浅谈晃车的原因及整治
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈晃车的原因及整治
摘要:随着铁路提速,工务部门对线路检测、养护的要求越来越高。新增了许多动态监测手段,如:轨检车、车载仪、便携添乘仪和人工添乘。而自09年度6月份起,轨检车增加了70m高低、70m轨向、轨距变化率、曲率变化率、横加变化率五个评分项目,这就体现了新时期铁路的养护标准中又增加了舒适性的要求。这就需要我们更进一步的提高控轨的标准。轨检车、车载仪检查出的晃车,准确地反映了线路在动态下的轨距、方向、高低、水平等线路的真实状况,所以线路晃车的多少和峰值的大小就成了线路养护维修质量的重要的评判标准。由于作业现场检测手段的匮乏,而长波轨向和长波高低不象“轨距、水平”一样直观,因此作业现场准确的查找动态超限处所一直是困绕现场生产人员的一个难题。所以能够准确的分析产生晃车的原因和确定动态超限处所,在线路养护维修工作具有指导意义。是指导现场作业,提高线路养护质量必须前提。
关键词:晃车、轨向、线路方向、水平、线路大平、零误差。一、前言
铁路运输永恒的主题是安全生产。安全生产的关键就是确保人身安全,铁道线路是铁路运输的基础。身为铁路工务部门的一名职工如何搞好工务线路设备的维修养护工作,为铁路
运输安全畅通夯实基础是我们的职责。我段管辖的皖赣线单线由于地理地质情况特殊,受各种不利因素影响,基床翻浆冒泥严重,给工区的日常养修造成了很大的难度,如何解决基床翻浆给线路设备带来的病害,是摆在工务部门面前的一道难题。
本人***,1982年入路,1989年担任线路工区工长,长期从事线路养护工作,2003年开始从事线路大、中修工作,现任工队队长。在此我结合本人近年来在大中修方面的施工经验,以皖赣线基床翻浆的病害处理,谈一些基床翻浆冒泥整治的个人看法。
正文
一、轨距、水平与偏差的关系
目前在现场作业基本上都把轨距、水平的放在了首位。因为这是在工作过现有的静态检测手段和方法能检查的一项。在“零误差”这一观念的指导下,轨距和水平的“0mm”成了养护维修的追求目标。到现场用道尺检查轨距、水平以及变化率,一有超限便认定这是晃车的原因,这种做法是盲目的。有轨距、水平明显不良的地段,比晃车处所的轨距、水平还要差,可是它并不晃车。如果轨距和水平在作业标准,或者在保养标准,那么晃车的原因就应该从其它方面找起,例如线路方向和大平。在保证线路大向和大平达到优良的前提下,轨距
和水平做成“0mm”当然更好。但是不注重线路方向、大平,一味追求轨距、水平的“0mm”是不负责任的作业,是不科学的养护方法。这种方法和手段不但无益于晃车问题的解决,反而是一种破坏作用。当然有些Ⅲ级晃车改正轨距、处理了水平后,就不报警了,可还有些地方的Ⅲ级与轨距和水平的超保养有关,处理后有三种结果:一是不报Ⅲ级,但Ⅰ、Ⅱ级仍有。二是今天处理完成后,一周左右或一月之必再重复。三是不在这一点,但在前后有新的点形成。这就是因为现场整治中的轨距水平超限并不是晃车源,而是车晃起来后加剧对线路的冲击后形成的超限。所以简单的处理轨距、水平偏差,并不能从根本上消除重复的Ⅱ级偏差和Ⅲ级偏差,它的作用只是减缓。形成偏差的因素是多种多样的,轨距、水平、轨向、高低、方向都是偏差成因的一部分,但其基本共性是每一处重复偏差或较大的偏差的共同点都是在100米,这是因为线路两个大方向或一处方向但水平一侧高为反超高所引起(水平一侧高俗称水平一边倒)。在目前列车运行速度逐渐提高、轨道结构基本实现重型化的今天,引起晃车的主要因素是线路的大向和大平。
二、产生晃车的原因
1.水平引起的晃车
单独一处水平引起的晃车很少,除路基陷落、轨枕折断、钢轨揭盖后引起的水平变化外,与水平相关的晃车明显减少。水平单项病害必须相当大。一般来说,单项水平小于10㎜不会晃车,而连续多处的水平才是形成水平晃车的可能。当水平频繁变化,形成三角坑连续
多波时,在车辆自振频率、速度等因素耦合到一起,就会出现抖车。曲线上的水平来回变化时,就会形成横向加速度和横加变化率。曲线上出横加的关键是水平变化太大,同时正矢不圆顺,尤其是曲线半径变小的趋势而同时水平变低时,则是容易出横加Ⅲ级的时候。
2.轨距引起的晃车
轨距作业是线路维修中最基本的一项作业,也是现场作业次数最多的项目。轨距和轨距变化率也是动态偏差中较为关注的项目。可晃车不全是轨距和轨距变化率不好。现场处理晃车,检查轨距水平达不到0mm,就安排轨距和水平的整治。“零误差”思想下的轨距作业,对于低速条件下的行车是有益的,但对于高速条件下的列车平稳性,单纯的轨距“零误差”可能还能不达到理想的效果。轨距基本控制在“-1—+1mm”,轨向病害峰值变小,基本在1-2mm间,但波长却变短了,基本在6-10m间。如果能在作业中,把轨距从单一的数值放到一个允许的幅度,由“窄带”向“宽带”转移,则对高速条件下行车会有所帮助。即卡控轨距的变化率,放大轨距最大最小允许值。其最终目的是保证线路轨向的顺直。
3.轨向引起的晃车
轨向是钢轨某一点或几个点出现的方向。轨向不平顺会引起车辆的侧摆、摇头振动,连续的轨向不平顺将引起车辆蛇行和滚摆,严重的轨向不平顺将引起很大的侧向力,可能使轨枕、扣件不良地段的钢轨倾翻或轨排横移,造成列车脱轨倾覆。轨向不良是造成车体振动加速度(晃车)的主要原因,也是影响高速行车的主要病害。所以轨向引
起的晃车应当重视,尤其是多波、长波轨向。有时现场一个轨向很大,用10米弦测量可能超过5mm,但它不晃车。但当轨向连续多处超过3mm时,就可能成为引起晃车的主要因素。列车高速运行下轨向多波不平顺是主因,所以在作业中为了轨距、水平的“0mm”,牺牲一切,会导致轨向恶化。轨向的波长与行车速度达到一定频率时,就会晃车或是抖车现象。这就是病害频率和波长的影响,而且是关键的影响。
4.线路高低引起的晃车
线路高低引起的晃车,是在现场最容易找到的。尤其对高、对低。对于多波高低引起的晃车,只有通过图形的对比,才能有认识。而消除多波高低主要靠大机才能做的更好。单个小高低可能引不起晃车,但多波的小高低就可能引起垂加报警或轨检车检测三级。当高低的长短程度达到40米以上就不是线路高低而是线路大平了。
5.线路方向引起的晃车
线路方向不等同与轨向,线路方向是线路某一段或某个区段出现的方向。目前线路晃车中,十有八九与方向相关,但大多数处理重复晃车时没有分析到。因为对线路方向缺乏必要的指标和检测方式。目前工区唯一的方式是通过轨检车图形的文件“曲率”来实现。加速度与速度是成正比关系的,短距离的轨向肉眼可见,但对于线路方向人体肉眼的可见度和准确度就因人而异了。所以此类晃车在现场远距离用望远镜观察就比较明显.消灭这样的有难度,因为长度长,所以仅凭工区人工拨道作业,依靠“天窗”时间短期是无法彻底消灭的。