高中物理常用的重要数学知识
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 高中物理常用的重要数学知识
一、 数学运算
1. 知识:①()
a
b
a b x x x
+⋅=
②()
b
a a b
x
x ⋅= ③()a a b b x x
x -= ④()1
a a
b b
x x =
m n
x = ⑥
1
b b x x
-= ⑦b a b a y x y x +⨯⋅=⨯⨯⨯10)10()10( ⑧()()Q r b a b a ab r
r r
∈>>=,0,0 ⑨2
2
2
()2a b a b ab +=++
2. 应用:①=2 =3
=
② 2(5)t += 3(5)t += ③ 500000 = 0. 00025 = ④ 5×108 + 4×108 = 5×108 + 4×107 =
5×108 × 4×10-3 = (5×108 )٪(4×10-3) =
二、 三角函数
1、角度的单位——弧度(rad )
①定义:在圆中,长度等于半径的弧长所对的圆心角为1弧度(1rad )。
②定义式:l
r
θ=
1rad=57.30 ③几个特殊角的弧度值:rad 可以省略 a. 30 (rad)6
π
=
b. 45 (rad)4π
=
c. 60 (rad)3
π
=
d. 90 (rad)2π=
e. 2120 (rad)3π=
f. 5150 (rad)6
π
=
g. 180 (rad)π= h. 3270 (rad)2
π
= I. 3602 (rad)π=
2、三角函数知识:
①几种三角函数的定义:
正弦:sin θ= 余弦:cos θ= 正切:tan θ= 余切:cot θ= ②关系:2
2sin
cos θθ+= tan θ= cos cot sin θθθ=
1
tan cot θθ
= ③诱导公式:奇变偶不变,符号看象限。
θ
a
b
c
2
sin(900-θ)=cos θ cos(900-θ)=sin θ tan(900-θ)=cot θ cot (900-θ)=tan θ sin(1800-θ)=sin θ cos(1800-θ)=-cos θ tan(1800-θ)= -tan θ cot (1800-θ)= -cot θ ④几个特殊角的三角函数值:
⑤二倍角公式:
sin 22sin cos θθθ=⋅
22cos2cos sin =θθθ=- =
⑥)sin(cos sin 22ϕθθθ++=+b a b a ,其中辅助角ϕ与点(a,b )在同一象限,且a
b tg =
ϕ
3.函数()ϕω+=x A y sin 的图象
对于函数()()0sin 0,0y A x A ωφω=+>>有:振幅A ,周期2T π
ω
=
,初相ϕ,相位
ϕω+x ,频率
πω21=
=
T
f .
4.完成下列空白
①
3π
= 0 2
π= 0 32π= 0 ② cos300 = tan 4π
= tan 6
π= sin1200=
③ sin ɑ =4
1
, cos ɑ = ; tan ɑ = ; cot ɑ = 。
三、 函数
1、一次函数图像是 线 ;
一次函数数学表达式: ①写出函右图的函数式
3
②写出A 、B 两点的坐标和意义:
③图像斜率:斜率 斜率的绝对值表示图线的倾斜程度2.一次函数的特例─——正比例函数:
数学形式: 图象特征: 3.反比例函数数学形式: 图象特征: 4. 二次函数y = ax 2 + bx + c 的最值
①a>0时,x = ,y 有最 值,y = ②a<0时,x = ,y 有最 值,y = ③求y = -x 2 + 2x + 4的最值?
四、 解方程
1.解一元二次方程
①ax 2 + bx + c = 0的根公式: ;有实数根的条件是
②求3x 2 + 4x – 4=0的根(分别用配方法和十字交叉法)
2.
五、 不等式
1、不等式的基本性质 ①(对称性)a b b a >⇔> ②(传递性),a b b c a c >>⇒> ③(可加性)a b a c b c >⇔+>+
④(可积性)bc ac c b a >⇒>>0, bc ac c b a <⇒<>0,
⑤(倒数法则)
b a b a b a b a 110;110>⇒<<<⇒
>>
2、几个重要不等式
4 ①
()
222a b ab a b R +≥∈,,(当且仅当a b =时取""=号)
②(基本不等式)
2a b
+≥ ()
a b R +∈,,(当且仅当a b =时取到等号). ③0,2b a ab a b >+≥若则 , 0,2
b a ab a b <+≤-若则(当仅当a=b 时取等号) ④判断y=1
4x x
+的最值?
六、几何知识
1.三角形知识
①三角形内角和为 ,两边之和 第三边,两边之差 第三边。
②直角三角形勾股定理:直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方,即222c a b =+。
③正弦定理
R C c
B b A a 2sin sin sin ===.(其中R 为AB
C ∆外接圆的半径)
④余弦定理:
222222
2222cos ,2cos ,2cos .a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩
2.圆的知识
①周长公式: ,面积公式: ②过切点垂直于切线的直线必过圆心,弦的中垂线过圆心。
③圆心角等于圆周角的两倍,弦切角等于圆周角
3.球的知识:表面积公式: ,体积公式:
4.菱形的知识:菱形对角线垂直且平分。
C。