光学信息处理相干光学信息处理应总结33页PPT

合集下载

光学信息处理 第五章 相干光学信息处理

光学信息处理 第五章 相干光学信息处理
过以下变换
H 1 1 H * H * H * | H |2 H H *H | H |2
用全息的方法分别制作
H*匹配滤波器的制作方法 |H|-2可通过控制照相底片处理过程实现。
将照相底片置于h (x,y)的频谱面上拍摄其频谱全息图,化学处理严 格,使底片的透过率与|H|-2成正比
二者对准叠合
G(u, v) F (u, v) * H (u, v)
在4F系统的频谱面放置一个逆滤波器,使其 透过率满足H-1(u,v),则在P2后光场分布为
u '(u, v) G(u, v)H (u, v)H 1(u, v)
G(u, v)
P1
y
L1
P2 L2
v
x
u
P3
y'
x'
f
f
f
f
逆滤波器的制作
1、相干图像消模糊 H-1可用全息方法制作,但直接制作比较困难,可通
图像处理
多重像的产生 图像相加减 光学微分
匹配滤波 图像识别 用逆滤波器消模糊
5.1图像处理
• 多重像的产生 • 图像的相加减 • 光学微分-边缘增强 • 图像的比较
1、多重像的产生
• 利用正交光栅调制输入像的频谱,有望得到 多重像的输出
AAA AAA AAA
A
2、图像的相加减
A、一维光栅调制 • 假设两图像对成放在输入面上,中心分别在
平面波
出现亮点 即被识别 若 x* = x 或 x*与 x 相关
小结:
• ①匹配滤波器
– 物的傅里叶变换全息图;
• ② 当有物O(x,y)输入时,输出是——强脉冲 (自相关);
• ③ 当用其它物输入时,输出是——模糊斑 (相关)

相干光通信技术

相干光通信技术

信号处理单元
1 2 3
作用
信号处理单元负责对接收到的电信号进行解调、 解码和纠错等处理,提取出传输的信息。
特点
信号处理单元通常采用数字信号处理技术实现, 具有处理精度高、稳定性好、易于实现高速传输 等优点。
算法
常用的信号处理算法包括相位恢复算法、载波恢 复算法、判决反馈均衡器等,用于改善系统的性 能和传输距离。
面发射激光器)。
作用
光源负责产生相干光信号,其性能 直接影响系统的传输质量和距离。
特点
单频激光器具有输出光谱窄、线宽 小、相干性好的优点,适合于高速 长距离的相干光通信。
光调制器
01
02
03
类型
光调制器通常采用电光效 应或声光效应材料制成, 如LiNbO3或SiO2等。
作用
光调制器负责将电信号转 换为光信号,实现信息的 加载。
抗干扰能力
相干光通信具有较强的抗干扰能 力,能够更好地抵御噪声和干扰 的影响,确保信号传输的稳定性。
与无线通信的比较
传输媒介
相干光通信依赖于光纤作为传输 媒介,具有较低的传输损耗和较 小的信号干扰。无线通信则通过 空气传输,容易受到环境因素的 影响。
传输速率
相干光通信支持更高的传输速率, 能够满足大数据和多媒体传输的 需求。无线通信的传输速率相对 较低。
抗干扰能力强
相干光通信技术能够有效地 抑制光噪声和干扰,提高通
信系统的抗干扰能力。
传输容量大
相干光通信技术可以实 现多载波调制,从而大
幅度提高传输容量。
相干光通信技术的发展历程
01
02
03
04
20世纪60年代
相干光通信技术的概念被提出 。

近代光信息处理第4章光学图像识别

近代光信息处理第4章光学图像识别

光学信息处理
第1节
4.1 图像识别和光学相关器
第2节
很久以来,人们一直在研究能够识别物体的
第3节 机器,这种机器能代替人们从事枯燥乏味的重复
第4节 性劳动及危险性的工作.例如:
第5节 字符识别机能代替邮递员分拣邮件;
第6节 自动签名或指纹识别机能代替工作人员检验签字
第7节 或指纹;
第8节 在军事上,首先用图像识别系统辨认对方的目标,
光学信息处理
第1节 4.7 比例不变 Vander Lugt 相关器
第2节
比例不变又称尺度缩放不变,意思是说目标
第3节 第4节 第5节 第6节 第7节 第8节 第9节
图形与参考图形相似时,仍有相关峰输出. 引入下面的变量代换: = ln[x], = ln[y] 图形函数表为 f (, ) = f (ln[x], ln[y]) 对原函数进行 倍的比例缩放的结果为
第四章
光学图像识别
2020/1/17
1
目 录 2020/1/17 第1节
光学信息处理
第四章 光学图像识别
第2节 4.1 图像识别和光学相关器
第3节 4.2 非相干识别器
第4节 4.3 Vander Lugt相关器
第5节 4.4 实时Vander Lugt相关器
第6节 4.5 Vander Lugt相关器的小型化
第5节 相关输出: cM() = 2 exp(iM)∞0 r |fM(r)|2 dr
第6节 相关函数的强度: |cM()|2 = |2 ∞0 r |fM(r)|2 dr|2
第7节 它与目标图形的无关,因而是旋转不变的。
第8节
这一旋转不变的相关识别过程,显然强烈地
第9节 依赖于极坐标系原点的选择及圆谐函数分量的级

2024年信息光学重点总结范本(二篇)

2024年信息光学重点总结范本(二篇)

2024年信息光学重点总结范本____年信息光学重点总结____年是信息光学领域迈向更高发展的关键一年。

在过去几年中,信息光学技术经过不断创新和进步,已经在通信、计算、显示等众多领域发挥了重要作用。

然而,面对日益增长的需求和挑战,信息光学领域仍然需要持续努力和创新来实现更大的突破。

以下是对____年信息光学重点的总结和展望。

首先,在通信领域,光通信技术将继续发挥核心作用。

目前,全球范围内对高速、大容量、低功耗的通信需求不断增加,而光通信技术具有传输带宽大、抗干扰能力强等优势,已经成为实现高效通信的关键技术。

因此,____年信息光学领域的重点之一将是进一步提高光通信技术的速度和容量。

这包括发展更高效的光纤传输技术,研究新型的调制和解调技术,以及优化光通信系统的整体性能。

此外,随着5G技术的商用化,光无线通信将成为一个重要的研究方向。

通过结合光通信和无线通信技术,可以实现更大范围和更高速率的无线数据传输,满足人们对高速移动通信的需求。

其次,在计算领域,光计算技术将成为发展的新动力。

光计算技术以其并行处理能力强、运算速度快等优势,已经成为解决大规模数据处理和复杂计算问题的重要选择。

____年的重点将是深入研究和开发更高效、可扩展的光计算硬件和算法。

光传输和光控制技术将被广泛应用于光计算系统中,以实现高速的光信号传输和复杂的光控制操作。

此外,光量子计算和光深度学习也将成为研究的热点。

通过利用量子力学的奇异性和光的复杂性,可以实现更高效的计算和学习。

这些光计算新技术的发展将为人工智能、大数据处理等领域带来新的突破。

第三,在显示领域,光学显示技术将继续创新。

近年来,虚拟现实、增强现实等新型显示技术不断涌现,面临更高的需求和更高标准的要求。

因此,____年的重点之一将是开发更高质量、更逼真的光学显示技术。

这包括研究更高分辨率、更高对比度的显示器件,开发更适合人眼观看的光学器件,以及提高显示系统的整体性能等方面。

光学信息处理技术

光学信息处理技术
光学光谱分析
利用光学信息处理技术对物质成分、结构、含量等方面进行光谱分 析,提供快速、准确的分析结果。
光学仪器中的应用
光学显微镜
01
通过光学信息处理技术提高显微镜的成像质量和分辨率,应用
于生物学、医学、材料科学等领域。
光学望远镜
02
利用光学信息处理技术对天体进行观测和分析,推动天文学的
发展。
光学干涉仪
光学信息处理技术
汇报人: 202X-01-04
目录
• 光学信息处理技术概述 • 光学信息处理技术的基本原理 • 光学信息处理技术的主要方法 • 光学信息处理技术的实际应用 • 光学信息处理技术的未来展望 • 光学信息处理技术的挑战与解决方

01 光学信息处理技术概述
定义与特点
定义
光学信息处理技术是指利用光学 原理和光学器件对信息进行获取 、传输、处理、存储和显示的技 术。
特点
高速度、高精度、大容量、并行 处理、非接触、非破坏性等。
光学信息处理技术的发展历程
01
19世纪
光学显微镜和望远镜的发明,奠定了光学信息处理的基 础。
02
20世纪
全息摄影技术的出现,实现了三维信息的存储与再现。
03
21世纪
光子晶体、光子计算机等新型光学器件的出现,推动了 光学信息处理技术的发展。
光的干涉与衍射
光的干涉
当两束或多束相干光波在空间某一点叠加时,光波的振幅会 因相位差而发生变化,产生明暗相间的干涉现象。干涉现象 在光学信息处理中可用于实现图像增强、图像恢复等功能。
光的衍射
光波在传播过程中遇到障碍物时,会绕过障碍物的边缘继续 传播的现象。衍射现象在光学信息处理中可用于实现光束控 制、光束合成等功能。

信息光学课件

信息光学课件

电磁场与麦克斯韦方程
电磁场的基本概念
电磁场是由电场和磁场组成的, 它们之间存在相互作用。
麦克斯韦方程
描述了电磁场变化的四个基本方程 ,包括电场的散射方程、磁场的散 射方程、电场的波动方程和磁场的 波动方程。
电磁场的能量守恒
电磁场在空间中传播时,其能量不 会消失也不会凭空产生,即电磁场 的能量守恒。
将光学传感技术应用于物联网领域,实现智能化 、远程化和自动化的监测和控制。
3
光学传感器的集成与小型化
通过集成和优化光学器件,实现光学传感器的微 型化和便携化,满足不同应用场景的需求。
05 信息光学实验与实践教学 环节设计
实验内容与目标设定
实验内容
信息光学实验包括干涉、衍射、光学 信息处理等基本实验,以及一些综合 性和创新性实验。
信息光学课件
目录
CONTENTS
• 信息光学概述 • 信息光学基础理论 • 信息光学器件与系统 • 信息光学前沿技术与发展趋势 • 信息光学实验与实践教学环节设计 • 信息光学课程评价与总结反思环节设计
01 信息光学概述
信息光学定义与特点
信息光学定义
信息光学是一门研究光学信息的 获取、传输、处理、存储和显示 的科学。
傅里叶变换与信息光学
傅里叶变换
是一种将时域信号转换为频域信号的数学工具,常用于信号处理 和图像处理等领域。
信息光学的基本概念
信息光学是一门研究光波在空间和时间上传递、处理和存储信息的 科学。
信息光学的应用
信息光学在通信、生物医学成像、军事等领域有着广泛的应用,如 光纤通信、光学显微镜、光学雷达等。
03 信息光学器件与系统
光学器件分类与特点
主动光学器件

光学信息处理技术

光学信息处理技术

光学信息处理技术光学信息处理技术是一种基于光学的信息处理方式,它利用光的干涉、衍射、偏振等特性,实现对信息的获取、转换、加工和存储等操作。

这种技术具有高速度、高精度、高可靠性等优点,因此在现代通信、传感、生物医学等领域得到了广泛应用。

一、光学信息处理技术的基本原理光学信息处理技术主要基于两个基本原理:干涉和衍射。

干涉是指两个或多个光波叠加时,光强分布发生改变的现象。

通过控制干涉的相干性,可以实现信息的叠加、增强或抵消等操作。

衍射是指光波遇到障碍物时产生的空间频率变化现象。

通过控制衍射的图案,可以实现信息的滤波、变换等操作。

二、光学信息处理技术的应用1、光学计算:光学计算利用光的干涉和衍射原理,可以实现高速数学运算和数据处理。

例如,利用光学干涉仪可以实现傅里叶变换等复杂计算。

2、光学传感:光学传感利用光的干涉和偏振原理,可以实现高灵敏度的传感和测量。

例如,利用光学传感技术可以实现生物分子和环境参数的检测。

3、光学通信:光学通信利用光的相干性和偏振原理,可以实现高速、大容量的数据传输。

例如,利用光学通信技术可以实现城域网和长途通信。

4、光学存储:光学存储利用光的干涉和衍射原理,可以实现高密度、高速度的信息存储。

例如,利用光学存储技术可以实现光盘、蓝光等存储介质。

三、光学信息处理技术的未来趋势随着科技的不断发展,光学信息处理技术也在不断创新和进步。

未来,光学信息处理技术将朝着以下几个方向发展:1、高速度、大容量:随着数据量的不断增加,对光学信息处理技术的速度和容量要求也越来越高。

未来的光学信息处理技术将更加注重提高处理速度和扩大存储容量。

2、微型化、集成化:随着微纳加工技术的不断发展,未来的光学信息处理技术将更加注重微型化和集成化。

例如,利用微纳加工技术可以实现光学器件的集成和封装,提高系统的可靠性和稳定性。

3、智能化、自动化:未来的光学信息处理技术将更加注重智能化和自动化。

例如,利用人工智能技术可以实现光学系统的自适应和优化,提高系统的智能化水平。

【光学课件】09_01相干光学信息处理

【光学课件】09_01相干光学信息处理

编码过程的数学描述
Ronchi光栅的强度透过率:
t( x) = rect x 1 comb x
ad
d
=
1 2
1+
4
sin
2x d
+
1 sin 3
2 3x d
+"
= 1 (1+ R)
2
光栅移动半个周期后的强度透过率:
t'(x) =
1(
)
21 R
对图像A (设其强度透过率为IA)进行曝光, 底片上曝光量正比于: I A(1 + R) 2
例如:工业检测,如:比较加工工件与标准工件; 生物医学图像处理,如:病理图片; 卫星、飞机遥感图像处理,如:检测海洋面积变化, 陆地板快移动; 军事上,地面建筑物、军事设施的增减等。
实现图像相减的方法很多,仅介绍两种: (1)空域光栅编码、频域解码; (2)频域光栅滤波。
9.1.1 空域光栅编码频域解码相减方法
1 4
FA(u, v)exp ( j
0 ) + FB (u, v)exp (
j)
0
+
1 2
FA(u, v)exp (
j2
0 x2 ) + FB (u, v)exp ( j2
0 x2 )
+
1 4
{
FA
(
u,
v
)
exp
j (4 0 x2 + 0 ) + FB (u, v)exp j (4 0 x2 + ) } 0
解码过程的数学描述
得到的光栅编码图片的振幅透过率g(x,y)正比于底片的曝光量:
g(x, y)

《光学复习课》课件

《光学复习课》课件

光学在生活中的应用
01
02
03
04
照明
利用光学原理设计的灯具,提 供舒适、高效的照明。
显示技术
电视、电脑显示器等利用光学 技术实现图像显示。
光学通信
光纤技术用于高速、大容量的 数据传输。
摄影
记录生活点滴,分享美好时刻 。
光学在科技中的应用
量子光学
研究光与物质相互作用中的量 子现象,为量子计算和量子通
信等领域提供基础。
光刻技术
用于集成电路制造,是现代电 子工业的基础。
光学传感
检测物理、化学和生物等参数 ,广泛应用于环境监测、医疗 诊断等领域。
光学信息处理
利用光学原理实现快速、高效 的信息处理,应用于图像识别
、语音识别等领域。
THANKS FOR WATCHING
感谢您的观看
光的干涉和衍射
总结词
光的波动性质
详细描述
光的干涉是指两束或多束光波在空间某些区域相遇时,相互叠加产生加强或减弱的现象。而光的衍射 是指光波在传播过程中遇到障碍物时,光波发生弯曲的现象。这两种现象都是光波动性的表现。
02 光的干涉
干涉现象
光的干涉是指两束或多束相干 光波在空间某些区域相遇时, 相互叠加产生加强或减弱的现 象。
干涉现象是光学中的重要现象 ,在光学仪器、信息光学、量 子光学等领域有广泛应用。
干涉现象的发现和研究为光的 波动理论提供了重要的实验证 据。
干涉条件
相干性
参与干涉的光波必须是相干的,即具 有相同的频率、振动方向和相位关系 。
平行性
稳定性
光波传播过程中,光程差的变化必须 足够慢,以保证干涉现象的稳定。
《光学复习课》ppt课件

相干光学信息处理 - 副本

相干光学信息处理 - 副本

S( , ) S( , ) exp(j ( , ))
则由定义,匹配滤波器函数可以表示成
H ( , ) S( , ) exp( j ( , ))
信号经过匹配滤波器后变为 S ( , )
2
这个量完全是实数,
这意味着滤波器完全抵消了入射波前s的全部相位弯曲,于 是透射场是一个振幅加权但相位均匀的平面波前 , 这一平 面波前继续向前传播 , 在输出平面上产生信号的自相关光 斑.
相关运算可用卷积表示为
s( x , y )★ f ( x , y ) s* ( x, y ) f ( x对应于相乘运算 ,若要
对s (x,y)和f(x,y)进行卷积运算,可先用全息方法制作s(x,y)的 频谱函数S(,),然后把f(x,y)作为4f系统的输入函数,把S (,), 作 为 滤 波 函 数 H(,), 在 频 谱 面 上 的 复 振 幅 分 布 为 H(,)F(,),输出面上的分布则为
实现图像相减的方法很多,仅介绍两种: (1)频域光栅滤波; (2)全息照相法。
7.1.1 采用正余弦光栅滤波器实现相减的方法
y1 相干光
f f f f L1
y2,v
L2
y3 g(x3,y3) y1 x1
f(x1,y1)
H(u,v)
f ( x1 , y1 ) f A ( x1 b, y1 ) f B ( x1 b, y1 )
W f Wh
W f 2Wh
2b 2W f 3Wh
3 b W f Wh 2
W f Wh
参考光倾角

Wf f

3 Wh 2f
三、图像识别
图像识别是指检测和判断图像中是否包含某一特定信
息的图像 . 例如 : 从许多指纹中鉴别有无某人的指纹 ; 从许 多文字中找出所需的文字:在病理照片中识别出癌变细胞 等等.采用匹配滤波器进行相关检测,是图像识别的一种重 要手段.

相干光学信息处理

相干光学信息处理
1 FA f x , f y exp j 4 f 0 x1 FB f x , f y exp j 4 f 0 x1 4


(9.2.9)

iv) 在象面上,光场为:
g xi , yi F
1

x0 y0 f 0 x0 , y0 comb comb f x0 , y 0 a b
(9.1.1)
式中 a、b分别表示网点沿xo,yo方向的间距。

ii) 在频谱面上的频谱为:
x0 y0 F0 f x , f y F comb comb f x0 , y0 a b

(9.1.2)

iii) 在频谱面上放置一低通滤波器 H ( f x , f y ) ,只让中 心 (m=n=0)的 F ( f x , f y ) 通过,即
F0 f x , f y H f x , f y f x , f y F f x , f y
(9.2.3)
------------- 获图像相减 特点 :( 1 )光路,原理简单 ( 2 )调节困难,(精确重合难)

二、利用光栅滤波实现图像相加减 A. 光路
图9.2.2 用光栅实现图象相加减

图中:A、B两图离轴的距离为 b f0 f f --- 透镜焦距 f0 --- 光栅空间频率
(9.2.5)


B.数学分析 i)物光场
f x0 , y0 f A x0 b, y0 f B x0 b, y0
(9.2.6)

ii)谱:
F fx , f y F

光学相干层析成像技术 ppt课件

光学相干层析成像技术 ppt课件

2020/12/15
9
2020/12/15
10
OCT分辨率
• OCT的分辨本领由其纵向分辨率和横向分 辨率来衡量
• 其纵向分辨率取决于OCT系统低相干光源
的相干长度 L2In2•2
2
• OCT的横向分辨率取决于光束通过焦距为f
的透镜聚焦到样品上的光斑直径
X4df 2NA
2020/12/15
• 实验结果证明,OCT 诊断各种视网膜疾病 非常有用,从有斑点产生,到形成青光眼, 再到视网膜脱离均可探测。
• 在描绘眼睛结构方面,OCT的能力是其他 成像仪器所不能比拟的
2020/12/15
13
牙科诊断
• PS—OCT(偏振敏感OCT) • 使用样品对背散射光双折射的大小成像 • 牙齿表面的釉质具有强烈的双折射效应,
4
医学成像诊断的要求
• 实时
• 在体:不影响组织的结构,
• 危害性小:无创,辐射小
• 分辨力高
2020/12/15
5
光学相干层析成像(OCT)
• 光学相干层析(OCT)是9O年代发展起来的 一种新型光学成像手段。它通过测量生物 组织的背散射光强度和相位获取内部的显 微结构信息进行层析成像。
• 分辨率1um~15um, 比传统的超声成像高 l~2个数量级,并且可以实现实时在体检测。 OCT系统的体积和制造成本都远小于磁共 振成像(MRI)这使得该技术在实验研究和临 床应用方面都大有可为
光学相干层析成像技术 及其在医学中的应用
2020/12/15
1
应用需要
• 对病变组织的精 确诊断是当今世界医学研究的重 要 课题之一,生物 医学 工作者一直在寻找无创 的生物体检测方法 。

信息光学知识点总结

信息光学知识点总结

信息光学知识点总结一、光学原理1. 光的性质光是一种电磁波,具有波动和粒子两种性质。

光波的波长和频率决定了其颜色和能量,而光的粒子性质则体现在光子这一基本粒子上。

2. 光的衍射和干涉光在通过狭缝或障碍物时会发生衍射,而光波之间的叠加会产生干涉现象。

这些现象使得我们可以利用光进行信息的编码和解码,实现光学信息传输和处理。

3. 光的折射和反射折射和反射是光在与界面相交时发生的基本现象,它们是光学成像和光学器件设计的基础。

4. 光的偏振偏振是光波振动方向的特性,光的偏振性质被广泛应用于光学通信和图像传感器中。

5. 光的色散和色彩光通过介质时会发生色散现象,这一现象使得彩色成像、光谱分析等得以实现。

6. 光的相干性光的相干性决定了光波之间的干涉和衍射效应,而相干光更适用于携带信息和进行信息处理。

7. 光的传播光线传播的轨迹是光学成像和光学器件设计的基础,了解光在不同介质中的传播规律对于光学系统的设计是至关重要的。

二、信息光学应用1. 光学成像光学成像是信息光学的一个重要应用领域,其中包括摄影、摄像、显微镜、望远镜等。

光学成像技术的发展对于医学、生物学、天文学、地质学等领域产生了深远的影响。

2. 光学通信光学通信是一种利用光波进行信息传输的通信方式,它具有大带宽、低损耗、高安全性等优点,因此成为了现代通信系统中的重要组成部分。

3. 光存储技术光存储技术利用光对材料的改变来存储信息,包括光盘、光存储器件等。

光存储技术具有高密度、长寿命等优点,适用于大容量数据存储。

4. 光学传感器光学传感器利用光的特性来实现对信号的转换和处理,常见的光学传感器包括光电二极管、光电晶体管、CCD传感器等,它们在摄影、医学影像、安防监控等领域有着广泛的应用。

5. 光学信息处理光学信息处理是指利用光学原理进行信息的编码、解码、复制、加密等处理过程,包括光学数据处理、光学图像处理等。

6. 光学计算光学计算是一种利用光学原理进行计算和处理的技术,例如光学处理器、光学逻辑门等。

光学信息处理技术

光学信息处理技术

8)A.marechel用空间滤波的方法来消除图片的网点,抽出 轮廓,改变图象的对比。 60年代激光问世 9)1962年利思(E.Leith)和乌帕特尼克斯(J.Upatniks) 利用空间载波的概念,拍摄和重现了高质量的全息图。 10)1964年范德拉格特(A.Vandor-Lugt)用复数空间滤波 的概念,全息空间滤波器作了字符识别实验,使光学 信息处理进入一个广泛的应用阶段。
第二章 线性系统分析
主要内容 1.几个常用函数 2. δ函数 3.傅立叶变换 4.卷积和相关
3.1几个常用函数 1.矩形函数(Rectangle function) 1.
x − x0 Arect ( ) ={ a
x − x0 1 ≤ A a 2 0 其他
光学上常常用矩形函数表示狭缝、矩孔的透过率。它与 某函数相乘时,可限制函数自变量的范围,起到截取的作 用,故又常称为“门函数”。
七.课程学习要求达到目的 1. 学习要求,掌握物理光学,应用光学,光学测量知识, 同时要掌握一定的数学知识。 2. 理解透镜的位相调制作用和付里叶变换性质。 ① 掌握付里叶分析和线性系统的基本理论,常用函数,δ 函数及其付里叶变换,卷积和相关的基本概念。 ② 理解透镜的位相调制作用和付里叶变换性质。 ③ 掌握相干传递函数和光学传递函数的基本概念,用其对 光学成像系统进行频谱分析。 ④ 掌握光学信息处理和空间滤波的概念及其基本原理,能 对相干光、非相干光及白光的信息处理进行分析和应用。
五.光信息处理发现的历史 原始的光信息处理处理方法可以追溯到著名的佛科刀 口检验与辉纹法,他都是以弱衍射效应为基础,从可见的 光场中提取必要的信息。 1)1873年E.Abbe对显微镜成像的探讨,阐明了光学系统分 辨率与物面空间频谱的联系。 2)1906年Porter实现了空间滤波的实验。 1)-2)公认为相干光处理系统的先驱 3)1927年Michelson说明了再现记录的衍射图样叠加重要 的位相信息后成像的过程。

光学信息处理技术65652

光学信息处理技术65652

d
sinc

2a d

sinc

B

fx

2 d


sinc
B

fx

2 d


2a d
sinc

2a d

rect

x3 B

cos

4 x3
d

可见只允许正负二级谱通过时,像振幅的周期是物的1/2。实验 中观察到的输出一般为强度分布,本例的像强度周期就是物周期的 1/4。
(2)零频分量是一个直流分量,它只代表像的本底(图D); (3)阻挡零频分量,在一定条件下可使像发生衬底反转(图E); (4)仅允许低频分量通过时,像的边缘锐度降低;仅允许高频分
量通过时,像的边缘效应增强; (5)采用选择型滤波器,可望完全改变像的性质(图F)。
8.2.3 空间频率滤波系统
三透镜 4f系统

2a 2 d2
sinc2
2a rect 2 d
x3 B

2a 2 d2
sinc2
2a rect 2 d
x3 B
cos 8x3
d


2a 2 d2
sinc2
2a rect 2 d
x3 B
cos 8x3
d a
d
t

x,
y



1 d
rect

x1 a


comb

x1 d

rect

x1 B

将物置于4f系统输入面上,可在谱面上 得到它的傅里叶变换:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学信息处理相干光学信息处理应总

26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
Thank you

29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法ຫໍສະໝຸດ , 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊

6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
相关文档
最新文档