经济数学-经济学中常用的函数
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由图可见,曲线当t 0 且无限增大时,
其无限与直线 y k 接近 , 且始终位于该直
线 下方. 在产品销售预测中,当预测销售量充
分接近到 k 值时,表示该产品在商业流通中将
达到市场饱和 .
练习题
1.设需求函数由 P+Q=1 给出,(1)求总收益 函数 P;(2)若售出 1/3 单位,求其总收益。
总收益是生产者出售一定数量产品所得到 的全部收入. 用 Q 表示出售的产品数量,R 表 示总收益, R 表示平均收益,则
R(Q ) R R(Q ) , R Q
如果产品价格 P 保持不变,则
R(Q) PQ , R P
例 4 设某商品的需求关系是 3Q+4P=100,求总收 益和平均收益.
若每售出一件该商品的收入是 20 万元, 求生产 10 件的总利润.
解 由题意知 P 20 ( 万元) ,
总收益为 R(Q) P Q 20Q 所以L(Q) R(Q) C (Q)
20Q (20 2Q 0.5Q2 ) 20 18Q 0.5Q 2 L(10) ( 20 18 10 0.5 102 ) 110(万元).
Q G( P )
则 G称为供给函数.
一般地,供给函数可以用以下简单 函数近似代替: 线性函数:Q aP b , 其中 a , b 0 幂函数:
Q kP , 其中 A 0 , k 0
A
指数函数:Q aebP , 其中 A 0 , b 0
在同一个坐标系中作出需求曲线 D和供 给曲线 S ,两条曲线的交点称为供需平衡点,
该点的横坐标称为供需平衡价格 .
供需平衡点 供需平 衡价格
Q0
E
P0
wenku.baidu.com
三、生产函数 生产函数刻画了一定时期内各生产
要素的投入量与产品的最大可能产量之
间的关系.一般说来,生产要素包括资金
和劳动力等多种要素 .为方便起见,我
们暂时先考虑只有一个投入变量,而其
他投入皆为常量的情况 .
例 2 设投入 x 与产出 g ( x ) 间的函数关系为
解 P 0 时 Q b , 它表示价格为零时的
需求量为 b ,称为饱和需求量;
b b Q 0 时 P , 它表示价格为 时 , a a
无人愿意购买此商品.
二、供给函数
供给的含义:在某一时间内,在一定的价格条件 下,生产者愿意并且能够售出的商品.
如果价格是决定供给量的最主要因素,
可以认为 Q 是 P 的函数。记作
第五节
经济学中的常用函数
一、需求函数
需求的含义:消费者在某一特定的时期内,在一 定的价格条件下对某种商品具有购买力的需要.
如果价格是决定需求量的最主要因素,
可以认为 Q 是 P的函数。记作
Q f (P)
则 f 称为需求函数.
常见的需求函数:
线性需求函数: Q a bP,
a, b 0
250x ,0 x 600 5. R 250 600 ( 250 20)( x 600),600 x 800 250 600 230 200, x 800 21 6. Pe ; 8
Q2 例 3 已知某种产品的总成本函数为C (Q ) 1000 . 8
求当生产 100 个该产品时的总成本和平均成本.
解 由题意,求产量为100时的总成本
100 C (100) 1000 2250 , 8
2
2250 平均成本为 AC (100) 22.5 100
五、收益函数
练习题答案
1 2 1. R Q Q , R( ) ; 2 9 2. R 0.11Q 0.4 , P (15) 0.0025 , P (12) 0.0034 ,
2
P ( 20) 0.0017, R(10) 0.044, R(12) 0.041, R(15) 0.037; 3.C C (Q ) 200000 1000 Q;
5.某产品之需求函数为 Qd =20-3P,供给函数为
Qs =5P-1,求该商品的静态均衡价格。
6.某工厂生产某产品年产量为 x 台,每台售 价为 250 元,当年产量在 600 台以内时,可 以全部售出,当年产量超过 600 台时,经广 告宣传后又可多出售 200 台,每台平均广告 费为 20 元,生产再多,本年就售不出去了。 试建立本年的销售总收入 R 与年产量 x 的关 系。
g ( x ) cx a 由于 g ( 2 x ) 2 a cx a 2 a g ( x )
规模报酬不变; 可见,当a 1 时, 如果投入增加一倍,产出增 当 a 1 时, 加不到一倍,即规模报酬递减;
如果投入增加一倍,产出增 当 a 1 时,
加不止一倍,即规模报酬递增 .
四、成本函数
1 .4 PQ 2.某工厂对棉花的需求函数由
=0.11 给
出,(1)求其总收益函数 R;(2) P(12),R(10), R(12),R(15),P(15),P(20)。 3.若工厂生产某种商品,固定成本 200,000 元,每生产一单位产品,成本增加 1000 元, 求总成本函数。
4.某厂生产一批元器件,设计能力为日产 100 件,每日的固定成本为 150 元,每件的平均可变 成本为 10 元,(1)试求该厂此元器件的日总成本 函数及平均成本函数;(2)若每件售价 14 元, 试写出总收入函数;(3)试写出利润函数。
在时间 T 内的总费用 E 为
1 Q E C1Tq C 2 2 q
1 Q 其中 , C1Tq 为贮存费,C 2 为进货费用 . 2 q
八、戈珀兹 (Gompertz) 曲线
戈珀兹 曲线是指数函数
y ka
bt
在经济预测中,经常使用该曲线.
k
初始期 发展期
饱和期
当 lg a 0 , 0 b 1 时,图形如上页所示.
4.(1)C ( X ) 150 10X (元)(0 X 100); 150 C (X ) 10(0 X 100); X ( 2) R( X ) 14X (元 ( ) 0 X 100 ) ; ( 3) L( X ) 150 4 X (元)(0 X 100);
成本是生产一定数量产品所需要的
各种生产要素投入的价格或费用总额,
它由固定成本与可变成本两部分组成.
C总 C固 C可变
支付固定生产 要素的费用 支付可变生产 要素的费用
总 成 本 固 定 成 本 可 变 成 本 平 均 成 本 产量 产量
C ( Q ) C 1 C 2 (Q ) 即C AC Q Q Q
七、库存函数
设某企业在计划期 T 内,对某种物品总需求
量为 Q ,由于库存费用及资金占用等因素,显然
一次进货是不划算的,考虑均匀的分 n 次进货,
Q T 每次进货批量为 q ,进货周期为 t . 假定 n n 每件物品的贮存单位时间费用为 C1 ,每次进货费 用为C 2 ,每次进货量相同,进货间隔时间不变, q 以匀速消耗贮存物品,则平均库存为 , 2
100 3Q P , 解 价格函数为 4
100Q 3Q 2 所以总收益为 R(Q ) P Q , 4
平均收益为
100 3Q AP (Q ) P (Q ) . 4
六、利润函数
利润是生产中获得的总收益与投入的总成
本之差。即
L(Q ) R(Q ) C (Q )
2 例 5 设某种商品的总成本为C (Q) 20 2Q 0.5Q ,
2
二次曲线需求函数: Q a bP cP
指数需求函数: Q Ae bp
( 其中 a,b,c,A > 0 )
幂函数:Q kP A , 其中 A 0 , k 0
例 1 设某商品的需求函数为
Q aP b (a , b 0)
讨论 P 0 时的需求量和Q 0 时的价格 .
其无限与直线 y k 接近 , 且始终位于该直
线 下方. 在产品销售预测中,当预测销售量充
分接近到 k 值时,表示该产品在商业流通中将
达到市场饱和 .
练习题
1.设需求函数由 P+Q=1 给出,(1)求总收益 函数 P;(2)若售出 1/3 单位,求其总收益。
总收益是生产者出售一定数量产品所得到 的全部收入. 用 Q 表示出售的产品数量,R 表 示总收益, R 表示平均收益,则
R(Q ) R R(Q ) , R Q
如果产品价格 P 保持不变,则
R(Q) PQ , R P
例 4 设某商品的需求关系是 3Q+4P=100,求总收 益和平均收益.
若每售出一件该商品的收入是 20 万元, 求生产 10 件的总利润.
解 由题意知 P 20 ( 万元) ,
总收益为 R(Q) P Q 20Q 所以L(Q) R(Q) C (Q)
20Q (20 2Q 0.5Q2 ) 20 18Q 0.5Q 2 L(10) ( 20 18 10 0.5 102 ) 110(万元).
Q G( P )
则 G称为供给函数.
一般地,供给函数可以用以下简单 函数近似代替: 线性函数:Q aP b , 其中 a , b 0 幂函数:
Q kP , 其中 A 0 , k 0
A
指数函数:Q aebP , 其中 A 0 , b 0
在同一个坐标系中作出需求曲线 D和供 给曲线 S ,两条曲线的交点称为供需平衡点,
该点的横坐标称为供需平衡价格 .
供需平衡点 供需平 衡价格
Q0
E
P0
wenku.baidu.com
三、生产函数 生产函数刻画了一定时期内各生产
要素的投入量与产品的最大可能产量之
间的关系.一般说来,生产要素包括资金
和劳动力等多种要素 .为方便起见,我
们暂时先考虑只有一个投入变量,而其
他投入皆为常量的情况 .
例 2 设投入 x 与产出 g ( x ) 间的函数关系为
解 P 0 时 Q b , 它表示价格为零时的
需求量为 b ,称为饱和需求量;
b b Q 0 时 P , 它表示价格为 时 , a a
无人愿意购买此商品.
二、供给函数
供给的含义:在某一时间内,在一定的价格条件 下,生产者愿意并且能够售出的商品.
如果价格是决定供给量的最主要因素,
可以认为 Q 是 P 的函数。记作
第五节
经济学中的常用函数
一、需求函数
需求的含义:消费者在某一特定的时期内,在一 定的价格条件下对某种商品具有购买力的需要.
如果价格是决定需求量的最主要因素,
可以认为 Q 是 P的函数。记作
Q f (P)
则 f 称为需求函数.
常见的需求函数:
线性需求函数: Q a bP,
a, b 0
250x ,0 x 600 5. R 250 600 ( 250 20)( x 600),600 x 800 250 600 230 200, x 800 21 6. Pe ; 8
Q2 例 3 已知某种产品的总成本函数为C (Q ) 1000 . 8
求当生产 100 个该产品时的总成本和平均成本.
解 由题意,求产量为100时的总成本
100 C (100) 1000 2250 , 8
2
2250 平均成本为 AC (100) 22.5 100
五、收益函数
练习题答案
1 2 1. R Q Q , R( ) ; 2 9 2. R 0.11Q 0.4 , P (15) 0.0025 , P (12) 0.0034 ,
2
P ( 20) 0.0017, R(10) 0.044, R(12) 0.041, R(15) 0.037; 3.C C (Q ) 200000 1000 Q;
5.某产品之需求函数为 Qd =20-3P,供给函数为
Qs =5P-1,求该商品的静态均衡价格。
6.某工厂生产某产品年产量为 x 台,每台售 价为 250 元,当年产量在 600 台以内时,可 以全部售出,当年产量超过 600 台时,经广 告宣传后又可多出售 200 台,每台平均广告 费为 20 元,生产再多,本年就售不出去了。 试建立本年的销售总收入 R 与年产量 x 的关 系。
g ( x ) cx a 由于 g ( 2 x ) 2 a cx a 2 a g ( x )
规模报酬不变; 可见,当a 1 时, 如果投入增加一倍,产出增 当 a 1 时, 加不到一倍,即规模报酬递减;
如果投入增加一倍,产出增 当 a 1 时,
加不止一倍,即规模报酬递增 .
四、成本函数
1 .4 PQ 2.某工厂对棉花的需求函数由
=0.11 给
出,(1)求其总收益函数 R;(2) P(12),R(10), R(12),R(15),P(15),P(20)。 3.若工厂生产某种商品,固定成本 200,000 元,每生产一单位产品,成本增加 1000 元, 求总成本函数。
4.某厂生产一批元器件,设计能力为日产 100 件,每日的固定成本为 150 元,每件的平均可变 成本为 10 元,(1)试求该厂此元器件的日总成本 函数及平均成本函数;(2)若每件售价 14 元, 试写出总收入函数;(3)试写出利润函数。
在时间 T 内的总费用 E 为
1 Q E C1Tq C 2 2 q
1 Q 其中 , C1Tq 为贮存费,C 2 为进货费用 . 2 q
八、戈珀兹 (Gompertz) 曲线
戈珀兹 曲线是指数函数
y ka
bt
在经济预测中,经常使用该曲线.
k
初始期 发展期
饱和期
当 lg a 0 , 0 b 1 时,图形如上页所示.
4.(1)C ( X ) 150 10X (元)(0 X 100); 150 C (X ) 10(0 X 100); X ( 2) R( X ) 14X (元 ( ) 0 X 100 ) ; ( 3) L( X ) 150 4 X (元)(0 X 100);
成本是生产一定数量产品所需要的
各种生产要素投入的价格或费用总额,
它由固定成本与可变成本两部分组成.
C总 C固 C可变
支付固定生产 要素的费用 支付可变生产 要素的费用
总 成 本 固 定 成 本 可 变 成 本 平 均 成 本 产量 产量
C ( Q ) C 1 C 2 (Q ) 即C AC Q Q Q
七、库存函数
设某企业在计划期 T 内,对某种物品总需求
量为 Q ,由于库存费用及资金占用等因素,显然
一次进货是不划算的,考虑均匀的分 n 次进货,
Q T 每次进货批量为 q ,进货周期为 t . 假定 n n 每件物品的贮存单位时间费用为 C1 ,每次进货费 用为C 2 ,每次进货量相同,进货间隔时间不变, q 以匀速消耗贮存物品,则平均库存为 , 2
100 3Q P , 解 价格函数为 4
100Q 3Q 2 所以总收益为 R(Q ) P Q , 4
平均收益为
100 3Q AP (Q ) P (Q ) . 4
六、利润函数
利润是生产中获得的总收益与投入的总成
本之差。即
L(Q ) R(Q ) C (Q )
2 例 5 设某种商品的总成本为C (Q) 20 2Q 0.5Q ,
2
二次曲线需求函数: Q a bP cP
指数需求函数: Q Ae bp
( 其中 a,b,c,A > 0 )
幂函数:Q kP A , 其中 A 0 , k 0
例 1 设某商品的需求函数为
Q aP b (a , b 0)
讨论 P 0 时的需求量和Q 0 时的价格 .