原子吸收光谱法的发展趋势

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学号;2009436038姓名;谭海见班级;材料

化学

原子吸收光谱法的发展趋势

原子吸收光谱法 (AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长,由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。

原子吸收光谱法该法具有检出限低(火熖法可达ng/cm–3级),准确度高(火熖法相对误差小于1%),选择性好(即干扰少)分析速度快等优点。这使原子吸收光谱法在众多的分析鉴定方法中脱颖而现,吸引着一代又一代的科学家为之奋斗终生。

首先让我们来了解原子吸收光谱法作为一门科学的发展历史。

原子吸收光谱法的发展历史

1、第一阶段——原子吸收现象的发现与科学解释

早在1802年,伍朗斯顿(W.H.Wollaston)在研究太阳连续

光谱时,就发现了太阳连续光谱中出现的暗线。1817年,弗劳霍费

(J.Fraunhofer)在研究太阳连续光谱时,再次发现了这些暗线,由于当

时尚不了解产生这些暗线的原因,于是就将这些暗线称为弗劳霍费线。1859年,克希荷夫(G.Kirchhoff)与本生(R.Bunson)在研究碱金属和碱土金属的火焰光谱时,发现钠蒸气发出的光通过温度较低的钠蒸气时,会引起

钠光的吸收,并且根据钠发射线与暗线在光谱中位置相同这一事实,断定

太阳连续光谱中的暗线,正是太阳外围大气圈中的钠原子对太阳光谱中的

钠辐射吸收的结果。

2、第二阶段——原子吸收光谱仪器的产生

原子吸收光谱作为一种实用的分析方法是从1955年开始的。这一年澳大利亚的瓦尔西(A.Walsh)发表了他的著名论文“原子吸收光谱在化学分

析中的应用”奠定了原子吸收光谱法的基础。50年代末和60年代初,Hilger, Varian Techtron及Perkin-Elmer公司先后推出了原子吸收光谱商品仪器,发展了瓦尔西的设计思想。到了60年代中期,原子吸收光谱开始进入迅速发展的时期。

3、第三阶段——电热原子吸收光谱仪器的产生

1959年,苏联里沃夫发表了电热原子化技术的第一篇论文。电热原子吸收光谱法的绝对灵敏度可达到10-12-10-14g,使原子吸收光谱法向前发展

了一步。近年来,塞曼效应和自吸效应扣除背景技术的发展,使在很高的的

背景下亦可顺利地实现原子吸收测定。基体改进技术的应用、平台及探针

技术的应用以及在此基础上发展起来的稳定温度平台石墨炉技术(STPF)的

应用,可以对许多复杂组成的试样有效地实现原子吸收测定。

4、第四阶段——原子吸收分析仪器的发展

随着原子吸收技术的发展,推动了原子吸收仪器的不断更新和发展,而其它科学技术进步,为原子吸收仪器的不断更新和发展提供了技术和物质基础。近年来,使用连续光源和中阶梯光栅,结合使用光导摄象管、二极管阵列多元素分析检测器,设计出了微机控制的原子吸收分光光度计,为解决多元素同时测定开辟了新的前景。微机控制的原子吸收光谱系统简化了仪器结构,提高了仪器的自动化程度,改善了测定准确度,使原子吸收光谱法的面貌发生了重大的变化。联用技术(色谱-原子吸收联用、流动注射-原子吸收联用)日益受到人们的重视。色谱-原子吸收联用,不仅在解决元素的化学形态分析方面,而且在测定有机化合物的复杂混合物方面,都有着重要的用途,是一个很有前途的发展方向。

在了解到原子吸收光谱法的发展历史,我们都会为着门科学深深的吸引,让我们对着门科学的发展充满着期待和关怀,那就让我们来更多的了解原子吸收光谱法的发展趋势吧!

原子吸收光谱法的发展展望

近年来国内外都有人致力于研究激光在原子吸收分析方面的应用:(1)用可调谐激光代替空心阴极灯光源。

(2)用激光使样品原子化。

它将为微区和薄膜分析提供新手段、为难熔元素的原子化提供了新方法。塞曼效应的应用,使得能在很高的背景下也能顺利地实现测定。连续光源、中阶梯光栅单色器、波长调制原子吸收法(简称CEWM-AA法)是70年代后期发展起来的一种背景校正新技术。它的主要优点是仅用一个连续光源能在紫外区到可见区全波段工作,具有二维空间色散能力的高分辨本领的中阶梯光栅单色器将光谱线在二维空间色散,不仅能扣除散射光和分子吸收光谱带背景,而且还能校正与分折线直接重叠的其他原子吸收线的干扰。使用电视型光电器件做多元素分析鉴定器,结合中阶梯光栅单色器和可调谐激光器代替元素空心阴极灯光源,设计出用电子计算机控制的测定多元素的原子吸收分光光度计,将为解决同时测定多元素问题开辟新的途径。高效分离技术气相色谱、液相色谱的引入,实现分离仪器和测定仪器联用,将会使原子吸收分光光度法的面貌发生重大变化,微量进样技术和固体直接原子吸收分析受到了人们的注意。固体直接原子吸收分析的显著优点是:省去了分解试样步骤,不加试剂,不经任何分离、富集手续,减少了污染和损失的可能性,这对生物、医药、环境、化学等这类只有少量样品供分析的领域将是特别有意义的。所有这些新的发展动向,都很值得引起我们的重视。近年来,微型电子计算机应用到原子吸收分光光度计后,使仪器的整机性能和自动化程度达到一个新的阶段。

目前原子吸收法已广泛应用于各个领域,对工业、农业、医药卫生、教学科研等发展起着积极的作用。

但原子吸收光谱法现阶段也依然存在她的难题,存在着以下的一些不足:

原则上讲,不能多元素同时分析。测定元素不同,必须更换光源灯,这是它的不便之处。原子吸收光谱法测定难熔元素的灵敏度还不怎么令人满意。在可以进行测定的七十多个元素中,比较常用的仅三十多个。当采用将试样溶液喷雾到火焰的方法实现原子化时,会产生一些变化因素,因此精密度比分光光度法差。现在还不能测定共振线处于真空紫外区域的元素,如磷、硫等。

标准工作曲线的线性范围窄(一般在一个数量级范围),这给实际分析工作带来不便。对于某些基体复杂的样品分析,尚存某些干扰问题需要解决。在高背景低含量样品测定任务中,精密度下降。如何进一步提高灵敏度和降低干扰,仍是当前和今后原子吸收光谱分析工作者研究的重要课题。

这些都需要我们进一步的努力研究与思考。道路笔直,脚步却不能停。

原子吸收光谱法作为光谱分析中重要的一种分析方法,以他的独特优势,并伴随着无数科学家的辛勤努力,我相信在未来的世界里,原子吸收光谱法会取得更迅速的发展和更广泛的应用。

相关文档
最新文档