蒙特卡罗算法计算Pi

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

呵呵,刚好大二下学期学的,给你讲讲吧。

根据我的理解简单的说就是以部分估计整体,利用随机数来解决问题的方法称为蒙特卡罗算法,记得课本上讲了个例题:

在数值积分法中,我们利用求单位圆的1/4的面积来求得Pi/4从而得到Pi。单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分(若能画图就好了!)只要能求出扇行面积S1在正方形面积S中占的比例K=S1/S就立即能得到S1,从而得到Pi的值.

怎样求出扇形面积在正方形面积中占的比例K呢?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。将落在扇形内的点数m与所投点的总数n的比m/n作为k的近似值。

怎样实现这样的随机投点呢?任何一款计算机语言都有这种功能,能够产生在区间[0,1]内均匀分布的随机数,在mathematica中,产生区间[0,1]内均匀分布随机数的语句是

Random[ ]

产生两个这样的随机数x,y,则以(x,y)为坐标的点就是单位正方形内的一点P,它落在正方形内每个位置的机会均等,P落在扇形内的充要条件是x^2+y^2<=1.

蒙特卡罗算法计算Pi

n=10000;p=();

Do[m=0;Do[x=Random[];y=Random[];If[x^2+y^2<=1,m++],{k,1,n}]; AppendTo[p,N[4m/n]],{t,1,10}];

Print[p];

Sum[p[[t]],{t,1,10}]/10

注:以上语句的功能是:n=10000,每次投10000个点得出Pi的近似值存放到数组p中;一共做10次得到10个近似值,通过语句Print[p]将这10个近似值全部显示出来观察。最后再求这10个近似值的平均值,相当于随机投点100000

次得到的近似值。

以上是用Mathenatica编写的程序,方法就是这样,具体只能你自己体会了。

蒙特卡罗算法

以概率和统计理论方法为基础的一种计算方法。将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。为象征性地表明这一方法的概率统计特征,故借用赌城蒙特卡罗命名。又称统计模拟法、随机抽样技术。由S.M.乌拉姆和J.冯·诺伊曼在20世纪40年代为研制核武器而首先提出。它的基本思想是,为了求解数学、物理、工程技术以及管理等方

面的问题,首先建立一个概率模型或随机过程,使它们的参数,如概率分布或数学期望等问题的解;然后通过对模型或过程的观察或抽样试验来计算所求参数的统计特征,并用算术平均值作为所求解的近似值。对于随机性问题,有时还可以根据实际物理背景的概率法则,用电子计算机直接进行抽样试验,从而求得问题的解答。

蒙特卡罗方法有很强的适应性,问题的几何形状的复杂性对它的影响不大。该方法的收敛性是指概率意义下的收敛,因此问题维数的增加不会影响它的收敛速度,而且存贮单元也很省,这些是用该方法处理大型复杂问题时的优势。因此,随着电子计算机的发展和科学技术问题的日趋复杂,蒙特卡罗方法的应用也越来越广泛。它不仅较好地解决了多重积分计算、微分方程求解、积分方程求解、特征值计算和非线性方程组求解等高难度和复杂的数学计算问题,而且在统计物理、核物理、真空技术、系统科学、信息科学、公用事业、地质、医学,可靠性及计算机科学等广泛的领域都得到成功的应用

蒙特卡罗方法(Monte-Carlo方法),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。与它对应的是确定性算法。蒙特卡罗方法在计算物理学以及相关的应用领域里中非常重要。它在粒子输运计算、量子热力学计算、空气动力学等方面应用非常广泛。

蒙特卡罗方法的基本思想是:当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。

在解决实际问题的时候应用蒙特·卡罗方法主要有两部分工作:

用蒙特卡罗方法模拟某一过程时,需要产生各种概率分布的随机变量。

用统计方法把模型的数字特征估计出来,从而得到实际问题的数值解。

使用蒙特卡罗方法进行分子模拟计算是按照以下步骤进行的:

使用随机数发生器产生一个随机的分子构型。

对此分子构型的其中粒子坐标做无规则的改变,产生一个新的分子构型。

计算新的分子构型的能量。

比较新的分子构型于改变前的分子构型的能量变化,判断是否接受该构型。

若新的分子构型能量低于原分子构型的能量,则接受新的构型,使用这个构型重复再做下一次迭代。

若新的分子构型能量高于原分子构型的能量,则计算玻尔兹曼常数,同时产生一个随机数。

若这个随机数大于所计算出的玻尔兹曼因子,则放弃这个构型,重新计算。

若这个随机数小于所计算出的玻尔兹曼因子,则接受这个构型,使用这个构型重复再做下一次迭代。

如此进行迭代计算,直至最后搜索出低于所给能量条件的分子构型结束。

关于蒙特卡罗方法的计算程序已经有很多,如:EGS4、FLUKA、ETRAN、ITS、MCNP、GEANT等。这些程序大多经过了多年的发展,花费了几百人年的工作量。除欧洲核子研究中心(CERN)发行的GEANT主要用于高能物理探测器响应和粒子径迹的模拟外,其它程序都深入到低能领域,并被广泛应用。就电子和光子输运的模拟而言,这些程序可被分为两个系列:1.EGS4、FLUKA、GRANT2.ETRAN、ITS、MCNP 这两个系列的区别在于:对于电子输运过程的模拟根据不同的理论采用了不同的算法。EGS4和ETRAN分别为两个系列的基础,其它程序都采用了它们的核心算法。ETRAN (for Electron Transport)由美国国家标准局辐射研究中心开发,主要模拟光子和电子,能量范围可从1KeV到1GeV。ITS(The integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes )是由美国圣地亚哥(Sandia)国家实验室在ETRAN的基础上开发的一系列模拟计算程序,包括TIGER 、CYLTRAN 、ACCEPT等,它们的主要差别在于几何模型的不同。TIGER 研究的是一维多层的问题,CYLTRAN研究的是粒子在圆柱形介质中的输运问题,ACCEPT是解决粒子在三维空间输运的通用程序。NCNP(Monte Carlo Neutron and Photo Transport Code)由美国橡树林国家实验室(Oak Ridge National Laboratory)开发的一套模拟中子、光子和电子在物质中输运过程的通用MC 计算程序,在它早期的版本中并不包含对电子输运过程的模拟,只模拟中子和光子,较新的版本(如MCNP4A)则引进了ETRAN,加入了对电子的模拟。 FLUKA 是一个可以模拟包括中子、电子、光子和质子等30余种粒子的大型MC计算程序,它把EGS4容纳进来以完成对光子和电子输运过程的模拟,并且对低能电子的输运算法进行了改进。

相关文档
最新文档