θ≤θ2(r),r 1≤r ≤r 2, 于是有⎰⎰Ddxdy y x f ),(=⎰⎰)()(2121)sin ,cos (r r r r d r r f rdr θθθθθ.(2)若原点为D 的内点(如图3),D 的边界的极坐标方程为r=r(θ),则 △必可表示为0≤r ≤r(θ),0≤θ≤2π, 于是有⎰⎰Ddxdy y x f ),(=⎰⎰)(020)sin ,cos (θπθθθr rdr r r f d .(3)若原点O 在D 的边界上(如图4),则 △可表示为0≤r ≤r(θ),α≤θ≤β, 于是有⎰⎰Ddxdy y x f ),(=⎰⎰)(0)sin ,cos (θβαθθθr rdr r r f d .例3:计算I=⎰⎰--Dy x d 221σ, 其中D 为圆域x 2+y 2≤1.解:∵原点是D 的内点, ∴⎰⎰--Dy x d 221σ=⎰⎰--1222220sin cos 1dr r r rd θθθπ=⎰πθ20d =2π.例4:求球体x 2+y 2+z 2≤R 2被圆柱面x 2+y 2=Rx 所割下部分的体积(称为维维安尼体)解:由对称性,求出第一卦限内的部分体积,就能得到所求立体体积. 第一卦限内底为D={(x,y)|y ≥0, x 2+y 2≤Rx}, 曲顶方程:z=222y x R --. ∴V=4⎰⎰--Dd y x R σ222=4⎰⎰-θπθcos 02220R drr R r d=⎰-2033)sin 1(34πθθd R =)322(343-πR .例5:计算I=⎰⎰+-Dy x d eσ)(22,其中D 为圆域x 2+y 2≤R 2.解:I=⎰⎰+-Dy x d e σ)(22=⎰⎰-Rr dr re d 0202πθ=⎰--πθ20)1(212d e R =)1(2R e --π.注:与极坐标类似的,可作以下广义极坐标变换: T :⎩⎨⎧==θθsin cos br y ar x , 0≤r<+∞, 0≤θ≤2π,则J(r,θ)=θθθθcos sin sin cos br b ar a -=abr>0.例6:求椭球体222222cz b y a x ++≤1的体积.解:第一卦限部分是以z=c 22221by a x --为曲顶,D={(x,y)|0≤y ≤b 221ax -, 0≤x ≤a}为底的曲顶柱体,由对称性得:V=8c ⎰⎰--Dd by a x σ22221=8c ⎰⎰-102201abrdr r d πθ=38abc ⎰20πθd =34πabc.注:当a=b=c=R 时,得到球体的体积公式:34πR 3.习题1、对⎰⎰Dd y x f σ),(进行极坐标变换并写出变换后不同顺序的累次积分:(1)当D 为由不等式a 2≤x 2+y 2≤b 2, y ≥0所确定的区域; (2)D={(x,y)|x 2+y 2≤y, x ≥0}; (3)D={(x,y)|0≤x ≤1, 0<x+y ≤1}.解:(1)当D 为由不等式a 2≤x 2+y 2≤b 2, y ≥0所确定的区域时,⎰⎰Dd y x f σ),(=⎰⎰b adr r r rf d )sin ,cos (0θθθπ=⎰⎰πθθθ0)sin ,cos (d r r rf dr b a.(2)当D={(x,y)|x 2+y 2≤y, x ≥0}时,⎰⎰Dd y x f σ),(=⎰⎰θπθθθsin 20)sin ,cos (adr r r rf d =⎰⎰2arcsin 1)sin ,cos (πθθθrd r r rf dr .(3)当D={(x,y)|0≤x ≤1, 0<x+y ≤1}时,⎰⎰Dd y x f σ),(=⎰⎰-θπθθθsec 004)cos ,cos (dr r r rf d +⎰⎰+θθπθθθsin cos 1020)cos ,cos (drr r rf d=⎰⎰-24220)sin ,cos (ππθθθd r r rf dr +⎰⎰--rd r r rf dr 21arccos44122)sin ,cos (ππθθθ+⎰⎰+221arccos4122)sin ,cos (ππθθθrd r r rf dr +⎰⎰--r d r r rf dr 1arccos421)sin ,cos (πθθθ.2、用极坐标计算下列二重积分:(1)⎰⎰+Dd y x σ22sin , 其中D={(x,y)|π2≤x 2+y 2≤4π2};(2)⎰⎰+Dd y x σ)(, 其中D={(x,y)|x 2+y 2≤x+y};(3)⎰⎰Dd xy σ, 其中D 为圆域x 2+y 2≤a 2;(4)⎰⎰+'Dd y x f σ)(22, 其中D 为圆域x 2+y 2≤R 2.解:(1)当D={(x,y)|π2≤x 2+y 2≤4π2}时,⎰⎰+Dd y x σ22sin =⎰⎰πππθ220sin rdr r d =⎰-πθπ203d =-6π2.(2)当D={(x,y)|x 2+y 2≤x+y}时,应用极坐标变换后积分区域为: D ’={(r,θ)|-45π≤θ≤-4π, r ≤cos θ+sin θ},即有 ⎰⎰+Dd y x σ)(=⎰⎰+--+θθππθθθsin cos 02445)sin (cos dr r d =⎰--+4454)sin (cos 31ππθθθd =2π.(3)当D 为圆域x 2+y 2≤a 2时,根据D 的对称性,有⎰⎰Dd xy σ=4⎰⎰adr r d 032sin cos θθθπ=θθπd a ⎰2042sin 2=24a .(4)当D 为圆域x 2+y 2≤R 2时,有⎰⎰+'Dd y x f σ)(22=⎰⎰'πθ2020)(d r f r dr R =π⎰'Rdr r f 022)(=π[f(R 2)-f(0)].3、在下列积分中引入新变量u,v 后,试将它化为累次积分. (1)⎰⎰--xx dy y x f dx 2120),(, 若u=x+y, v=x-y ;(2)⎰⎰D d y x f σ),(, 其中D={(x,y)|x +y ≤a }, 若x=ucos 4v, y=usin 4v ;(3)⎰⎰Dd y x f σ),(, 其中D={(x,y)|x+y ≤a, x ≥0, y ≥0}, 若x+y=u, y=uv.解:(1)若u=x+y, v=x-y ,则x=2v u +, y=2vu -, J(u,v)=21212121-=-21<0. 又变换后的区域D ’={(u,v)|1≤u ≤2, -u ≤v ≤4-u}, 如图:∴⎰⎰--xx dy y x f dx 2120),(=⎰⎰---+uu dv vu v u f du 421)2,2(21=⎢⎣⎡-+⎰⎰---212)2,2(21v du v u v u f dv+⎰⎰-+-2121)2,2(du v u v u f dv +⎥⎦⎤-+⎰⎰-v du v u v u f dv 4132)2,2(. (2)若x=ucos 4v, y=usin 4v, 则u=(x +y )2, v=arctan 41⎪⎭⎫⎝⎛x y ,∴变换后的区域D ’={(u,v)|0≤u ≤a, 0≤v ≤2π},又J(u,v)=vv u v v v u v cos sin 4sin sin cos 4cos 3434-=4usin 3vcos 3v>0,∴⎰⎰Dd y x f σ),(=⎰⎰2044330)sin ,cos (cos sin 4πdvv u v u vf v u du a=⎰⎰adu v u v u vf v u dv 0443320)sin ,cos (cos sin 4π. (3)若x+y=u, y=uv, 即x=u(1-v),则u=x+y, v=yx y +, ∴变换后的区域D ’={(u,v)|0≤u ≤a, 0≤v ≤1}, 又J(u,v)=uvu v --1=u ,∴⎰⎰Dd y x f σ),(=⎰⎰-100),(dv uv uv u uf du a=⎰⎰-adu uv uv u uf dv 010),(.4、试作适当变换,计算下列积分.(1)⎰⎰-+Dd y x y x σ)sin()(, D={(x,y)|0≤x+y ≤π, 0≤x-y ≤π};(2)⎰⎰+Dyx y d eσ, 其中D={(x,y)|x+y ≤1, x ≥0, y ≥0}.解:(1)令u=x+y, v=x-y ,则x=2v u +, y=2vu -, J(u,v)=21212121-=-21<0. 又变换后的区域D ’={(u,v)|0≤u ≤π, 0≤v ≤π},∴⎰⎰-+Dd y x y x σ)sin()(=⎰⎰ππ00sin 21vdv u du =⎰π0udu =22π.(2)令u=x+y, v=y ,则x=u-v, y=v, J(u,v)=111-= 1>0.又变换后的区域D ’={(u,v)|0≤u ≤1, 0≤v ≤u}, ∴⎰⎰+Dyx yd eσ=⎰⎰uuv dv e du 010=⎰-1)1(du e u =21-e .5、求由下列曲面所围立体V 的体积:(1)V 是由z=x 2+y 2和z=x+y 所围的立体;(2)V 是由曲面z 2=42x +92y 和2z=42x +92y 所围的立体.解:(1)由z=x 2+y 2和z=x+y 得x 2+y 2=x+y ,∴积分区域D :221⎪⎭⎫ ⎝⎛-x +221⎪⎭⎫⎝⎛-y ≤21.作变换T :x=21+rcos θ, y=21+rsin θ,得V=()[]⎰⎰+-+Dd y x y x σ22)(=⎰⎰⎪⎭⎫ ⎝⎛-22022021rdr r d πθ=⎰πθ20161d =8π. (2)由z 2=2z, 得z 1=0, z 2=2. 所得立体V 在xoy 平面上的投影为42x +92y ≤4,立体顶面为z=9422y x +, 底面为z=⎪⎪⎭⎫ ⎝⎛+942122y x , 作变换x=2rcos θ, y=3rsin θ,则J(r,θ)=θθθθcos 3sin 3sin 2cos 2r r -=6r>0.∴V=⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-+D d y x y x σ9421942222=⎰⎰⎪⎪⎭⎫⎝⎛-2022026rdr r r d πθ=4⎰πθ20d =8π.6、求由下列曲线所围的平面图形面积: (1)x+y=a, x+y=b, y=αx, y=βx (0<a<b, 0<α<β);(2)22222⎪⎪⎭⎫ ⎝⎛+b y a x =x 2+y 2; (3)(x 2+y 2)2=2a 2(x 2-y 2) (x 2+y 2≥a 2). 解:(1)令u=x+y, v=xy, 则x=v u +1, y=vuv +1, 变换后的区域D ’={(u,v)|a ≤u ≤b, α≤v ≤β},又J(r,θ)=22)1(1)1(11v u vv v uv+++-+=2)1(v u +>0. ∴曲线所围的平面图形面积 S D =⎰⎰Dd σ=⎰⎰+ba du v u dv 2)1(βα=⎰+-βαdv v a b 222)1(12=)1)(1(2))((22βααβ++--a b .(2)令x=arcos θ, y=brcos θ,则方程变换为r 4=a 2r 2cos 2θ+b 2r 2sin 2θ, 即 r=θθ2222sin cos b a +,又J=abr>0,∴曲线所围的平面图形面积 S D =⎰⎰+θθπθ2222sin cos 020b a rdr d ab =⎰+πθθθ202222)sin cos (2d b a ab =2)(22πb a ab +. (3)x=rcos θ, y=rcos θ,则方程变换为r 4=2a 2r 2cos2θ, 即r=θ2cos 2a . 当cos2θ=21, 即θ=±6π时,r=a. 由图形的对称性可知 S D =4⎰⎰θπθ2cos 260a a rdr d =2a2⎰-60)12cos 2(πθθd =(3-3π)a 2.7、设f(x,y)为连续函数,且f(x,y)=f(y,x). 证明:⎰⎰xdy y x f dx 010),(=⎰⎰--xdy y x f dx 010)1,1(.证:作变换:x=1-u, y=1-v, 则J(u,v)=101--=1>0, 又f(x,y)=f(y,x),∴⎰⎰xdy y x f dx 010),(=⎰⎰--vdu v u f dv 010)1,1(=⎰⎰--vdu u v f dv 010)1,1(=⎰⎰--xdy y x f dx 010)1,1(.8、试作适当变换,把下列二重积分化为单重积分: (1)⎰⎰+D d y x f σ)(22, D 为圆域x 2+y 2≤1;(2)⎰⎰+Dd y x f σ)(22, D={(x,y)||y|≤|x|, |x|≤1};(3)⎰⎰+Dd y x f σ)(, D={(x,y)||x|+|y|≤1};(4)⎰⎰Dd xy f σ)(, 其中D={(x,y)|x ≤y ≤4x, 1≤xy ≤2}.解:(1)作极坐标变换得:⎰⎰+D d y x f σ)(22=⎰⎰1020)(rdr r f d πθ=2π⎰10)(rdr r f .(2)如图,根据区域D 和被积函数的对称性知, 积分值是第一象限部分D 1上积分的4倍. D 1={(x,y)|y ≤x ≤1, y ≥0},作极坐标变换得:⎰⎰+1)(22D d y x f σ=⎰⎰4010)(πθrd r f dr +⎰⎰41arccos21)(πθrrd r f dr=⎰1)(4rdr r f π+⎰⎪⎭⎫ ⎝⎛-21)(1arccos 4rdr r f r π=⎰20)(4rdr r f π-⎰21)(1arccos dr r f r r . ∴⎰⎰+Dd y x f σ)(22=π⎰20)(rdr r f -4⎰21)(1arccos dr r f rr .(3)令u=x+y, v=x-y, 则x=2v u +, y=2vu -, J(u,v)=21212121-=-21<0. 原积分区域变换为:D ’={(u,v)|-1≤u ≤1, -1≤v ≤1}. ∴⎰⎰+Dd y x f σ)(=⎰⎰--1111)(21dv u f du =⎰-11)(du u f . (4)令u=xy, v=x y, 则x=v u , y=uv , J(u,v)=vuuv v uv vu 212121121-=v 21>0.原积分区域变换为:D ’={(u,v)|1≤u ≤2, 1≤v ≤4}. ∴⎰⎰Dd xy f σ)(=⎰⎰41211)(21dv vu f du =ln2⎰21)(du u f .。

n 重积分

n 重积分
高等教育出版社
数学分析 第二十一章 重积分
*§7 n 重积分
由于三维以上的空间 中区域的体积没有直观的几 何意义, 因此本节先定义n 维长方体的体积, 再定义n 维区域的体积, 最后建立起 n 重积分的理论与计算方法.
一、n 重积分的物理背景 二、n 重积分的定义 三、n 重积分的计算
*点击以上标题可直接前往对应内容
数学分析 第二十一章 重积分
高等教育出版社
§7 n 重积分 物理背景 定义
计算
x1 x1 L
1 2
J
( x1 , x2 ,L
(1 ,2 ,L
, xn )
,n )
x2
1
M
x2
2
M
L
x1
n
x2
n 0,
M
xn xn L xn
1 2
n
则成立下列 n 重积分的换元公式:
6 7n8
I L f ( x1,L , xn )dx1 L dxn
2
π
dx1 L
x12 x22 L xn22 1
dxn2
n2 ,
数学分析 第二十一章 重积分
高等教育出版社
§7 n 重积分 物理背景 定义
计算
}n2
其中 n2 L dx1L dxn2 为 n 2 维单位球体体 x12 x22 L xn22 1
积,因而由例2 得 n 维球面面积为
Sn
2 π n-2
V1
2R,
V2
πR2 ,
V3
4 3
πR3 .
数学分析 第二十一章 重积分
高等教育出版社
§7 n 重积分 物理背景 定义
计算
本题也可用 n 维球坐标变换求得, n 维球坐标变换

《数学分析》第二十一章二重积分

《数学分析》第二十一章二重积分

将薄片分割成若干小块, y 取典型小块,将其近似

( i ,i )
i
看作均匀薄片,
所有小块质量之和 近似等于薄片总质量
o x n M lim ( i ,i ) i .
0
i 1
二、二重积分的概念
定义
D 上的有界 函 设 f ( x , y ) 是有界闭区域
n 个小闭区域 1 , 数,将闭区域D 任意分成
z f ( x, y)
顶柱体体积之
和近似表示曲
o
D
n

y
( i ,i )
i
顶柱体的体积,x
曲顶柱体的体积 V lim f ( i ,i ) i . 0
i 1
2.求平面薄片的质量
设有一平面薄片,占有 xoy 面上的闭区域 D ,在点( x , y ) 处的面密度为 ( x , y ) ,假定 ( x , y )在D 上连续,平面薄片的质量为多少?
2 于是ln( x y ) ln( x y ) ,
o
1
2
x
因此
2 ln( x y ) d [ln( x y )] d . D D
四、小结
二重积分的定义 (和式的极限)
(曲顶柱体的体积) 二重积分的几何意义
二重积分的性质
思考题
将二重积分定义与定积分定义进行比较, 找出它们的相同之处与不同之处.
第二十一章
二 重


§1 二重积分概念
一、问题的提出
1.曲顶柱体的体积 柱体体积=底面积× 高 特点:平顶.
z f ( x, y)
D
柱体体积=? 特点:曲顶.
求曲顶柱体的体积采用 “分割、求和 、取极限”的方法,如下动画演示.

数学分析教案第二十一章重积分

数学分析教案第二十一章重积分

数学分析教案第二十一章重积分一、教学目标1.掌握重积分的定义和性质。

2.了解重积分的计算方法和应用。

3.能够熟练运用重积分解决实际问题。

二、教学重难点1.重积分的计算方法。

2.重积分的应用。

三、教学内容和教学步骤1.重积分的引入通过提问引导学生回顾定积分的概念和计算方法,并对比定积分与重积分的异同之处,引出重积分的概念。

2.重积分的定义和性质定义:设D为平面上的有界闭区域,函数f(x,y)在D上有界,将D 分成许多小矩形,取其中任意一个小矩形,设其面积为ΔA,取小矩形的一些点(xi,yi),使得(xi,yi)在小矩形内,记作(Pi),则称Σf(xi,yi)ΔA为f(x,y)在D上的一个二重积分,记作∬D f(x,y)dxdy。

性质:(1)线性性质:∬D (αf(x,y)+βg(x,y))dxdy = α∬Df(x,y)dxdy + β∬D g(x,y)dxdy,其中α、β为常数。

(2)可加性质:D = D1 ∪ D2,则∬D f(x,y)dxdy = ∬D1f(x,y)dxdy + ∬D2 f(x,y)dxdy。

(3)保号性质:若f(x,y)在D上非负,则∬D f(x,y)dxdy ≥ 0。

3.重积分的计算方法(1)累次积分法:先对一个变量积分,再对另一个变量积分。

(2)极坐标法:适用于具有极坐标形式的函数,通过变量代换,将重积分转化为二重积分。

(3)换元法:通过变量代换,将重积分中的积分区域变换为简单形式,然后计算二重积分。

4.重积分的应用(1)计算质量:对密度函数和有界闭区域进行重积分,得到物体的质量。

(2)计算重心:对密度函数、有界闭区域和轴线进行重积分,得到物体的重心坐标。

(3)计算面积:对平面区域的特定函数进行重积分,可以计算出该区域的面积。

(4)计算二重积分:通过重积分计算曲面的面积、曲面的体积以及曲面与平面的交线弧长。

四、课堂练习及讲评1.小组讨论解决以质量和重心为主题的实际问题。

《数学分析》第二十一章 二重积分 7

《数学分析》第二十一章 二重积分 7

U = ∫∫ f ( x , y )dσ
D
二,曲面的面积
实例 实例 一颗地球的同步轨道通讯
卫星的轨道位于地球的赤道平面 且可近似认为是圆轨道. 内,且可近似认为是圆轨道.通 讯卫星运行的角速率与地球自转 的角速率相同, 的角速率相同,即人们看到它在 天空不动. 天空不动.若地球半径取为R , 应为多少? 问卫星距地面的高度h 应为多少? 通讯卫星的覆盖面积是多大? 通讯卫星的覆盖面积是多大?
∴ A = ∫∫ 1 + f x2 + f y2 dσ ,
D
z z A = ∫∫ 1 + (x )2 + (y )2dxdy 曲面面积公式为: 曲面面积公式为: Dxy
同理可得 2.设曲面的方程为:x = g ( y , z ) 设曲面的方程为: 曲面面积公式为: 曲面面积公式为:A =
∫∫
Dyz
为 m1 , m 2 , , m n . 则该质点系对于 x 轴和 y 轴 的转动惯量依次为 转动惯量依次为
I x = ∑ m i yi
i =1
n
2
,
I y = ∑ mi xi
i =1
n
2
.
设有一平面薄片, 设有一平面薄片,占有 xoy 面上的闭区域 D ,在点( x , y ) 处的面密度为 ρ ( x , y ),假定 上连续, ρ ( x , y )在 D 上连续,平面薄片对于 x 轴和 y 轴 的转动惯量为
D
12
已知均匀矩形板( 例 5 已知均匀矩形板(面密度为常数 ρ )的长 和宽分别为b 和h ,计算此矩形板对于通过其形 心且分别与一边平行的两轴的转动惯量. 心且分别与一边平行的两轴的转动惯量
解 先求形心 x = 1 ∫∫ xdxdy , AD

21-4——华东师范大学数学分析课件PPT

21-4——华东师范大学数学分析课件PPT

一阶连续偏导数且它们的函数行列式
则有
J(u, v) (x , y) 0, (u, v) , (u, v)
f ( x, y)dxdy f ( x(u,v), y(u,v)) | J (u,v) |dudv .
D
数学分析 第二十一章 重积分
高等教育出版社
§4 二重积分的变量变换 变量变换公式 极坐标变换
下面要把公式(4)推广到二重积分的场合. 为此先给
出下面的引理.
数学分析 第二十一章 重积分
高等教育出版社
§4 二重积分的变量变换 变量变换公式 极坐标变换
广义极坐标变换
引理 设变换T : x x(u, v), y y(u, v) 将 uv 平面
上由按段光滑封闭曲线所围的闭区域 , 一对一地
映成 平面上的闭区域 D. 函数 x(u, v), y(u, v)在 内分别具有一阶连续偏导数且它们的函数行列式
J(u, v) (x , y) 0, (u, v) , (u, v)
则区域 D 的面积
(D) | J (u, v) |dudv .
(5)
数学分析 第二十一章 重积分
高等教育出版社
数学分析 第二十一章 重积分
二重积分是定积分在 平面上的推广,不同之处在 于: 定积分定义在区间上,区 间的 长度容易计算,而二重 积分定义在平面区域上, 其 面积的计算要复杂得多.
§4 二重积分的变量 变换
一、二重积分的变量变换 公式
二、二重积分的极坐标变换
三、二重积分的广义极坐标 变换
*点击以上标题可直接前往对应内容
广义极坐标变换
证 用曲线网把 分成 n 个小区域 i , 在变换 T 作用
下, 区域 D 也相应地被分成 n 个小区域 Di . 记 i及

华东师范大学数学系《数学分析》(第4版)(下册)-第二十一章至第二十三章(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)-第二十一章至第二十三章(圣才出品)

①Δi 上的点都是 P 的内点;
②Δi 上的点都是 P 的外点,即

③Δi 上含有 P 的边界点;
图 21-1
将所有介于直线网 T 的第①类小矩形(图 21-1 中阴影部分)的面积加起来,记这个和
数为 sp(T),则有
(这里ΔR 表示包含 P 的那个矩形 R 的面积);将所有第①
类与笫③类小矩形(图 21-1 中粗线所围部分)的面积加起来,记这个和数为 Sp(T),则有
二、直角坐标系下二重积分的计算 1.定义在矩形区域 D=[a,b]×[c,d]上二重积分计算问题 (1)设 f(x,y)在矩形区域 D=[a,b]×[c,d]上可积,且对每个 x∈[a,b],积分
存在,则累次积分
也存在,且
4 / 153
圣才电子书 十万种考研考证电子书、题库视频学习平台

三、格林公式、曲线积分与路线的无关性 1.格林公式 (1)设区域 D 的边界 L 中一条或几条光滑曲线所组成边界曲线的正方向规定为:当人 沿边界行走时,区域 D 总在它的左边;如图 21-2 所示,与上述规定的方向相反的方向称为 负方向,记为-L.
图 21-2 (2)若函数 P(x,y),Q(x,y)在闭区域 D 上连续,且有连续的一阶偏导数,则
(21-3)
2 / 153
圣才电子书 十万种考研考证电子书、题库视频学习平台

则称 f(x,y)在 D 上可积,数 J 称为函数 f(x,y)在 D 上的二重积分,记作
(21-4) 其中 f(x,y)称为二重积分的被积函数,x,y 称为积分变量,D 称为积分区域.
(2)f(x,y)在 D 上可积的充要条件是: (3)f(x,y)在 D 上可积的充要条件是:对于任给的正数ε,存在 D 的某个分割 T, 使得 (4)有界闭区域 D 上的连续函数必可积. (5)设ε在有界闭域 D 上有界,且其不连续点集 E 是零面积集,则 f(x,y)在 D 上 可积. 3.二重积分的性质 (1)若 f(x,y)在区域 D 上可积,k 为常数,则 kf(x,y)在 D 上也可积,且

数学分析21.8反常二重积分(含习题及参考答案)

数学分析21.8反常二重积分(含习题及参考答案)

数学分析21.8反常⼆重积分(含习题及参考答案)第⼆⼗⼀章重积分 8 反常⼆重积分⼀、⽆界区域上的⼆重积分:定义1:设f(x,y)为定义在⽆界区域D 上的⼆元函数. 若对于平⾯上任⼀包围原点的光滑封闭曲线γ, f(x,y)在曲线γ所围的有界区域E γ与D 的交集 D ∩E γ=D γ上恒可积. 令d γ=min{22y x +|(x,y)∈γ}. 若极限σγγd y x f Dd ??∞→),(lim存在且有限,且与γ的取法⽆关,则称f(x,y)在D 上的反常⼆重积分收敛,并记σd y x f D),(=σγγd y x f Dd ??∞→),(lim,否则称f(x,y)在D 上的反常⼆重积分发散,或简称σd y x f D),(发散.定理21.17:设在⽆界区域D 上f(x,y)≥0, γ1, γ2,…, γn ,…为⼀列包围原点的光滑封闭曲线序列,满⾜:(1)d n =inf{22y x +|(x,y)∈γn }→+∞, (n →∞);(2)I=σd y x f nD n),(sup <+∞, 其中D n 为γn 所围的有界区域E n 与D 的交集,则反常⼆重积分σd y x f D),(收敛,且有σd y x f D),(=I.证:设γ’为任何包围原点的光滑封闭曲线,这曲线所围的区域记为E ’, 并记D ’=E ’∩D. ∵∞→n lim d n =+∞, ∴存在n, 使得D ’?D n ?D. 由f(x,y)≥0,有σd y x f D ??'),(≤σd y x f n),(sup , ?ε>0, ?n 0, 使得σd y x f nD ??0),(>I-ε. 对充分⼤的d ’, 区域D ’⼜可包含D 0n, 使得σd y x f D ??'),(>I-ε. 由I-ε<σd y x f D ??'),(≤I, 知f(x,y)在D 上的反常⼆重积分存在,且σd y x f D),(=I.定理21.18:若在⽆界区域D 上f(x,y)≥0, 则反常⼆重积分σd y x f D),(收敛的充要条件是:在D 的任何有界⼦区域上f(x,y)可积,且积分值有上界.例1:证明反常⼆重积分σd eDy x ??+-)(22收敛,其中D 为第⼀象限部分,即D=[0,+∞)×[0,+∞).证:设D R 是以原点为圆⼼, 半径为R 的圆与D 的交集,即该圆第⼀象限部分. ∵) (22y x e +->0,∴⼆重积分σd e Dy x ??+-)(22关于R 递增.⼜σd eRD y x ??+-)(22=dr r e d Rr ??-0202πθ=)1(4D y x R ??+-+∞→)(22lim =)1(4lim 2R R e -+∞→-π=4π. 即对D 的任何有界⼦区域D ’, 总存在⾜够⼤的R ,使得D ’?D R , ∴σd e D y x ??' +-)(22≤σd e RD y x ??+-)(22≤4π.由定理21.18知,反常⼆重积分σd e Dy x ??+-)(22收敛,⼜由定理21.17有,σd e Dy x ??+-)(22=4π.注:由例1结论,可推出反常积分?+∞-02dx e x 的值(常⽤于概率论). 考察S a =[0,a]×[0,a]上的积分σd eaS y x ??+-)(22=??--ay ax dy edx e22x dx e .由D a ?S a ?aD2(如图)知σd eaD y x ??+-)(22≤σd eaS y x ??+-)(22=202??? ???-ax dx e ≤σd e aDy x ??+-222)(. 令a →+∞, 则得202lim ??? ???-+∞→a x a dx e =σd e D y x ??+-)(22=4π, ∴?+∞-02dx e x =2π.例2:证明:若p>0, q>0, 则B(p,q)=)()()(q p q p +ΓΓΓ.证:令x=u 2, 则dx=2udu, Г(p)=?+∞--01dx e x x p =2?+∞--0122du e u u p , 从⽽ Г(p)Г(q)=4?+∞--+∞--?0ydx exy q x p =4??----+∞→?Ry q Rx p R dy e y dx ex1201222lim.令D R =[0,R]×[0,R], 由⼆重积分化为累次积分计算公式有σd eyxy x D q p R)(121222+---??=??----?Ry q Rx p dy e y dx ex1201222.∴Г(p)Г(q)= 4σd e y x y x D q p R R)(121222lim +---+∞2+---??, 其中D 为平⾯上第⼀象限部分. 记D r ={(x,y)|x 2+y 2≤r 2, x ≥0, y ≥0}. 于是有 Г(p)Г(q)=4σd e y x y x Dq p )(121222+---??=4σd e y x y x D q p r r)(121222lim +---+∞→??,应⽤极坐标变换,有Г(p)Г(q)=4??----++∞→rr q p q p r rdr e r d 012122)(2202sin cos lim θθθπ=4??--+--+∞→rr q p q p r dr e r d 01)(22012122sin cos lim πθθθ=2?+Γ?--201212)(sin cos πθθθq p d q p =B(p,q)Г(p+q). ∴B(p,q)=)()()(q p q p +ΓΓΓ.定理21.19:函数f(x,y)在⽆界区域D 上的反常⼆重积分收敛的充要条件是|f(x,y)|在D 上的反常⼆重积分收敛.证:[只证充分性]设σd y x f D|),(|收敛,其值为A. 作辅助函数f +(x,y)=2),(|),(|y x f y x f +, f -(x,y)=2),(|),(|y x f y x f -, 则0≤f +(x,y)≤|f(x,y)|, 0≤f -(x,y)≤|f(x,y)|.∴在D 的任何有界⼦区域σ上, 恒有σd y x f D+),(≤σd y x f D|),(|=A,σd y x f D即f +(x,y)与f -(x,y)在D 上的反常⼆重积分收敛. ⼜f(x,y)=f +(x,y)-f -(x,y), ∴f(x,y)在D 上的反常⼆重积分也收敛.定理21.20:(柯西判别法)设f(x,y)在⽆界区域D 的任何有界⼦区域上⼆重积分存在, r 为D 内的点(x,y)到原点的距离r=22y x +. (1)若当r ⾜够⼤时, |f(x,y)|≤p rc, 其中常数c>0, 则当p>2时,反常⼆重积分σd y x f D),(收敛;(2)若f(x,y)在D 内满⾜|f(x,y)|≥p rc,其中D 是含有顶点为原点的⽆限扇形区域, 则当p ≤2时,反常⼆重积分σd y x f D),(发散.⼆、⽆界函数的⼆重积分定义2:设P 为有界区域D 的⼀个聚点,f(x,y)在D 上除点P 外皆有定义,且在P 的任何空⼼邻域内⽆界,△为D 中任何含有P 的⼩区域,f(x,y)在D-△上可积. ⼜设d 表⽰△的直径,即 d=sup{221221)()(y y x x -+-|(x 1,y 1),(x 2,y 2)∈△}. 若极限-→D d d y x f σ),(lim存在且有限,且与△的取法⽆关,则称f(x,y)在D 上的反常⼆重积分收敛. 记作-D d y x f σ),(=-→D d d y x f σ),(lim 0,否则称f(x,y)在D 上的反常⼆重积分??Dd y x f σ),(发散.定理21.21:(柯西判别法)设f(x,y)在有界区域D 上除点P(x 0,y 0)外处处有定义, 点P(x 0,y 0)为瑕点,则: (1)若在点P 附近有|f(x,y)|≤a rc, 其中c 为常数, r=2020)()(y y x x -+-, 则当a<2时,反常⼆重积分σd y x f D),(收敛; (2)若在点P 附近有|f(x,y)|≥a rc, 且D 含有以点P 为顶点的⾓形区域, 则当a ≥2时,反常⼆重积分σd y x f D),(收敛.习题1、试讨论下列⽆界区域上⼆重积分的收敛性: (1)??≥++1σ?d y x y x y p≤≤++1022)1(),(, (0解:(1)令x=rcos θ, y=rsin θ, 则≥++12222)(y x m y x d σ=??+∞12201rdr r d m πθ=??+-+∞→d m d dr r d 11220lim πθ=-2π?+-+∞→d m d dr r 11 2lim . ∵?+-+∞→dm d dr r 112lim 当2m-1>1时, 收敛;当2m-1≤1时, 发散;∴≥++12222)(y x m y x d σ当m>1时, 收敛;当m ≤1时, 发散. (2)由区域的对称性和被积函数关于x,y 的偶性得原积分=4??+∞+∞++001111dy ydx x q p . ∵?+∞+011dx x p当p>1时, 收敛;当p ≤1时, 发散. ∴原积分当p>1, q>1时收敛,其它情况发散.(3)∵0y x y x )1(),(22++?≤p x M)1(2+,∴当p>21时, 由σd x My p ??≤≤+102)1(收敛,得原积分收敛;当p<21时, 由σd x my p ??≤≤+1∞-+-+∞∞-+dx y x e dy y x )cos(22)(22. 解:令x=rcos θ, y=rsin θ, 则+∞∞-+-+∞∞-+dx y x e dy y x)cos(22)(22=??+∞-0220cos 2dr r re d r πθ=π?-+∞→du d udu e 0cos lim=2π.3、判别下列积分的收敛性: (1)≤++12222)(y x m y x d σ;(2)??≤+--12222)1(y x m y x d σ. 解:令x=rcos θ, y=rsin θ, 则(1)??≤++12222)(y x m y x d σ=??102201rdr r d m πθ=2π?+-→1120lim d m d dr r . ∵?+-→1 120lim dm d dr r 当2m-1<1时, 收敛;当2m-1≥1时, 发散;∴??≤++1 2222)(y x m y x d σ2222)1(y x m y x d σ =??-10220)1(rdr r d d m σθπ=π?-→-d m d du u 01)1(lim . ∴当m<1时, 由?-→-dmd du u 01)1(lim 收敛知,原积分收敛;当m ≥1时, 由?-→-dm d du u 01)1(lim 发散知,原积分发散.。

数学分析21.1二重积分的概念(含习题及参考答案)

数学分析21.1二重积分的概念(含习题及参考答案)

第二十一章 重积分 1二重积分的概念一、平面图形的面积引例:若构成平面图形P 的点集是平面上的有界点集, 即存在矩形R ,使P ⊂R ,则称平面图形P 有界. 用某一平行于坐标轴的一组直线网T 分割P(如图),这时直线网T 的网眼——小闭矩形△i 可分为三类: (1)△i 上的点都是P 的内点;(2)△i 上的点都是P 的外点,即△i ∩P=Ø; (3)△i 上含有P 的边界点.将所有属于直线网T 的第(1)类小矩形(图中阴影部分)的面积加起来, 记和数为s p (T),则有s p (T)≤△R (矩形R 的面积);将所有第(1)类与第(3)类小矩形(图中粗线所围部分)的面积加起来, 记作S p (T),则有s p (T)≤S p (T). 由确界存在定理知,对于平面上所有直线网,数集{s p (T)}有上确界,数集{S p (T)}有下确界, 记Tp I sup ={s p (T)} ,Tp I inf ={S p (T)}. 显然有0≤p I ≤p I .p I 称为内面积,p I 称为外面积.定义1:若平面图形P 的内面积p I 等于它的外面积p I , 则称P 为可求面积,并称其共同值I p =p I =p I 为P 的面积.定理21.1:平面有界图形P 可求面积的充要条件是:对任给ε>0, 总存在直线网T ,使得S p (T)-s p (T)< ε.证:[必要性]设P 的面积为I p , 由面积的定义知, I p =p I =p I . ∀ε>0, 由p I 及p I 的定义知,分别存在直线网T 1与T 2,使得 s p (T 1)>I p -2ε, S p (T 2)<I p +2ε, 记T 为由T 1与T 2合并所成的直线网,则 s p (T 1)≤s p (T), S p (T 2)≥S p (T),∴s p (T)>I p -2ε, S p (T)<I p +2ε, 从而S p (T)-s p (T)<ε. [充分性]设对任给的ε>0, 存在某直线网T ,使得S p (T)-s p (T)<ε. 但s p (T)≤p I ≤p I ≤S p (T),∴p I -p I ≤S p (T)-s p (T)<ε. 由ε的任意性知,p I =p I ,∴平面图形P 可求面积.推论:平面有界图形P 的面积为零的充要条件是它的外面积p I =0,即对任给的ε>0, 存在某直线网T ,使得S p (T)<ε,或 平面图形P 能被有限个其面积总和小于ε的小矩形所覆盖.定理21.2:平面有界图形P 可求面积的充要条件是:P 的边界K 的面积为0.证:由定理21.1,P 可求面积的充要条件是:∀ε>0, ∃直线网T , 使得S p (T)-s p (T)<ε. 即有S K (T)=S p (T)-s p (T)<ε, 由推论知,P 的边界K 的面积为0.定理21.3:若曲线K 为定义在[a,b]上的连续函数f(x)的图象,则曲线K 的面积为零.证:∵f(x)在闭区间[a,b]上连续,从而一致连续. ∴∀ε>0, ∃δ>0, 当把区间[a,b]分成n 个小区间[x i-1,x i ] (i=1,2,…,n, x 0=a,x n =b)并满足 max{△x i =x i -x i-1 |i=1,2,…,n }<δ时,可使f(x)在每个小区间[x i-1,x i ]上的振幅都有ωi <ab -ε.把曲线K 按自变量x=x 0,x 1,…,x n 分成n 个小段,则 每一个小段都能被以△x i 为宽, ωi 为高的小矩形所覆盖,又 这n 个小矩形面积的总和为i ni i x ∆∑=1ω<ab -ε∑=∆ni ix1<ε,由定理21.1的推论即得曲线K 的面积为零.推论1:参数方程x=φ(t), y=ψ(t), t ∈[α,β]所表示的光滑曲线K 的面积为零.证:由光滑曲线的定义,φ’(t),ψ’(t)在[α,β]上连续且不同时为0. 对任意t 0∈[α,β],不妨设φ’(t 0)≠0,则存在t ’的某邻域U(t 0), 使得 x=φ(t)在此邻域上严格单调,从而存在反函数t=φ-1(x). 又 由有限覆盖定理,可把[α,β]分成有限段:α=t 0<t 1<…<t n =β, 在每一小区间段上,y=ψ(φ-1(x))或x=ψ(φ-1(y)),由定理21.3知, 每小段的曲线面积为0,∴整条曲线面积为零.推论2:由平面上分段光滑曲线所围成的有界闭区域是可求面积的.注:并非平面中所有的点集都是可求面积的.如D={(x,y)|x,y ∈Q ∩[0,1]}. 易知0=D I ≤D I =1, 所以D 是不可求面积的.二、二重积分的定义及其存在性 引例:求曲顶柱体的体积(如图1).设f(x,y)为定义在可求面积的有界闭区域D 上的非负连续函数. 求以曲面z=f(x,y)为顶,以D 为底的柱体体积V.用一组平行于坐标轴的直线网T 把D 分成n 个小区域σi (i=1,2,…,n). ∵f(x,y)在D 上连续,∴当每个σi 都很小时, f(x,y)在σi 上各点的函数值近似相等; 可在σi 上任取一点(ξi ,ηi ),用以f(ξi ,ηi )为高, σi 为底的小平顶柱体的体积f(ξi ,ηi )△σi 作为V i 的体积△V i ,即△V i ≈f(ξi ,ηi )△σi .把这些小平顶柱体的体积加起来, 就得到曲顶柱体体积V 的近似值: V=∑=∆n i i V 1≈i ni i i f σηξ∆∑=1),(.当直线网T 的网眼越来越细密,即分割T 的细度T =di ni ≤≤1max →0(di 为σi 的直径)时,i ni i i f σηξ∆∑=1),(→V.概念:设D 为xy 平面上可求面积的有界闭区域,f(x,y)为定义在D 上的函数. 用任意的曲线把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 以△σi 表示小区域△σi 的面积,这些小区域构成D 的一个分割T , 以d i 表示小区域△σi 的直径,称T =di ni ≤≤1max 为分割T 的细度.在每个σi 上任取一点(ξi ,ηi ),作和式ini iif σηξ∆∑=1),(,称为函数f(x,y)在D 上属于分割T 的一个积分和.定义2:设f(x,y)是定义在可求面积的有界闭区域D 上的函数. J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D 的任何分割T ,当它的细度T <δ时,属于T 的所有积分和都有J f ini ii-∆∑=σηξ1),(<ε,则称f(x,y)在D 上可积,数J 称为函数f(x,y)在D上的二重积分,记作:J=⎰⎰Dd y x f σ),(.注:1、函数f(x,y)在有界可求面积区域D 上可积的必要条件是f 在D 上有界.2、设函数f(x,y)在D 上有界,T 为D 的一个分割,把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 令M i =iy x σ∈),(sup f(x,y), m i =iy x σ∈),(inf f(x,y), i=1,2,…,n.作和式S(T)=i n i i M σ∆∑=1, s(T)=i ni i m σ∆∑=1. 它们分别称为函数f(x,y)关于分割T 的上和与下和.定理21.4:f(x,y)在D 上可积的充要条件是:0lim →T S(T)=0lim →T s(T).定理21.5:f(x,y)在D 上可积的充要条件是:对于任给的正数ε,存在D 的某个分割T ,使得S(T)-s(T)<ε.定理21.6:有界闭区域D 上的连续函数必可积.定理21.7:设f(x,y)在有界闭域D 上有界,且不连续点集E 是零面积集,则f(x,y)在D 上可积.证:对任意ε>0, 存在有限个矩形(不含边界)覆盖了E ,而 这些矩形面积之和小于ε. 记这些矩形的并集为K ,则 D\K 是有界闭域(也可能是有限多个不交的有界闭域的并集). 设K ∩D 的面积为△k ,则△k <ε. 由于f(x,y)在D\K 上连续, 由定理21.6和定理21.5,存在D\K 上的分割T 1={σ1, σ2,…, σn }, 使得S(T 1)-s(T 1)<ε. 令T={σ1, σ2,…, σn , K ∩D},则T 是D 的一个分割,且 S(T)-s(T)=S(T 1)-s(T 1)+ωK △k <ε+ωε, 其中ωK 是f(x,y)在K ∩D 上的振幅,ω的是f(x,y)在D 上的振幅. 由定理21.5可知f(x,y)在D 上可积.三、二重积分的性质1、若f(x,y)在区域D 上可积,k 为常数,则kf(x,y)在D 上也可积,且⎰⎰Dd y x kf σ),(=k ⎰⎰Dd y x f σ),(.2、若f(x,y), g(x,y)在D 上都可积,则f(x,y)±g(x,y)在D 上也可积,且[]⎰⎰±Dd y x g d y x f σσ),(),(=⎰⎰Dd y x f σ),(±⎰⎰Dd y x g σ),(.3、若f(x,y)在D 1和D 2上都可积,且D 1与D 2无公共内点,则⎰⎰21),(D D d y x f σ=⎰⎰1),(D d y x f σ+⎰⎰2),(D d y x f σ.4、若f(x,y)与g(x,y)在D 上可积,且f(x,y)≤g(x,y), (x,y)∈D ,则⎰⎰Dd y x f σ),(≤⎰⎰Dd y x g σ),(.5、若f(x,y)在D 上可积,则函数|f(x,y)|在D 上也可积,且⎰⎰Dd y x f σ),(≤⎰⎰Dd y x f σ),(.6、若f(x,y)在D 上都可积,且m ≤f(x,y)≤M, (x,y)∈D ,则 mS D ≤⎰⎰Dd y x f σ),(≤MS D , 其中S D 是积分区域D 的面积.7、(中值定理)若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D , 使得⎰⎰Dd y x f σ),(=f(ξ,η)S D , 其中S D 是积分区域D 的面积.注:中值定理的几何意义:以D 为底,z=f(x,y) (f(x,y)≥0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,这个平顶柱体的高等于f(x,y)在区域D 中某点(ξ,η)的函数值f(ξ,η).习题1、把重积分⎰⎰Dxydxd σ作为积分和的极限,计算这个积分值,其中D=[0,1]×[0,1],并用直线网x=n i, y=nj , (i,j=1,2,…,n-1)分割D 为许多小正方形,每个小正方形取其右顶点作为其节点.解:⎰⎰Dxydxd σ=2111lim n n j n i nj ni n ⋅⋅∑∑==∞→=21121lim n n j n nj n ⋅⋅+∑=∞→=224)1(lim n n n +∞→=41.2、证明:若函数f(x,y)在有界闭区域D 上可积,则f(x,y)在D 上有界. 证:若f 在D 上可积,但在D 上无界,则对D 的任一分割T={σ1, σ2,…, σn }, f 必在某个小区域σk 上无界. 当i ≠k 时,任取p i ∈σi ,令G=∑≠nki i i p f σ)(, I=⎰⎰Ddxdy y x f ),(.∵f 在σk 上无界,∴存在p k ∈σk ,使得|f(p k )|>kG I σ∆++1, 从而∑=ni iip f 1)(σ=∑≠∆+nki k k i i p f p f σσ)()(≥|f(p k )·△σk |-∑≠nki i i p f σ)(>|I|+1.又f 在D 上可积,∴存在δ>0,对任一D 的分割T={σ1, σ2,…, σn }, 当T <δ时,T 的任一积分和∑=nk k k p f 1)(σ都满足∑=-nk k k I p f 1)(σ<1,即∑=nk k k p f 1)(σ<|I|+1,矛盾!∴f 在D 上可积,则f 在D 上有界.3、证明二重积分中值定理:若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D , 其中S D 是积分区域D 的面积.证:∵f 在有界闭区域D 上连续,∴f 在D 上有最大值M 和最小值m, 对D 中一切点有m ≤f ≤M ,∴mS D ≤⎰⎰Df ≤MS D , 即m ≤⎰⎰DDf S 1≤M.由介值性定理知,存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D .4、证明:若f(x,y)为有界闭区域D 上的非负连续函数,且在D 上不恒为零,则⎰⎰Dd y x f σ),(>0.证:由题设知存在p 0(x 0,y 0)∈D ,使f(p 0)>0,令δ=f(p 0),由连续函数的局部保号性知:∃η>0使得对一切p ∈D 1(D 1=U(p 0,η)∩D), 有f(p)>2δ. 又f(x,y)≥0且连续,∴⎰⎰Df =⎰⎰1D f +⎰⎰-1D D f ≥2δ·△D 1>0.5、证明:若f(x,y)在有界闭区域D 上连续,且在D 内任一子区域D ’⊂D 上有⎰⎰'D d y x f σ),(=0,则在D 上f(x,y)≡0.证:假设存在p 0(x 0,y 0)∈D ,使得f(p 0)≠0, 不妨设f(p 0)>0. 由连续函数的保号性知,∃η>0使得对一切p ∈D ’(D ’=U(p 0,η)∩D), 有f(p)>0,由第4题知⎰⎰'D f >0,矛盾! ∴在D 上f(x,y)≡0.6、设D=[0,1]×[0,1],证明: 函数f(x,y)=⎩⎨⎧内非有理点为皆为有理数即内有理点为D y x y x D y x ),(,0),(),(,1在D 上不可积.证: 设D 的任一分割T={σ1, σ2,…, σn }, 则每一个小区域σi 内必同时含有D 内有理点和非有理点,从而 M i =iy x σ∈),(sup f(x,y)=1, m i =iy x σ∈),(inf f(x,y)=0, i=1,2,…,n.∴S(T)=i n i i M σ∆∑=1=1, s(T)=i ni i m σ∆∑=1=0,由T 的任意性知:lim →T S(T)=1≠0=0lim →T s(T). ∴f 在D 上不可积.7、证明:若f(x,y)在有界闭区域D 上连续,g(x,y)在D 上可积且不变号,则存在一点(ξ,η)∈D ,使得⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.证:不妨设g(x,y)≥0, (x,y)∈D ,则⎰⎰Dd y x g σ),(≥0. 令M,m 分别为f 在D 上的最大、最小值,则 m ⎰⎰Dd y x g σ),(≤⎰⎰Dd y x g y x f σ),(),(≤M ⎰⎰Dd y x g σ),(.若⎰⎰Dd y x g σ),(=0, 则⎰⎰Dd y x g y x f σ),(),(=0,任取(ξ,η)∈D ,得证!若⎰⎰Dd y x g σ),(>0, 则m ≤⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),(≤M. 由介值性定理知,存在一点(ξ,η)∈D ,使得f(ξ,η)=⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),( ,即⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.8、应用中值定理估计积分:I=⎰⎰++Dyx d 22cos cos 100σ的值, 其中D={(x,y)||x|+|y|≤10}. 解:∵f(x,y)=yx 22cos cos 1001++ 在D={(x,y)||x|+|y|≤10}上连续,根据中值定理知:存在(ξ,η)∈D ,使得I=ηξ22cos cos 100++∆D, 从而102D ∆≤I ≤100D ∆, △D 为D 的面积,∴51100≤I ≤2.9、证明:若平面曲线x=φ(t), y=ψ(t), α≤t ≤β光滑 (即φ(t),ψ(t)在[α,β]上具有连续导数且φ’2(t)+ψ’2(t)≠0),则 此曲线的面积为0.证法1:该平面曲线L 的长度为l=dt t t ⎰'+'βαψϕ)()(22为有限值.对∀ε>0, 将L 分成n=⎥⎦⎤⎢⎣⎡εl +1段:L 1,L 2,…,L n , 在每段L i 上取一点P i , 使P i 与其一端点的弧长为nl 2,以P i 为中心作边长为的ε正方形△i , 则L i ⊂△i (i=1,2,…,n), 从而L ⊂n i 1= △i ,记△=ni 1= △i ,则△为一多边形.设△的面积W ,则W ≤n ε2=⎪⎭⎫ ⎝⎛+1εlε=(1+ε)ε,∴L 的面积W L ≤W ≤(1+ε)ε. 即此曲线的面积为0.证法2:在曲线上任取参数t 的点M ,∵φ’2(t)+ψ’2(t)≠0, 由隐函数存在定理知,存在σ=(t-δ,t+δ)使曲线上对应的一段可以表示成显式方程.应用有限覆盖定理,[α,β]被开区间集{σ}有限覆盖,得出有限个区间, 使曲线分成有限部分,每一部分可以表示成显式方程y=f(x)或x=g(y), 其中f,g 为连续函数,由定理21.3知光滑曲线的面积为0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
I
(
x)dx也存
在,
并且
b dx d
a
c
f
(x,
y)dy
D
f
(x, y)d .
证明
对闭区间[a, b]作分割 a x0 x1 xm b, 对闭区间[c, d ]作分割 c y0 y1 yl d , 由此构成矩形区域D [a,b][c, d ]上的一个分割T , 它将矩形D分解为ml个小矩形. 记ik 为小矩形[xi1, xi ][ yk1, yk ], i 1,2, , m; k 1,2, ,l. xi xi xi1, yk yk yk1, ik的面积为| ik | xi yk ,|| T || maxi,k{d (ik )}
二重积分
如果下面特殊和式(积分和)的极限存在
n
m
||T ||0 i1
f (i ,i ) i
I,
且I的值与分割T和点(i ,i )的取法无关,则称此极限值I为
f (x, y)在D上的二重积分,
记为I D f (x, y)d D f (x, y)dxdy.
D称为积分区域, f (x, y)称为被积函数,
的值就等于积分区域D的面积.
二重积分
• 与一元函数的定积分的情形相类似,我们 可以建立二重积分的可积性理论。
二重积分的性质
由二重积分的定义可以得到下面的一些性质:
1.(必要性)设D为平面上可求面积的有界闭区域, f (x, y)在D上可积 f (x, y)在D上有界.
2.设D为平面上可求面积的有界闭区域, f (x, y)在D上连续 f (x, y)在D上可积.
证明
设f (x, y)在小矩形ik上的
上确界和下确界分别记为M ik , mik .
在区间[xi1, xi ]中任取一点i ,
mik • yk
yk y k 1
f
(i ,
y)dy
M ik
• yk ,
对上述不等式关于指标k求和可知
l
mik • yk
k 1
l
k 1
yk y k 1
l
f (i , y)dy M ik • yk ,
二重积分
二重积分的定义:
设D为平面上可求面积的有界闭区域,
二元函数f (x, y)定义在D上.
对区域D作分割T , 将D分解成n个可求面积的小区域
1, 2, , n (两两无公共的内点),
i的面积记为 i , i的直径记为di ,
分割T的模记为||
T
||
max
1in
di.
在 i上任取一点(i ,i ),
k 1
l
即 mik
• yk
d
c
f
(i ,
y)dy
I (i )
l
M ik
• yk .
k 1
k 1
证明
然后对上述不等式关于指标i求和可知
D f (x, y)d D g(x, y)d .
二重积分的性质
6.(绝对值不等式)设D为平面上可求面积的区域, f (x, y)在D上可积, 则 | f (x, y) | 在D上也可积,且
| D f (x, y)d | D| f (x, y) | d .
二重积分的性质
7.(积分中值定理) (1) : 如果f (x, y)在可求面积的有界闭区域D上连续,
则一定存在点( ,) D,使得
D f (x, y)d f ( ,)• | D | .
(2) : 如果f (x, y)在可求面积的有界闭区域D上连续, g(x, y)在D上可积且不变号,
则一定存在点( ,) D,使得
D f (x, y) g(x, y)d f ( ,) • D g(x, y)d .
二重积分的性质
3.(线性性质)设D为平面上可求面积的有界闭区域, f (x, y), g(x, y)在D上都可积, k1, k2为常数,则k1 f (x, y) k2 g(x, y) 在D上也可积, 且
D k1 f (x, y) k2g(x, y)d k1 D f (x, y)d k2 D g(x, y)d .
二重积分的性质
4.(可加性)设D1, D2为平面上可求面积的区域, 且D1, D2无公共的内点, f (x, y)在D1, D2上都可积, 则f (x, y)在D D1 D2上也可积,且
D f (x, y)d D1 f (x, y)d D2 f (x, y)d .
二重积分的性质
5.(积分不等式)设D为平面上可求面积的区域, f (x, y), g(x, y)在D上可积, 且在D上,有f (x, y) g(x, y),则
二重积分的计算
在矩形区域D [a,b][c, d]上二重积分的计算. 将二重积分转化为累次积分的计算.
二重积分的计算
设f (x, y)在矩形区域D [a,b][c, d ]上可积.
且对于每一个x [a,b],
积分I (x)
d
c
f
(x, y)dy都存在,
则累次
积分ab
d
dxc
f
(x,
y)dy
b
| | n
f (i ,i ) i I .
i 1
则称f (x, y)在区域D上可积.
二重积分
当f (x, y) 0时,
二重积分D f (x, y)dxdy的几何意义是
以z f (x, y)为顶, D为底面的曲顶柱体的体积. 特别地,当f (x, y) 1时,
f (x, y)在D上的二重积分D f (x, y)d
x, y称为积分变量, d dxdy称为面积微元.
二重积分
用极限的 -语言来叙述:
设D为平面上可求面积的有界闭区域, 二元函数f (x, y)定义在D上, I是一个确定的实数.
如果对于任意给定的正数 0,总存在某个正数 0,
使得对于D的任何分割T ,
只要 || T || ,属于T的所有积分和都有
重积分
二重积分 三重积分 n重积分
重积分
• 二元函数在R^2中有界闭区域上的积分称为 二重积分.
• 三元函数在R^3中有界闭区域上的积分称为 三重积分.
• n元函数在R^n中有界闭区域上的积分称为 n重积分.
二重积分
• 二重积分的实际背景—求曲顶柱体的体积.
设D [a,b][c, d ] {(x, y) R2 : a x b, c y d} 是R2中的闭矩形区域, f (x, y)是定义在D上的非负连续函数. 求以曲面z f (x, y)为顶, D为底面的 曲顶柱体V的体积. V {(x, y, z) R3 : (x, y) D,0 z f (x, y)}.
相关文档
最新文档