离心泵的汽蚀原因及措施
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离心泵的气蚀原因及采取措施
【摘要】:通过掌握离心泵的气蚀原因,我们在设计、安装、和生产中应如何预防与消除气蚀现象。
【关键词】:离心泵气蚀原因消除措施
离心泵的气蚀原理:
离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的K点上,液体压力p K最低。此后由于叶轮对液体作功,液体压力很快上升。当叶轮叶片入口附近的压力p K小于液体输送温度下的饱和蒸汽压力p v时,液体就汽化。同时,使溶解在液体的气体逸出。它们形成许多汽泡。当汽泡随液体流到叶道压力较高处时,外面的液体压力高于汽泡的汽化压力,则汽泡又重新凝结溃灭形成空穴,瞬间周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加(有的可达数百个大气压)。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些汽泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高(有的可达2000~3000Hz),于是金属表面因冲击疲劳而剥裂。如若汽泡夹杂某种活性气体(如氧气等),它们借助汽泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。上述这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为气蚀。
离心泵最易发生气蚀的部位有:
1.叶轮曲率最大的前盖板处,靠近叶片进口边缘的低压侧;
2.压出室中蜗壳隔舌和导叶的靠近进口边缘低压侧;
3.无前盖板的高比转数叶轮的叶梢外圆与壳体之间的密封间
隙以及叶梢的低压侧;
4.多级泵中第一级叶轮。
提高离心泵本身抗气蚀性能的措施
(1)改进泵的吸入口至叶轮附近的结构设计。增大过流面积;增大叶轮盖板进口段的曲率半径,减小液流急剧加速与降压;适当减少叶片进口的厚度,并将叶片进口修圆,使其接近流线形,也可以减少绕流叶片头部的加速与降压;提高叶轮和叶片进口部分表面光洁度以减小阻力损失;将叶片进口边向叶轮进口延伸,使液流提前接受作功,提高压力。
(2)采用前置诱导轮,使液流在前置诱导轮中提前作功,以提高液流压力。
(3)采用双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增加一倍,进口流速可减少一倍。
(4)设计工况采用稍大的正冲角,以增大叶片进口角,减小叶片进口处的弯曲,减小叶片阻塞,以增大进口面积;改善大流量下的工作条件,以减少流动损失。但正冲角不宜过大,否则影响效率。
(5)采用抗气蚀的材料。实践表明,材料的强度、硬度、韧性越高,化学稳定性越好,抗气蚀的性能越强。
提高进液装置有效气蚀余量的措施
(1)增加泵前贮液罐中液面的压力,以提高有效气蚀余量。
(2)减小吸上装置泵的安装高度。
(3)将上吸装置改为倒灌装置。
(4)减小泵前管路上的流动损失。如在要求围尽量缩短管路,减小管路中的流速,减少弯管和阀门,尽量加大阀门开度等。
以上措施可根据泵的选型、选材和泵的使用现场等条件,进行综合分析,适当加以应用。