2004年上海高考数学真题试卷及答案解析(理科)

合集下载

2004年普通高等学校招生全国统一考试上海秋考卷

2004年普通高等学校招生全国统一考试上海秋考卷

2004年普通高等学校招生全国统一考试(上海卷)数学考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码.2.本试卷共有22道试题,满分150分,考试时间120分钟.一、填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分)1、若1tan 2α=,则tan 4πα⎛⎫+= ⎪⎝⎭3.2、设抛物线的顶点坐标为()0,2,准线方程为1-=x ,则它的焦点坐标为()5,0.3、设集合(){}3log ,52+=a A ,集合{}b a B ,=,若{}2=⋂B A ,则=⋃B A {}1,2,5.4、设等比数列{}n a ()N n ∈的公比21-=q ,且()38...lim 12531=++++-∞→n n a a a a ,则=1a 2.5、设奇函数()x f 的定义域为[]5,5-,若当[]5,0∈x 时,()x f 的图像如右图, 则不等式()x f 0<的解是()(]2,02,5-⋃.6、〖文〗已知点()5,1--A 和向量()2,3a =,若a AB3=,则点B 的坐标为()5,4. 〖理〗已知点()2,1-A ,若向量AB 与()2,3a =AB 132=,则点B 的坐标为()5,4.7、〖文〗当y x ,满足不等式组⎪⎩⎪⎨⎧≤+≥≤≤8342y x y x 时,目标函数y x k 23-=的最大值为6.〖理〗在极坐标系中,点⎪⎭⎫⎝⎛3,4πM 到直线():2cos sin 4l ρθθ⋅+=的距离=d 2155. 8、〖文〗圆心在直线2=x上的圆C 与y 轴交于两点()()2,0,4,0--B A ,则圆C 的方程为()()22235x y -++=.〖理〗圆心在直线270x y --=上的圆C 与y 轴交于()()2,0,4,0--B A ,则圆C 方程()()22235x y -++=.9、若在二项式()101+x 的展开式中任取一项,则该项的系数为奇数的概率是411.(结果用分数表示)10、若函数()2+-=b x a x f 在[)+∞,0上为增函数,则实数b a ,的取值范围是00a b >≤且.11、教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是用代数方法研究图形的几何性质. 12、若干个能唯一确定一个数列的量我们称为该数列的基本量,设{}n a 是公比为q 的无穷等比数列,下列{}n a 的四个量中,一定能成为该数列“基本量”的是第⑴、⑷组.(写出所有符合要求的组号)⑴1S 与2S ⑵2a 与3S⑶1a 与n a⑷q 与n a(其中n 为大于1的整数,n S 为{}n a 的前n 项和)二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且仅有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(无论是否都写在圆括号内)一律得零分.13、在下列关于直线m l ,与平面βα,的命题中,真命题是—————————————————————————(B )()A 若β⊂l 且βα⊥,则α⊥l()B 若β⊥l 且α∥β,则α⊥l()C 若β⊥l 且βα⊥,则l ∥α()D 若m =⋂βα且l ∥m ,则l ∥α14、〖理〗()x f y =是周期为π2的函数,当[)π2,0∈x 时()2sin x x f =,则()21=x f 的解集为—————(C )()A ⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,32ππ()B ⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,352ππ ()C ⎭⎬⎫⎩⎨⎧∈±=Z k k x x ,32ππ ()D ()⎭⎬⎫⎩⎨⎧∈⋅-+=Z k k x x k ,31ππ〖文〗三角方程12sin 2=⎪⎭⎫⎝⎛-x π的解集为————————————————————————————(C )()A ⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,32ππ ()B ⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,352ππ ()C ⎭⎬⎫⎩⎨⎧∈±=Z k k x x ,32ππ()D ()⎭⎬⎫⎩⎨⎧∈⋅-+=Z k k x x k ,31ππ15、若函数()x f y =的图像可由函数()1lg +=x y 的图像绕坐标原点O 逆时针旋转︒90得到,则()=x f ———(A )()A 110--x()B 110-x()C x --101()D x 101-16、某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是——(B )()A 计算机行业好于化工行业 ()B 建筑行业好于物流行业 ()C 机械行业最紧张()D 营销行业比贸易行业紧张三、解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤。

2004年普通高考数学试题及答案(上海理科卷)

2004年普通高考数学试题及答案(上海理科卷)

2004年全国普通高等学校统一招生考试数学(理工类) (上海卷)一、填空题(本大题满分48分,每小题4分) 1、若tgα=21,则tg(α+4π)= . 2、设抛物线的顶点坐标为(2,0),准线方程为x=-1,则它的焦点坐标为 . 3、设集合A={5,log 2(a+3)},集合B={a,b}.若A∩B={2},则A∪B= . 4、设等比数列{a n }(n∈N)的公比q=-21,且∞→n lim (a 1+a 3+a 5+…+a 2n-1)=38,则a 1= .5、设奇函数f(x)的定义域为[-5,5].若当x∈[0,5]时,f(x)的图象如右图,则不等式f(x)<0的解是 .6、已知点A(1, -2),若向量AB 与={2,3}同向AB =213,则点B 的坐标为 .7、在极坐标系中,点M(4,3π)到直线l:ρ(2cosθ+sinθ)=4的距离d= . 8、圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A(0, -4),B(0, -2),则圆C 的方程为 .9、若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是 . (结果用分数表示)10、若函数f(x)=a 2+-b x 在[0,+∞)上为增函数,则实数a 、b 的取值范围是 .11、教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是 . 12、若干个能唯一确定一个数列的量称为该数列的“基本量”.设{a n }是公比为q 的无穷等比数列,下列{a n }的四组量中,一定能成为该数列“基本量”的是 第 组.(写出所有符合要求的组号)①S 1与S 2; ②a 2与S 3; ③a 1与a n ; ④q 与a n . 其中n 为大于1的整数, S n 为{a n }的前n 项和. 二、选择题(本大题满分16分,每小题4分)13、在下列关于直线l 、m 与平面α、β的命题中,真命题是( ) (A)若l ⊂β且α⊥β,则l⊥α. (B) 若l⊥β且α∥β,则l⊥α. (C) 若l⊥β且α⊥β,则l∥α. (D) 若α∩β=m 且l∥m,则l∥α. 14、三角方程2sin(2π-x)=1的解集为( ) (A){x│x=2kπ+3π,k∈Z}. (B) {x│x=2kπ+35π,k∈Z}.(C) {x│x=2kπ±3π,k∈Z}. (D) {x│x=kπ+(-1)K ,k∈Z}. 15、若函数y=f(x)的图象可由函数y=lg(x+1)的图象绕坐标原点O 逆时针旋转2π得到,则 f(x)=( )(A) 10-x -1. (B) 10x -1. (C) 1-10-x . (D) 1-10x .16、某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( )(A)计算机行业好于化工行业. (B) 建筑行业好于物流行业.(C) 机械行业最紧张. (D) 营销行业比贸易行业紧张. 三、解答题(本大题满分86分) 17、(本题满分12分)已知复数z 1满足(1+i)z 1=-1+5i, z 2=a -2-i, 其中i 为虚数单位,a∈R, 若21z z <1z ,求a 的取值范围.18、(本题满分12分)某单位用木料制作如图所示的框架, 框架的下行业名称 计算机机械 营销 物流 贸易应聘人数 2158302002501546767457065280行业名称 计算机 营销 机械 建筑 化工 招聘人数1246201029358911576516 70436部是边长分别为x 、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8cm 2. 问x 、y 分别为多少(精确到0.001m) 时用料最省?19、(本题满分14分) 第1小题满分6分, 第2小题满分8分 记函数f(x)=132++-x x 的定义域为A, g(x)=lg[(x -a -1)(2a -x)](a<1) 的定义域为B. (1) 求A ;(2) 若B ⊆A, 求实数a 的取值范围.20、(本题满分14分) 第1小题满分6分, 第2小题满分8分已知二次函数y=f 1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f 2(x)的图象与直线y=x 的两个交点间距离为8,f(x)= f 1(x)+ f 2(x). (1) 求函数f(x)的表达式;(2) 证明:当a>3时,关于x 的方程f(x)= f(a)有三个实数解.21、(本题满分16分) 第1小题满分4分, 第2小题满分6分, 第3小题满分6分如图,P-ABC 是底面边长为1的正三棱锥,D 、E 、F 分别为棱长PA 、PB 、PC 上的点, 截面DEF∥底面ABC, 且棱台DEF-ABC 与棱锥P-ABC 的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1) 证明:P-ABC 为正四面体; (2) 若PD=21PA, 求二面角D-BC-A 的 大小;(结果用反三角函数值表示)(3) 设棱台DEF-ABC 的体积为V, 是否存在体积为V 且各棱长均相等的直 平行六面体,使得它与棱台DEF-ABC 有相同的棱长和? 若存在,请具体构造 出这样的一个直平行六面体,并给出证 明;若不存在,请说明理由.22、(本题满分18分) 第1小题满分6分, 第2小题满分4分, 第3小题满分8分设P 1(x 1,y 1), P 1(x 2,y 2),…, P n (x n ,y n )(n≥3,n∈N) 是二次曲线C 上的点, 且a 1=1OP 2, a 2=2OP2, …, a n =n OP 2构成了一个公差为d(d≠0) 的等差数列, 其中O 是坐标原点. 记S n =a 1+a 2+…+a n .(1) 若C 的方程为2510022y x +=1,n=3. 点P 1(3,0) 及S 3=255, 求点P 3的坐标; (只需写出一个)(2)若C 的方程为12222=+by a x (a>b>0). 点P 1(a,0), 对于给定的自然数n, 当公差d 变化时, 求S n 的最小值;. (3)请选定一条除椭圆外的二次曲线C 及C 上的一点P 1,对于给定的自然数n,写出符合条件的点P 1, P 2,…P n 存在的充要条件,并说明理由.2004年全国普通高等学校统一招生考试 数学(文史类)参考答案 (上海卷)一、填空题(本大题满分48分,每小题4分)1、32、(5,0)3、{1,2,5}4、25、(-2,0)∪(2,5]6、(5,4)7、5152 8、(x -2)2+(y+3)2=5 9、11410、a>0且b≤0 11、用代数的方法研究图形的几何性质 12、①、④ 二、选择题(本大题满分16分,每小题4分)13、B 14、C 15、A 16、B 三、解答题(本大题满分86分) 17、【解】由题意得 z 1=ii++-151=2+3i, 于是21z z -=i a 24+-=4)4(2+-a ,1z =13. 4)4(2+-a <13,得a 2-8a+7<0,1<a<7. 18、【解】由题意得xy+41x 2=8,∴y=x x 482-=48x x -(0<x<42). 于定, 框架用料长度为l=2x+2y+2(x 22)=(23+2)x+x16≥4246+. 当(23+2)x=x 16,即x=8-42时等号成立.此时, x≈2.343,y=22≈2.828.故当x 为2.343m,y 为2.828m 时, 用料最省. 19、【解】(1)2-13++x x ≥0, 得11+-x x ≥0, x<-1或x≥1 即A=(-∞,-1)∪[1,+ ∞)(2) 由(x -a -1)(2a -x)>0, 得(x -a -1)(x -2a)<0. ∵a<1,∴a+1>2a, ∴B=(2a,a+1). ∵B ⊆A, ∴2a≥1或a+1≤-1, 即a≥21或a≤-2, 而a<1,∴21≤a<1或a≤-2, 故当B A 时, 实数a 的取值范围是 (-∞,-2]∪[21,1) 20、【解】(1)由已知,设f 1(x)=ax 2,由f 1(1)=1,得a=1, ∴f 1(x)= x 2. 设f 2(x)=xk(k>0),它的图象与直线y=x 的交点分别为 A(k ,k )B(-k ,-k ) 由AB =8,得k=8,. ∴f 2(x)=x8.故f(x)=x 2+x8. (2) 【证法一】f(x)=f(a),得x 2+x 8=a 2+a8, 即x 8=-x 2+a 2+a8.在同一坐标系内作出f 2(x)=x8和 f 3(x)= -x 2+a 2+a8 的大致图象,其中f 2(x)的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线, f 3(x)与的图象是以(0, a 2+a8)为顶点,开口向下的抛物线. 因此, f 2(x)与f 3(x)的图象在第三象限有一个交点, 即f(x)=f(a)有一个负数解. 又∵f 2(2)=4, f 3(2)= -4+a 2+a8 当a>3时,. f 3(2)-f 2(2)= a 2+a8-8>0, ∴当a>3时,在第一象限f 3(x)的图象上存在一点(2,f(2))在f 2(x)图象的上方.∴f 2(x)与f 3(x)的图象在第一象限有两个交点,即f(x)=f(a)有两个正数解. 因此,方程f(x)=f(a)有三个实数解. 【证法二】由f(x)=f(a),得x 2+x 8=a 2+a8, 即(x -a)(x+a -ax8)=0,得方程的一个解x 1=a. 方程x+a -ax8=0化为ax 2+a 2x -8=0, 由a>3,△=a 4+32a>0,得x 2=a a a a 23242+--, x 3=aaa a 23242++-,∵x 2<0, x 3>0, ∴x 1≠ x 2,且x 2≠ x 3.若x 1= x 3,即a=aa a a 23242++-,则3a 2=a a 324+, a 4=4a,得a=0或a=34,这与a>3矛盾, ∴x 1≠ x 3. 故原方程f(x)=f(a)有三个实数解.21、【证明】(1) ∵棱台DEF-ABC 与棱锥P-ABC 的棱长和相等, ∴DE+EF+FD=PD+OE+PF. 又∵截面DEF∥底面ABC,∴DE=EF=FD=PD=OE=PF,∠DPE=∠EPF=∠FPD=60°, ∴P -ABC 是正四面体. 【解】(2)取BC 的中点M,连拉PM,DM.AM. ∵BC⊥PM,BC⊥AM, ∴BC⊥平面PAM,BC⊥DM,则∠DMA 为二面角D-BC-A 的平面角. 由(1)知,P-ABC 的各棱长均为1,∴PM=AM=23,由D 是PA 的中点,得 sin∠DMA=33=AM AD ,∴∠DMA=arcsin 33. (3)存在满足条件的直平行六面体.棱台DEF-ABC 的棱长和为定值6,体积为V. 设直平行六面体的棱长均为21,底面相邻两边夹角为α, 则该六面体棱长和为6, 体积为81sinα=V.∵正四面体P-ABC 的体积是122,∴0<V<122,0<8V<1.可知α=arcsim(8V) 故构造棱长均为21,底面相邻两边夹角为arcsim(8V)的直平行六面体即满足要求.22、【解】(1) a 1=1OP 2=100,由S 3=23(a 1+a 3)=255,得a 3=3OP 3=70.∴点P 3的坐标可以为(215, 10). (2) 【解法一】原点O 到二次曲线C:12222=+by a x (a>b>0)上各点的最小距离为b,最大距离为a. 由2510022y x +=1 ,得x 23=60x 23+y 23=7y 23=10∵a 1=1OP 2=a 2, ∴d<0,且a n =n OP2=a 2+(n -1)d≥b 2, ∴122--n a b ≤d<0. ∵n≥3,2)1(-n n >0∴S n =na 2+2)1(-n n d 在[122--n a b ,0)上递增,故S n 的最小值为na 2+2)1(-n n ·122--n a b =2)(22b a n +.【解法二】对每个自然数k(2≤k≤n),由 x 2k +y 2k =a 2+(k -1)d,解得y 2k=222)1(ba dk b --- 22a x k +22b y k =1 ∵0< y 2k≤b 2,得122--k a b ≤d<0∴122--n a b ≤d<0以下与解法一相同.(3) 【解法一】若双曲线C:22a x -22by =1,点P 1(a,0),则对于给定的n, 点P 1, P 2,…P n 存在的充要条件是d>0.∵原点O 到双曲线C 上各点的距离h∈[a ,+∞),且1OP =a 2,∴点P 1, P 2,…P n 存在当且仅当n OP 2>1OP 2,即d>0.【解法二】若抛物线C:y 2=2x,点P 1(0,0),则对于给定的n, 点P 1, P 2,…P n 存在的充要条件是d>0.理由同上 【解法三】若圆C:(x -a)+y 2=a 2(a≠0), P 1(0,0),则对于给定的n, 点P 1, P 2,…P n 存在的充要条件是0<d≤142-n a .∵原点O 到圆C 上各点的最小距离为0,最大距离为2a ,且1OP =0, ∴d>0且n OP 2=(n -1)d≤4a 2.即0<d≤142-n a .。

2004年高考数学试题(全国4理)及答案

2004年高考数学试题(全国4理)及答案

2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x ∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π其中R 表示球的半径8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)C已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值. 19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x e x f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.4316.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα,所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小 值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去 当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f图2Cy图1在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512, 所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析 问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x ex x e x x e x f xx x ----=+-++-='由,0)(='x f 得.0sin 2=--x ex解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nqq q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq q q q n q q q q n q q q nq q q n q qq q n q q qn nnn n n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。

2004年高考上海卷理科数学试题及答案

2004年高考上海卷理科数学试题及答案

2004年高考上海卷理工类数学试题一、填空题(本大题满分48分,每小题4分)1、若tgα=21,则tg(α+4π)= 3 . 2、设抛物线的顶点坐标为(2,0),准线方程为x=-1,则它的焦点坐标为 .3、设集合A={5,log 2(a+3)},集合B={a,b}.若A∩B={2},则A ∪B= 5 2 1 .4、设等比数列{a n }(n ∈N)的公比q=-21,且∞→n lim (a 1+a 3+a 5+…+a 2n-1)=38,则a 1= 2 . 5、设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时,f(x)的图象如右图,则不等式f(x)<0的解是 .6、已知点A(1, -2),若向量AB 与a ={2,3}同向,AB =213,则点B 的坐标为 .7、在极坐标系中,点M(4,3π)到直线l:ρ(2cosθ+sinθ)=4的距离d= . 8、圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A(0, -4),B(0, -2),则圆C 的方程为 .9、若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是 . (结果用分数表示)10、若函数f(x)=a 2+-b x 在[0,+∞)上为增函数,则实数a 、b 的取值范围 是 .11、教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是 .12、若干个能唯一确定一个数列的量称为该数列的“基本量”.设{a n }是公比为q 的无穷等比数列,下列{a n }的四组量中,一定能成为该数列“基本量”的是第 组.(写出所有符合要求的组号)①S 1与S 2; ②a 2与S 3; ③a 1与a n ; ④q 与a n .其中n 为大于1的整数, S n 为{a n }的前n 项和.二、选择题(本大题满分16分,每小题4分)13、在下列关于直线l 、m 与平面α、β的命题中,真命题是( )(A)若l ⊂β且α⊥β,则l ⊥α. (B) 若l ⊥β且α∥β,则l ⊥α.(C) 若l ⊥β且α⊥β,则l ∥α. (D) 若α∩β=m 且l ∥m,则l ∥α.14、三角方程2sin(2π-x)=1的解集为( ) (A){x│x=2kπ+3π,k ∈Z}. (B) {x│x=2kπ+35π,k ∈Z}. (C) {x│x=2kπ±3π,k ∈Z}. (D) {x│x=kπ+(-1)K ,k ∈Z}. 15、若函数y=f(x)的图象可由函数y=lg(x+1)的图象绕坐标原点O 逆时针旋转2π得到,则 f(x)=( )(A) 10-x -1. (B) 10x -1. (C) 1-10-x . (D) 1-10x .16、某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( )(A)计算机行业好于化工行业. (B) 建筑行业好于物流行业.(C) 机械行业最紧张. (D) 营销行业比贸易行业紧张.三、解答题(本大题满分86分)17、(本题满分12分)已知复数z 1满足(1+i)z 1=-1+5i, z 2=a -2-i, 其中i 为虚数单位,a ∈R, 若21z z -<1z ,求a 的取值范围.18、(本题满分12分)某单位用木料制作如图所示的框架, 框架的下部是边长分别为x 、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8cm 2. 问x 、y 分别为多少(精确到0.001m) 时用料最省?行业名称 计算机 机械 营销 物流 贸易 应聘人数 215830 200250 154676 74570 65280 行业名称 计算机 营销 机械 建筑 化工 招聘人数 124620 102935 89115 76516 7043619、(本题满分14分) 第1小题满分6分, 第2小题满分8分记函数f(x)=132++-x x 的定义域为A, g(x)=lg[(x -a -1)(2a -x)](a<1) 的定义域为B. (1) 求A ;(2) 若B ⊆A, 求实数a 的取值范围.20、(本题满分14分) 第1小题满分6分, 第2小题满分8分已知二次函数y=f 1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f 2(x)的图象与直线y=x 的两个交点间距离为8,f(x)= f 1(x)+ f 2(x).(1) 求函数f(x)的表达式;(2) 证明:当a>3时,关于x 的方程f(x)= f(a)有三个实数解.21、(本题满分16分) 第1小题满分4分, 第2小题满分6分, 第3小题满分6分如图,P-ABC 是底面边长为1的正三棱锥,D 、E 、F 分别为棱长PA 、PB 、PC 上的点, 截面DEF ∥底面ABC, 且棱台DEF-ABC 与棱锥P-ABC 的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1) 证明:P-ABC 为正四面体;(2) 若PD=21PA, 求二面角D-BC-A 的 大小;(结果用反三角函数值表示)(3) 设棱台DEF-ABC 的体积为V , 是否存在体积为V 且各棱长均相等的直平行六面体,使得它与棱台DEF-ABC有相同的棱长和? 若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.22、(本题满分18分) 第1小题满分6分, 第2小题满分4分, 第3小题满分8分设P 1(x 1,y 1), P 1(x 2,y 2),…, P n (x n ,y n )(n≥3,n ∈N) 是二次曲线C 上的点, 且a 1=1OP 2,a 2=2OP 2, …, a n =n OP 2构成了一个公差为d(d≠0) 的等差数列, 其中O 是坐标原点. 记S n =a 1+a 2+…+a n .(1) 若C 的方程为2510022y x +=1,n=3. 点P 1(3,0) 及S 3=255, 求点P 3的坐标; (只需写出一个)(2)若C 的方程为12222=+by a x (a>b>0). 点P 1(a,0), 对于给定的自然数n, 当公差d 变化时, 求S n 的最小值;. (3)请选定一条除椭圆外的二次曲线C 及C 上的一点P 1,对于给定的自然数n,写出符合条件的点P 1, P 2,…P n 存在的充要条件,并说明理由.2004年普通高等学校招生上海卷理工类数学试题参考答案一、填空题(本大题满分48分,每小题4分)1、32、(5,0)3、{1,2,5}4、25、(-2,0)∪(2,5]6、(5,4)7、5152 8、(x -2)2+(y+3)2=5 9、114 10、a>0且b≤0 11、用代数的方法研究图形的几何性质 12、①、④二、选择题(本大题满分16分,每小题4分)13、B 14、C 15、A 16、B三、解答题(本大题满分86分)17、【解】由题意得 z 1=ii ++-151=2+3i,于是21z z -=i a 24+-=4)4(2+-a ,1z =13.4)4(2+-a <13,得a 2-8a+7<0,1<a<7.18、【解】由题意得xy+41x 2=8,∴y=x x 482-=48x x -(0<x<42). 于定, 框架用料长度为l=2x+2y+2(x 22)=(23+2)x+x 16≥4246+. 当(23+2)x=x16,即x=8-42时等号成立. 此时, x≈2.343,y=22≈2.828.故当x 为2.343m,y 为2.828m 时, 用料最省.19、【解】(1)2-13++x x ≥0, 得11+-x x ≥0, x<-1或x≥1 即A=(-∞,-1)∪[1,+ ∞)(2) 由(x -a -1)(2a -x)>0, 得(x -a -1)(x -2a)<0.∵a<1,∴a+1>2a, ∴B=(2a,a+1).∵B ⊆A, ∴2a≥1或a +1≤-1, 即a≥21或a≤-2, 而a<1, ∴21≤a<1或a≤-2, 故当B ⊆A 时, 实数a 的取值范围是 (-∞,-2]∪[21,1) 20、【解】(1)由已知,设f 1(x)=ax 2,由f 1(1)=1,得a=1, ∴f 1(x)= x 2.设f 2(x)=xk (k>0),它的图象与直线y=x 的交点分别为 A(k ,k )B(-k ,-k )由AB =8,得k=8,. ∴f 2(x)=x 8.故f(x)=x 2+x8. (2) 【证法一】f(x)=f(a),得x 2+x 8=a 2+a 8,即x 8=-x 2+a 2+a8. 在同一坐标系内作出f 2(x)=x 8和 f 3(x)= -x 2+a 2+a8 的大致图象,其中f 2(x)的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线, f 3(x)与的图象是以(0, a 2+a 8)为顶点,开口向下的抛物线. 因此, f 2(x)与f 3(x)的图象在第三象限有一个交点,即f(x)=f(a)有一个负数解.又∵f 2(2)=4, f 3(2)= -4+a 2+a8 当a>3时,. f 3(2)-f 2(2)= a 2+a 8-8>0, ∴当a>3时,在第一象限f 3(x)的图象上存在一点(2,f(2))在f 2(x)图象的上方. ∴f 2(x)与f 3(x)的图象在第一象限有两个交点,即f(x)=f(a)有两个正数解. 因此,方程f(x)=f(a)有三个实数解.【证法二】由f(x)=f(a),得x 2+x 8=a 2+a 8, 即(x -a)(x+a -ax 8)=0,得方程的一个解x 1=a. 方程x+a -ax8=0化为ax 2+a 2x -8=0, 由a>3,△=a 4+32a>0,得x 2=a a a a 23242+--, x 3=aa a a 23242++-, ∵x 2<0, x 3>0, ∴x 1≠ x 2,且x 2≠ x 3.若x 1= x 3,即a=aa a a 23242++-,则3a 2=a a 324+, a 4=4a, 得a=0或a=34,这与a>3矛盾, ∴x 1≠ x 3.故原方程f(x)=f(a)有三个实数解.21、【证明】(1) ∵棱台DEF-ABC 与棱锥P-ABC 的棱长和相等,∴DE+EF+FD=PD+OE+PF.又∵截面DEF ∥底面ABC,∴DE=EF=FD=PD=OE=PF,∠DPE=∠EPF=∠FPD=60°, ∴P-ABC 是正四面体.【解】(2)取BC 的中点M,连拉PM,DM.AM.∵BC ⊥PM,BC ⊥AM, ∴BC ⊥平面PAM,BC ⊥DM,则∠DMA 为二面角D-BC-A 的平面角.由(1)知,P-ABC 的各棱长均为1,∴PM=AM=23,由D 是PA 的中点,得 sin ∠DMA=33=AM AD ,∴∠DMA=arcsin 33. (3)存在满足条件的直平行六面体.棱台DEF-ABC 的棱长和为定值6,体积为V.设直平行六面体的棱长均为21,底面相邻两边夹角为α, 则该六面体棱长和为6, 体积为81sinα=V . ∵正四面体P-ABC 的体积是122,∴0<V<122,0<8V<1.可知α=arcsim(8V) 故构造棱长均为21,底面相邻两边夹角为arcsim(8V)的直平行六面体即满足要求. 22、【解】(1) a 1=1OP 2=100,由S 3=23(a 1+a 3)=255,得a 3=3OP 3=70. 由222211002570x y x y ⎧+=⎪⎨⎪+=⎩,得226010x y ⎧=⎨=⎩ ∴点P 3的坐标可以为(215, 10).(2) 【解法一】原点O 到二次曲线C:12222=+by a x (a>b>0)上各点的最小距离为b,最大距离为a.∵a 1=1OP 2=a 2, ∴d<0,且a n =n OP2=a 2+(n -1)d≥b 2, ∴122--n a b ≤d<0. ∵n≥3,2)1(-n n >0∴S n =na 2+2)1(-n n d 在[122--n a b ,0)上递增, 故S n 的最小值为na 2+2)1(-n n ·122--n a b =2)(22b a n +. 【解法二】对每个自然数k(2≤k≤n),由 ()222222211k k k k x y a k d x y a b ⎧+=+-⎪⎨+=⎪⎩,解得y 2k =222)1(b a d k b --- ∵0< y 2k ≤b 2,得122--k a b ≤d<0 ∴122--n a b ≤d<0 以下与解法一相同.(3) 【解法一】若双曲线C:22a x -22by =1,点P 1(a,0), 则对于给定的n, 点P 1, P 2,…P n 存在的充要条件是d>0.∵原点O 到双曲线C 上各点的距离h ∈[a ,+∞),且1OP =a 2,∴点P 1, P 2,…P n 存在当且仅当n OP 2>1OP 2,即d>0.【解法二】若抛物线C:y 2=2x,点P 1(0,0),则对于给定的n, 点P 1, P 2,…P n 存在的充要条件是d>0.理由同上【解法三】若圆C:(x -a)+y 2=a 2(a≠0), P 1(0,0),则对于给定的n, 点P 1, P 2,…P n 存在的充要条件是0<d≤142-n a . ∵原点O 到圆C 上各点的最小距离为0,最大距离为2a ,且1OP =0, ∴d>0且n OP 2=(n -1)d≤4a 2.即0<d≤142-n a .。

最新2004年上海高考理科数学试题及答案优秀名师资料

最新2004年上海高考理科数学试题及答案优秀名师资料

2004年全国普通高等学校招生统一考试上海数学试卷(理工农医类)一、填空题(本大题满分48分,每小题4分)1、若,则= .2、设抛物线的顶点坐标为,准线方程为,则它的焦点坐标为 .3、设集合,集合.若,则.4、设等比数列()的公比,且,则 .5、设奇函数的定义域为.若当时,的图象如右图,则不等式的解是 .6、已知点,若向量与同向, =2,则点B的坐标为 .7、在极坐标系中,点到直线的距离 .8、圆心在直线上的圆C与y轴交于两点,,则圆C的方程为 .9、若在二项式的展开式中任取一项,则该项的系数为奇数的概率是 .(结果用分数表示)10、若函数在[0,+∞)上为增函数,则实数a、b的取值范围是 .11、教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是.12、若干个能唯一确定一个数列的量称为该数列的“基本量”.设是公比为的无穷等比数列,下列的四组量中,一定能成为该数列“基本量”的是第组.(写出所有符合要求的组号)①与; ②与; ③与; ④与.其中n为大于1的整数, 为的前n项和.二、选择题(本大题满分16分,每小题4分)13、在下列关于直线、与平面、的命题中,真命题是( )A.若且,则. B.若且∥,则.C.若且,则∥. D.若且∥,则∥.14、三角方程的解集为( )A.. B..C.. D..15、若函数的图象可由函数的图象绕坐标原点O逆时针旋转得到,则( )A.. B.. C.. D..16、某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( )A.计算机行业好于化工行业. B.建筑行业好于物流行业.C.机械行业最紧张. D.营销行业比贸易行业紧张.三、解答题(本大题满分86分)17、(本题满分12分)已知复数满足,, 其中为虚数单位,, 若,求a的取值范围.18、(本题满分12分)某单位用木料制作如图所示的框架, 框架的下部是边长分别为x、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8cm2. 问x、y分别为多少(精确到0.001m) 时用料最省?19、(本题满分14分) 第1小题满分6分, 第2小题满分8分记函数的定义域为,() 的定义域为B.(1) 求;(2) 若, 求实数a的取值范围.20、(本题满分14分) 第1小题满分6分, 第2小题满分8分已知二次函数的图象以原点为顶点且过点,反比例函数的图象与直线的两个交点间距离为8,.(1) 求函数的表达式;(2) 证明:当时,关于的方程有三个实数解.21、(本题满分16分) 第1小题满分4分, 第2小题满分6分, 第3小题满分6分如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点, 截面DEF∥底面ABC, 且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1) 证明:P-ABC为正四面体;(2) 若PD=PA, 求二面角D-BC-A的大小;(结果用反三角函数值表示)(3) 设棱台DEF-ABC的体积为V, 是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF-ABC有相同的棱长和? 若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.22、(本题满分18分) 第1小题满分6分, 第2小题满分4分, 第3小题满分8分设, ,…,() 是二次曲线C上的点, 且, , …, 构成了一个公差为()的等差数列, 其中O是坐标原点. 记.(1)若C的方程为,. 点及, 求点的坐标;(只需写出一个)(2)若C的方程为(a>b>0). 点, 对于给定的自然数n, 当公差d变化时, 求的最小值;(3)请选定一条除椭圆外的二次曲线C及C上的一点P1,对于给定的自然数n,写出符合条件的点存在的充要条件,并说明理由.2004年全国普通高等学校招生统一考试理科数学参考答案(上海卷)一、填空题(本大题满分48分,每小题4分)1、32、(5,0)3、{1,2,5}4、25、(-2,0)∪(2,5]6、(5,4)7、 8、(x-2)2+(y+3)2=5 9、 10、a>0且b≤011、用代数的方法研究图形的几何性质 12、①、④二、选择题(本大题满分16分,每小题4分)13、B 14、C 15、A 16、B三、解答题(本大题满分86分)17、【解】由题意得 z1==2+3i,于是==,=.<,得,.18、【解】由题意得,∴ ().于定, 框架用料长度为.当,即时等号成立.此时, x≈2.343,y=2≈2.828.故当x为2.343m,y为2.828m时, 用料最省.19、【解】(1), 得, 或即A=(-∞,-1)∪[1,+ ∞)(2) 由, 得.∵,∴, ∴.∵, ∴或, 即或, 而,∴或, 故当时, 实数的取值范围是(-∞,-2]∪[,1) 20、【解】(1)由已知,设,由,得, ∴.设 (k>0),它的图象与直线的交点分别为,由,得, ∴.故.(2) 【证法一】,得,即.在同一坐标系内作出和的大致图象,其中的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线, 与的图象是以为顶点,开口向下的抛物线.因此与的图象在第三象限有一个交点,即有一个负数解.又∵,当时,,∴当时,在第一象限的图象上存在一点在图象的上方.∴与的图象在第一象限有两个交点,即有两个正数解.因此,方程有三个实数解.【证法二】由,得,即,得方程的一个解.方程化为,由,,得, ,∵, ∴,且.若,即,则, ,得或,这与矛盾, ∴.故原方程有三个实数解.21、【证明】(1) ∵棱台DEF-ABC与棱锥P-ABC的棱长和相等,∴DE+EF+FD=PD+OE+PF.又∵截面DEF∥底面ABC,∴DE=EF=FD=PD=OE=PF,∠DPE=∠EPF=∠FPD=60°, ∴P-ABC是正四面体. 【解】(2)取BC的中点M,连接PM,DM.AM.∵BC⊥PM,BC⊥AM, ∴BC⊥平面PAM,BC⊥DM,则∠DMA为二面角D-BC-A的平面角.由(1)知,P-ABC的各棱长均为1,∴PM=AM=,由D是PA的中点,得,∴.(3)存在满足条件的直平行六面体.棱台DEF-ABC的棱长和为定值6,体积为V.设直平行六面体的棱长均为,底面相邻两边夹角为,则该六面体棱长和为6, 体积为.∵正四面体P-ABC的体积是,∴,.可知故构造棱长均为,底面相邻两边夹角为的直平行六面体即满足要求.22、【解】(1) ,由,得.由,得∴点的坐标可以为.(2) 【解法一】原点O到二次曲线()上各点的最小距离为,最大距离为.∵, ∴,且,∴. ∵,>0∴在[,0)上递增,故的最小值为·=.【解法二】对每个自然数,由,解得∵,得∴以下与解法一相同.(3) 【解法一】若双曲线-=1,点,则对于给定的, 点存在的充要条件是.∵原点O到双曲线C上各点的距离,且,∴点存在当且仅当2>2,即d>0.【解法二】若抛物线,点,则对于给定的, 点存在的充要条件是.理由同上【解法三】若圆(), ,则对于给定的n, 点存在的充要条件是.∵原点O到圆C上各点的最小距离为0,最大距离为2,且=0, ∴d>0且.即.文档已经阅读完毕,请返回上一页!。

2004年高考数学(理科)真题及答案[全国卷I]

2004年高考数学(理科)真题及答案[全国卷I]

2004年全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k(1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合=⋂<--=<=N M x x x N x x M 则集合},032|{},4|{22 ( )A .{2|-<x x }B .{3|>x x }C .{21|<<-x x }D . {32|<<x x }2.=-+-+→542lim 22x x x x n x ( )A .21B .1C .52 D .41 3.设复数ωω++-=1,2321则i =( )A .ω-B .2ωC .ω1-D .21ω 4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π,其中R 表示球的半径5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6πC .12π-D .12π 6.函数x e y -=的图象( )A .与x e y =的图象关于y 轴对称B .与x e y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与x e y -=的图象关于坐标原点对称7.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则 球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 8.在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 9.已知平面上直线l 的方向向量e =),53,54(-点O (0,0)和A (1,-2)在l 上的射影分别是O ′和A ′,则λ=''A O e ,其中λ= ( )A .511 B .511-C .2D .-2 10.函数x x x y sin cos -=在下面哪个区间内是增函数( )A .)23,2(ππB .)2,(ππC .)25,23(ππ D .)3,2(ππ 11.函数x x y 24cos sin +=的最小正周期为 ( )A .4π B .2π C .πD .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521 的数共有 ( ) A .56个 B .57个 C .58个 D .60个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为14.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥≥,12,,0y x y x x则y x z 23+=的最大值是 .15.设中心在原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱 ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A (Ⅰ)求证:B A tan 2tan =;(Ⅱ)设AB=3,求AB 边上的高. 18.(本小题满分12分) 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率; (Ⅱ)A 组中至少有两支弱队的概率. 19.(本小题满分12分)数列}{n a 的前n 项和记为S n ,已知).3,2,1(2,111 =+==+n S nn a a n n 证明: (Ⅰ)数列}{nS n是等比数列; (Ⅱ).41n n a S =+ 20.(本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=1,CB=2,侧棱AA 1=1,侧面AA 1B 1B的两条对角线交点为D ,B 1C 1的中点为M.(Ⅰ)求证CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.21.(本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点。

2004年高考数学试题(全国2理)及答案

2004年高考数学试题(全国2理)及答案

2004年高考试题全国卷Ⅱ理科数学(必修+选修Ⅱ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条 (9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe ,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π(12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为ξ0 1 2 P(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱,其中,真命题的编号是 (写出所有真命题的编号). 三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率. (19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分) 给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 夹角的大小;(Ⅱ)设=AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围. (22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x .(1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C 二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=C C C(II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列A'(II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1 又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM , 因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角 又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=∙∙-+=∙-+FGG B F B FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=(-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴与G B 1的夹角θ等于所求二面角的平面角, cos .3311-==θ 所以所求二面角的大小为π-arccos33 21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413||||-=∙OB OA 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1) 当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21l n (2ln-->-+-=+,bba b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2ln ln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。

☆2004年普通高等学校招生全国统一考试上海秋考卷

☆2004年普通高等学校招生全国统一考试上海秋考卷

2004年普通高等学校招生全国统一考试(上海卷)数学考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码.2.本试卷共有22道试题,满分150分,考试时间120分钟.一、填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分) 1、若1tan 2α=,则tan 4πα⎛⎫+= ⎪⎝⎭3. 2、设抛物线的顶点坐标为()0,2,准线方程为1-=x ,则它的焦点坐标为()5,0.3、设集合(){}3log ,52+=a A ,集合{}b a B ,=,若{}2=⋂B A ,则=⋃B A {}1,2,5.4、设等比数列{}n a ()N n ∈的公比21-=q ,且()38...lim 12531=++++-∞→n n a a a a ,则=1a 2. 5、设奇函数()x f 的定义域为[]5,5-,若当[]5,0∈x 时,()x f 的图像如右图, 则不等式()x f 0<的解是()(]2,02,5-⋃.6、〖文〗已知点()5,1--A 和向量()2,3a =,若a3=,则点B 的坐标为()5,4.〖理〗已知点()2,1-A ,若向量与()2,3a =132=,则点B 的坐标为()5,4.7、〖文〗当y x ,满足不等式组⎪⎩⎪⎨⎧≤+≥≤≤8342y x y x 时,目标函数y x k 23-=的最大值为6.〖理〗在极坐标系中,点⎪⎭⎫⎝⎛3,4πM 到直线():2cos sin 4l ρθθ⋅+=的距离=d . 8、〖文〗圆心在直线2=x上的圆C 与y 轴交于两点()()2,0,4,0--B A ,则圆C 的方程为()()22235x y -++=.〖理〗圆心在直线270x y --=上的圆C 与y 轴交于()()2,0,4,0--B A ,则圆C 方程()()22235x y -++=.9、若在二项式()101+x 的展开式中任取一项,则该项的系数为奇数的概率是411.(结果用分数表示)10、若函数()2+-=b x a x f 在[)+∞,0上为增函数,则实数b a ,的取值范围是00a b >≤且.11、教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是用代数方法研究图形的几何性质. 12、若干个能唯一确定一个数列的量我们称为该数列的基本量,设{}n a 是公比为q 的无穷等比数列,下列{}n a 的四个量中,一定能成为该数列“基本量”的是第⑴、⑷组.(写出所有符合要求的组号)⑴1S 与2S ⑵2a 与3S⑶1a 与n a⑷q 与n a(其中n 为大于1的整数,n S 为{}n a 的前n 项和)二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且仅有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(无论是否都写在圆括号内)一律得零分.13、在下列关于直线m l ,与平面βα,的命题中,真命题是—————————————————————————(B )()A 若β⊂l 且βα⊥,则α⊥l()B 若β⊥l 且α∥β,则α⊥l()C 若β⊥l 且βα⊥,则l ∥α()D 若m =⋂βα且l ∥m ,则l ∥α14、〖理〗()x f y =是周期为π2的函数,当[)π2,0∈x 时()2sin x x f =,则()21=x f 的解集为—————(C )()A ⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,32ππ()B ⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,352ππ ()C ⎭⎬⎫⎩⎨⎧∈±=Z k k x x ,32ππ ()D ()⎭⎬⎫⎩⎨⎧∈⋅-+=Z k k x x k ,31ππ〖文〗三角方程12sin 2=⎪⎭⎫⎝⎛-x π的解集为————————————————————————————(C )()A ⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,32ππ ()B ⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,352ππ ()C ⎭⎬⎫⎩⎨⎧∈±=Z k k x x ,32ππ()D ()⎭⎬⎫⎩⎨⎧∈⋅-+=Z k k x x k ,31ππ15、若函数()x f y =的图像可由函数()1lg +=x y 的图像绕坐标原点O 逆时针旋转︒90得到,则()=x f ———(A )()A 110--x ()B 110-x ()C x --101 ()D x 101- 16、某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是——(B )()A 计算机行业好于化工行业 ()B 建筑行业好于物流行业 ()C 机械行业最紧张()D 营销行业比贸易行业紧张三、解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤。

2004年全国高考数学试题(全国卷理科word版)

2004年全国高考数学试题(全国卷理科word版)

2004年全国高考数学(人教版)试题(理科)一、选择题(每小题5分,共60分)1、设集合(){}R y R x y x y x M ∈∈=+=,,1,22,(){}R y R x y x y x N ∈∈=-=,,0,2,则集合N M 中元素的个数为( )A 、1B 、2C 、3D 、42、函数2sin x y =的最小正周期是( ) A 、 2π B 、 π C 、π2 D 、π4 3、设数列{}n a 是等差数列,且6,682=-=a a ,n S 是数列{}n a 的前n 项和,则( )A 、54S S <B 、54S S =C 、56S S >D 、56S S =4、圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A 、023=-+y xB 、043=-+y xC 、043=+-y xD 、023=+-y x5、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 --B 、)2,1()1,2( --C 、[)(]2,11,2 --D 、)2,1()1,2( --6、设复数z 的辐角的主值为32π,虚部为3,则2z =( ) A 、i 322-- B 、i 232-- C 、i 32+ D 、i 232+7、设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( ) A 、5 B 、 5 C 、25 D 、45 8、不等式311<+<x 的解集为( )A 、()2,0B 、())4,2(0,2 -C 、()0,4-D 、())2,0(2,4 --9、正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A 、322B 、2C 、32D 、324 10、在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( )A 、223B 、233 C 、23 D 、33 11、设函数⎪⎩⎪⎨⎧≥--<+=1,141,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( ) A 、(][]10,02, -∞- B 、(][]1,02, -∞- C 、(][]10,12, -∞- D 、[)[]10,10,2 -12、将4名教师分配到3所中学任教,每所中学至少1名,则不同的分配方案共有( )A 、12种B 、24种C 、36种D 、48种二、填空题(每小题4分,共16分)13、用平面α截半径为R 的球,如果球心到平面α的距离为2R ,那么截得小圆的面积与球的表面积的比值为 . 14、函数x x y cos 3sin +=在区间⎥⎦⎤⎢⎣⎡2,0π上的最小值为 . 15、已知函数)(x f y =是奇函数,当0≥x 时,13)(-=x x f ,设)(x f 的反函数是)(x g y =,则=-)8(g .16、设P 是曲线)1(42-=x y 上的一个动点,则点P 到点)1,0(的距离与点P 到y 轴的距离之和的最小值为 .三、解答题(6道题,共76分)17、(12分)已知α为锐角,且21tan =α,求ααααα2cos 2sin sin cos 2sin -的值。

2004年高考试题——数学(全国1)及答案

2004年高考试题——数学(全国1)及答案

2004年高考试题全国卷Ⅰ理参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60 1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b|=( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I C .A ∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于 ( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线;②两条互相垂直的直线;③同一条直线; ④一条直线及其外一点;在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间. 20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小. 21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212s i n 41)c o s s i n1(21)c o s s i n 1(2c o s s i n 122+=+=--=x x x x x x x 所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a 2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a 2)内为增函数,在区间(-a2,+∞)内为减函数.20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分. (I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π .解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以 22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3. a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k,所以a 2k+1-a 2k -1=3k +(-1)k,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。

2004年全国卷II高考理科数学真题及答案

2004年全国卷II高考理科数学真题及答案

2004年全国卷II 高考理科数学真题及答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2(C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条 (9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有 (A )56个 (B )57个 (C )58个 (D )60个 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为ξ 0 1 2 P(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱,其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率. (19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分) 给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求OA 与夹角的大小;(Ⅱ)设FB =AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围. (22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x .(1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C 二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=C C C (II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列BA'C'(II )解:由(I )知,)2(14111≥-•=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1 又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM , 因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角 又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=••-+=•-+FGG B F B FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1),=DM (0,21,-21),,0,01=•=•A∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=(-22,21,21),=G B 1),41,43,42(--∴01=•G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴与G B 1的夹角θ等于所求二面角的平面角, cos .3311-==θ 所以所求二面角的大小为π-arccos33 21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,•=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+•+=•x x x x x x y x y x OB OAcos<,.41413-= 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0.∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1) 当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ -- 22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21ln(2ln -->-+-=+,bb a b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +). 设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2lnln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。

2004年高考理科数学全国卷(word版含答案)

2004年高考理科数学全国卷(word版含答案)

2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k(1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。

1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .( IA)∪B=IB .( IA)∪( I B)=I C .A ∩( IB)=φD .( I A)∪( I B)=I B 7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 ( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项1, n=1,a n= ,n≥2.16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是 .①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xx xxxxf2sin2cossincossin)(2 24 4-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P—ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD 与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,Array(II)求面APB与面CPB所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.22.(本小题满分14分)已知数列1}{1 a a n 中,且 a 2k =a 2k -1+(-1)K,a 2k+1=a 2k +3k, 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37.P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.(II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a a a a e (II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a aa x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4,a 5=a 4+32=13,所以,a 3=3,a 5=13.(II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1,……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)],由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k ka 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nnn a。

DA2004年高考数学(上海卷理工类)

DA2004年高考数学(上海卷理工类)

2004年普通高等学校招生全国统一考试数学参考答案(文史类)(上海卷)一、填空题(本大题满分48分,每小题4分)1.3 2.(5,0) 3.{1,2,5} 4.2 5.(-2,0)∪(2,5] 6.(5,4) 7.6 8.(x -2)2+(y+3)2=5 9.11410.a >0且b ≤0 11.用代数的方法研究图形的几何性质 12.①、④ 二、选择题(本大题满分16分,每小题4分) 13.B 14.C 15.A 16.B 三、解答题(本大题满分86分) 17.【解】由题意得 z 1=ii++-151=2+3i , 于是21z z -=i a 24+-=4)4(2+-a ,1z =13. 由4)4(2+-a <13,得a 2-8a +7<0,1<a <7.18.【解】由题意得x y+41x 2=8, ∴y=x x 482-=48x x -(0<x <42). 于是,框架用料长度为l =2x +2y+2(x 22)=(23+2)x +x16≥=4246+.当(23+2)x =x16,即x =8-42时等号成立. 此时, x ≈2.343,y=22≈2.828. 故当x 为2.343m,y 为2.828m 时, 用料最省. 19.【解】(1)2-13++x x ≥0, 得11+-x x ≥0, x <-1或x ≥1 即A=(-∞,-1)∪[1,+ ∞) (2) 由(x -a -1)(2a -x )>0, 得(x -a -1)(x -2a )<0.∵a <1,∴a +1>2a , ∴B=(2a ,a +1). ∵B ⊆A, ∴2 a ≥1或a +1≤-1, 即a ≥21或a ≤-2, 而a <1, ∴21≤a <1或a ≤-2, 故当B ⊆A 时, 实数a 的取值范围是 (-∞,-2]∪[21,1)20.【解】(1) 解方程组 y=21x 得 x 1=-4, x 2=8y=81x 2-4y 1=-2, y 2=4即A(-4,-2),B(8,4), 从而AB 的中点为M(2,1). 由k AB ==21,直线AB 的垂直平分线方程y -1=-2 (x -2). 令y=-5, 得x =5, ∴Q(5,-5) (2) 直线OQ 的方程为x +y=0, 设P(x ,81x 2-4). ∵点P 到直线OQ 的距离d=24812-+x x =3282812-+x x , 25=OQ ,∴S ΔOPQ =21d OQ =3281652-+x x . ∵P 为抛物线上位于线段AB 下方的点, 且P 不在直线OQ 上,∴-4≤x <43-4或43-4<x ≤8. ∵函数y=x 2+8x -32在区间[-4,8] 上单调递增, 且当x =-4时,|x 2+8x -32|=48 当x =8时,|x 2+8x -32|=96 ∴当x =8时, ΔOPQ 的面积取到最大值3096165=⨯. 21.【证明】(1) ∵棱台DEF —ABC 与棱锥P —ABC 的棱长和相等, ∴DE+EF+FD=PD+PE+PF. 又∵截面DEF ∥底面ABC, ∴DE=EF=FD=PD=PE=PF,∠DPE=∠EPF=∠FPD=60°, ∴P —ABC 是正四面体. 【解】(2)取BC 的中点M,连接PM,DM.AM.∵BC ⊥PM,BC ⊥AM, ∴BC ⊥平面PAM,BC ⊥DM,则∠DMA 为二面角D —BC —A 的平面角. 由(1)知,P —ABC 的各棱长均为1, ∴PM=AM=23,由D 是PA 的中点, 得sin ∠DMA=33=AM AD ,∴∠DMA=arcsin 33.(3)存在满足条件的直平行六面体. 棱台DEF —ABC 的棱长和为定值6,体积为V.设直平行六面体的棱长均为21,底面相邻两边夹角为α, 则该六面体棱长和为6, 体积为81sin α=V .∵正四面体P —ABC 的体积是122,∴0<V<122,0<8V<1.可知α=arcsim(8V) 故构造棱长均为21,底面相邻两边夹角为arcsim(8V)的直平行六面体即满足要求. 22.【解】(1) a 1=1OP 2=9,由S 3=23(a 1+a 3)=162,得a 3=3OP 3=99. ∴点P 3的坐标可以为(310,3).(2)对每个自然数k,1≤k ≤n,由题意k OP 2=(k -1)d,及y 2k =2px k ,得x 2k +2p x k =(k -1)dx 2k+y 2k=(k -1)d即(x k +p)2=p 2+(k -1)d,∴(x 1+p)2, (x 2+p)2, …,(x n +p)2是首项为p 2,公差为d 的等差数列.(3) 【解法一】原点O 到二次曲线C:12222=+by a x (a >b>0)上各点的最小距离为b,最大距离为a .∵a 1=1OP 2=a 2, ∴d<0,且a n =nOP 2=a 2+(n -1)d ≥b 2, ∴122--n a b ≤d<0. ∵n ≥3,2)1(-n n >0 ∴S n =n a 2+2)1(-n n d 在[122--n a b ,0)上递增,故S n 的最小值为n a 2+2)1(-n n ·122--n a b =2)(22b a n +. 【解法二】对每个自然数k(2≤k ≤n),由x 2k +y 2k =a 2+(k -1)d,解得y 2k=222)1(b a d k b ---由239x -23y =1,得x 23=90x 23+y 23=99 y 23=922a x k +22by k=1∵0< y 2k≤b 2,得122--k a b ≤d<0 ∴122--n a b ≤d<0 以下与解法一相同.。

2004年全国高考数学试题(全国卷理科word版)

2004年全国高考数学试题(全国卷理科word版)

2004年全国高考数学(人教版)试题(理科)一、选择题(每小题5分,共60分)1、设集合(){}R y R x y x y x M ∈∈=+=,,1,22,(){}R y R x y x y x N ∈∈=-=,,0,2,则集合N M 中元素的个数为( )A 、1B 、2C 、3D 、42、函数2sin x y =的最小正周期是( ) A 、 2π B 、 π C 、π2 D 、π4 3、设数列{}n a 是等差数列,且6,682=-=a a ,n S 是数列{}n a 的前n 项和,则( )A 、54S S <B 、54S S =C 、56S S >D 、56S S =4、圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A 、023=-+y xB 、043=-+y xC 、043=+-y xD 、023=+-y x5、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 --B 、)2,1()1,2( --C 、[)(]2,11,2 --D 、)2,1()1,2( --6、设复数z 的辐角的主值为32π,虚部为3,则2z =( ) A 、i 322-- B 、i 232-- C 、i 32+ D 、i 232+7、设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( ) A 、5 B 、 5 C 、25 D 、45 8、不等式311<+<x 的解集为( )A 、()2,0B 、())4,2(0,2 -C 、()0,4-D 、())2,0(2,4 --9、正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A 、322B 、2C 、32D 、324 10、在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( )A 、223B 、233 C 、23 D 、3311、设函数⎪⎩⎪⎨⎧≥--<+=1,141,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( ) A 、(][]10,02, -∞- B 、(][]1,02, -∞- C 、(][]10,12, -∞- D 、[)[]10,10,2 -12、将4名教师分配到3所中学任教,每所中学至少1名,则不同的分配方案共有( )A 、12种B 、24种C 、36种D 、48种二、填空题(每小题4分,共16分)13、用平面α截半径为R 的球,如果球心到平面α的距离为2R ,那么截得小圆的面积与球的表面积的比值为 .14、函数x x y cos 3sin +=在区间⎥⎦⎤⎢⎣⎡2,0π上的最小值为 . 15、已知函数)(x f y =是奇函数,当0≥x 时,13)(-=x x f ,设)(x f 的反函数是)(x g y =,则=-)8(g .16、设P 是曲线)1(42-=x y 上的一个动点,则点P 到点)1,0(的距离与点P 到y 轴的距离之和的最小值为 .三、解答题(6道题,共76分)17、(12分)已知α为锐角,且21tan =α,求ααααα2cos 2sin sin cos 2sin -的值。

2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ)

2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ)

2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21(B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2(C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1(5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是(A )-6π(B )6π(C )-12π(D )12π(6)函数y =-e x 的图象(A )与y =e x的图象关于y 轴对称 (B )与y =e x的图象关于坐标原点对称 (C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称(7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31(B )33 (C )32 (D )36(8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条(9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe,其中λ=(A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数 (A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π(B )2π(C )π (D )2π(12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. (13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为ξ 0 1 2 P(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2 S n (n =1,2,3,…).证明:(Ⅰ)数列{nS n }是等比数列;(Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分)给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(Ⅰ)设l的斜率为1,求OA与OB夹角的大小;(Ⅱ)设FB=AFλ,若λ∈[4,9],求l在y轴上截距的变化范围.(22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(1)求函数f(x)的最大值;(2)设0<a<b,证明:0<g(a)+g(b)-2g(2ba+)<(b-a)ln2.2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A(3)C (4)C (5)A(6)D (7)B (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分.(13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CD BCDACD ,由AB=3得CD=2+6故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=CC C(II)解:A 组中至少有两支弱队的概率21481533482523=+CC C CC C19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…),知a 2=112+S 1=3a 1,224212==a S ,111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n ,211=++nS n S n n (n=1,2,3,…).故数列{nS n}是首项为1,公比为2的等比数列(II )解:由(I )知,)2(14111≥-∙=+-+n n S n S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1ABCA'B'C'DMA'CBAC'B'MD又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1,所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23,∴∠B 1GF 是所求二面角的平面角又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=∙∙-+=∙-+FGG B FB FG G B即所求二面角的大小为π-arccos33解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21),M(22,1,0),=CD(22,21,21),=BA 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=GB 1),41,43,42(--∴01=∙GB BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角, cos .33||||11-=∙∙=G B CD G B CD θ所以所求二面角的大小为π-arccos3321.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OBOA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,>=.41413||||-=∙∙OB OA OB OA所以OA 与OB 夹角的大小为π-arccos41413.解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)ABCA'B'C'DM F GzXyA 'CB A C'B'F MDG联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0), 得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1)当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时,'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln2b a +=a ba b b ba a +++2ln2ln.由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得21,02<-<->-bb a aab ,因此a ab aa b ba a 2)21l n (2ln-->-+-=+,bb a bb a b a b 2)21ln(2ln-->-+-=+.所以a b a b b b a a +++2ln 2ln >-22=---b a ab .又,22bba ba a +<+a ba b b ba a +++2ln2ln<a .2ln )(2ln)(2ln2lna b ba b a b ba b b bba -<+-=+++综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2x a +),则.2lnln )]'2([2)(')('x a x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2b a +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2lnln )('x a x x a x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2b a +)<(b-a)ln2.。

2004高考数学试题(全国2理)及答案

2004高考数学试题(全国2理)及答案

2004年高考试题全国卷Ⅱ理科数学(必修+选修Ⅱ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω (4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条 (9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe ,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为ξ0 1 2 P(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱,其中,真命题的编号是 (写出所有真命题的编号). 三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率. (19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分) 给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求与夹角的大小;(Ⅱ)设=AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围. (22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x .(1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C 二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=C C C(II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列 (II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形,BA'C'又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1 又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM , 因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1,所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23,∴∠B 1GF 是所求二面角的平面角 又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=∙∙-+=∙-+FGG B F B FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =(0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角, cos .331-==θ 所以所求二面角的大小为π-arccos33 21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1. 将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y xcos<,.41413-= 所以OA 与OB 夹角的大小为π-arccos41413.解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1) 当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21l n (2ln-->-+-=+,bba b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2ln ln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。

2004年上海高考理科数学真题及答案

2004年上海高考理科数学真题及答案

2004年上海高考理科数学真题及答案一、填空题(共12小题,每小题4分,满分48分) 1.(4分)若,则 . 1tan 2α=tan()4πα+=2.(4分)设抛物线的顶点坐标为,准线方程为,则它的焦点坐标为 . (2,0)1x =-3.(4分)设集合,,集合,.若,则 . {5A =2log (3)}a +{B a =}b {2}A B = A B = 4.(4分)设等比数列的公比,且,则 .{}()n a n N ∈12q =-135218lim()3n n a a a a -→∞+++⋯+=1a =5.(4分)设奇函数的定义域为,,若当,时,的图象如图,则不等式的()f x [5-5][0x ∈5]()f x ()0f x <解集是 .6.(4分)已知点,若向量与同向,,则点的坐标为 . (1,2)A -AB (2,3)a =||AB = B 7.(4分)在极坐标系中,点到直线的距离 .(4,)3M π:(2cos sin )4l ρθθ+=d =8.(4分)圆心在直线上的圆与轴交于两点、,则圆的方程为 . 270x y --=C y (0,4)A -(0,2)B -C 9.(4分)若在二项式的展开式中任取一项,则该项的系数为奇数的概率是 . (结果用分数10(1)x +表示)10.(4分)若函数在,上为增函数,则实数、的取值范围是 . ()||2f x a x b =-+[0)+∞a b 11.(4分)教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是 . 12.(4分)若干个能惟一确定一个数列的量称为该数列的“基本量”.设是公比为的无穷等比数列,{}n a q 下列的四组量中,一定能成为该数列“基本量”的是第 组.(写出所有符合要求的组号) {}n a ①与;②与;③与;④与.(其中为大于1的整数,为的前项和. 1S 2S 2a 3S 1a n a q n a n n S {}n a n )二、选择题(共4小题,每小题4分,满分16分)13.(4分)在下列关于直线、与平面、的命题中,真命题是 l m αβ()A .若,且,则B .若,且,则l β⊂αβ⊥l α⊥l β⊥//αβl α⊥C .若,且,则D .若,且,则m αβ= l m ⊥//l αl β⊥αβ⊥//l α14.(4分)三角方程的解集为 2sin()12x π-=()A ., B ., {|23x x k ππ=+}k Z ∈5{|23x x k ππ=+}k Z ∈C .,D .,{|23x x k ππ=±}k Z ∈{|(1)K x x k π=+-}k Z ∈15.(4分)若函数的图象可由的图象绕坐标原点逆时针旋转得到,则等于 ()y f x =(1)y lg x =+O 2π()f x ()A . B . C . D .101x --101x -110x --110x -16.(4分)某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下 行业名称 计算机 机械 营销 物流 贸易 应聘人数 2158302002501546767457065280行业名称 计算机 营销 机械 建筑 化工 招聘人数124620102935891157651670436若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是 ()A .计算机行业好于化工行业 B .建筑行业好于物流行业C .机械行业最紧张D .营销行业比贸易行业紧张三、解答题(共6小题,满分86分)17.(12分)已知复数满足,,其中为虚数单位,,若,1z 1(1)15i z i +=-+22z a i =--i a R ∈121||||z z z -<求的取值范围.a 18.(12分)某单位用木料制作如图所示的框架,框架的下部是边长分别为、(单位:的矩形.上x y )m 部是等腰直角三角形.要求框架围成的总面积.问、分别为多少(精确到时用料最省?28m x y 0.001)m19.(14分)记函数的定义域为,,的定义域为.若()f x =A ()[(1)(2)]g x lg x a a x =---(1)a <B ,求实数的取值范围.B A ⊆a 20.(14分)已知二次函数的图象以原点为顶点且过点,反比例函数的图象与直线1()y f x =(1,1)2()y f x =的两个交点间距离为8,. y x =12()()()f x f x f x =+(1)求函数的表达式;()f x (2)证明:当时,关于的方程(a )有三个实数解.3a >x ()f x f =21.(16分)如图,是底面边长为1的正三棱锥,、、分别为棱长、、上的点,P ABC -D E F PA PB PC 截面底面,且棱台与棱锥的棱长和相等.(棱长和是指多面体中所有//DEF ABC DEF ABC -P ABC -棱的长度之和)(1)证明:为正四面体; P ABC -(2)若求二面角的大小;(结果用反三角函数值表示) 12PD DA ==D BC A --(3)设棱台的体积为,是否存在体积为且各棱长均相等的直平行六面体,使得它与棱台DEF ABC -V V 有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,DEF ABC -请说明理由.22.(18分)设,,,,,,,是二次曲线上的点,且,11(P x 1)y 12(P x 2)y ⋯(n n Px )(3n y n …)n N ∈C 211||a OP =,,构成了一个公差为的等差数列,其中是坐标原点.记222||a OP =⋯2||n n a OP =(0)d d ≠O .12n n S a a a =++⋯+(1)若的方程为,.点及,求点的坐标;(只需写出一个) C 22110025x y +=3n =1(10,0)P 3255S =3P (2)若的方程为.点,对于给定的自然数,当公差变化时,求的最C 22221(0)x y a b a b +=>>1(,0)P a n d n S 小值;(3)请选定一条除椭圆外的二次曲线及上的一点,对于给定的自然数,写出符合条件的点,C C 1P n 1P ,存在的充要条件,并说明理由.2P n P ⋯符号意义 本试卷所用符号 等同于《实验教材》符号向量坐标 ,{a x =}y(,)a x y =正切tgtan2004年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(共12小题,每小题4分,满分48分) 1.(4分)若,则 3 . 1tan 2α=tan()4πα+=【解答】解: 1tan 2α=11tan 12tan(3141tan 12πααα++∴+===--故答案为:3.2.(4分)设抛物线的顶点坐标为,准线方程为,则它的焦点坐标为 . (2,0)1x =-(5,0)【解答】解:顶点到准线距离是, 2(1)3--=则焦点到顶点距离是3,且和准线在顶点两侧所以横坐标是. 235+=它的焦点坐标是.∴(5,0)故答案为.(5,0)3.(4分)设集合,,集合,.若,则 ,2, . {5A =2log (3)}a +{B a =}b {2}A B = A B = {15}【解答】解:,. {2}A B = 2log (3)2a ∴+=..1a ∴=2b ∴=,,,.,2,,{5A ∴=2}{1B =2}{1A B ∴= 5}故答案为,2,.{15}4.(4分)设等比数列的公比,且,则 2 .{}()n a n N ∈12q =-135218lim()3n n a a a a -→∞+++⋯+=1a =【解答】解:,12q =- . ∴1135218lim()1314n n a a a a a -→∞+++⋯+==-.12a ∴=故答案为2.5.(4分)设奇函数的定义域为,,若当,时,的图象如图,则不等式的()f x [5-5][0x ∈5]()f x ()0f x <解集是 或 .{|20x x -<<25}x <…【解答】解:由奇函数图象的特征可得在,上的图象. ()f x [5-5]由图象可解出结果.故答案为或.{|20x x -<<25}x <…6.(4分)已知点,若向量与同向,,则点的坐标为 . (1,2)A -AB (2,3)a =||AB = B (5,4)【解答】解:设点坐标为,,点坐标为,.A (A x )A yB (B x )B y 与同向,可设,.ABa ∴(2AB a λλ== 3)(0)λλ>,.||AB ∴==2λ∴=则,,, (B A AB x x =-)(4B A y y -=6) ∴46.B A B A x x y y -=⎧⎨-=⎩ 12A A x y =⎧⎨=-⎩∴54.B Bx y =⎧⎨=⎩点坐标为. B ∴(5,4)故答案为:(5,4)7.(4分)在极坐标系中,点到直线的距离 (4,)3M π:(2cos sin )4l ρθθ+=d 【解答】解:将原极坐标方程, (2cos sin )4ρθθ+=化成直角坐标方程为:, 240x y +-=点化成直角坐标方程为,.(4,)3M π(2点到直线的距离. ∴M l ==8.(4分)圆心在直线上的圆与轴交于两点、,则圆的方程为 270x y --=C y (0,4)A -(0,2)B -C .22(2)(3)5x y -++=【解答】解:圆与轴交于,, C y (0,4)A -(0,2)B -由垂径定理得圆心在这条直线上.∴3y =-又已知圆心在直线上,联立,解得,270x y --=∴3270y x y =-⎧⎨--=⎩2x =圆心为,∴C (2,3)-半径 ∴||r AC ===所求圆的方程为.∴C 22(2)(3)5x y -++=故答案为.22(2)(3)5x y -++=9.(4分)若在二项式的展开式中任取一项,则该项的系数为奇数的概率是 . (结果用分10(1)x +411数表示)【解答】解:展开式中共有11项,其中只有4项的系数,,,为奇数.010C 210C 810C 1010C 该项的系数为奇数的概率是 411故答案为41110.(4分)若函数在,上为增函数,则实数、的取值范围是 且()||2f x a x b =-+[0)+∞a b 0a > .0b …【解答】解:的图象可看作把的图象 ()||2f x a x b =-+||y a x = 向左或向右平移个单位,再向上平移2个单位得到的. ||b 由已知画出图形,如图所示, 可得且, 0a >0b …故答案为:且.0a >0b…11.(4分)教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是 用代数的方法研究图形的几何性质 .【解答】解:这两章的内容都是通过建立直角坐标系,用代数中的函数思想来解决图形中的几何性质. 故答案为用代数的方法研究图形的几何性质12.(4分)若干个能惟一确定一个数列的量称为该数列的“基本量”.设是公比为的无穷等比数列,{}n a q 下列的四组量中,一定能成为该数列“基本量”的是第 ①④ 组.(写出所有符合要求的组号) {}n a ①与;②与;③与;④与.(其中为大于1的整数,为的前项和. 1S 2S 2a 3S 1a n a q n a n n S {}n a n )【解答】解:(1)由和,可知和.由可得公比,故能确定数列是该数列的“基本量”,故①1S 2S 1a 2a 21a a q 对;(2)由与,设其公比为,首项为,可得,,, 2a 3S q 1a 21a a q =21a a q=23111S a a q a q =++,; 2322a S a a q q∴=++22232()0a q a S q a ∴+-+=满足条件的可能不存在,也可能不止一个,因而不能确定数列,故不一定是数列 的基本量,②不对;q(3)由与,可得,当为奇数时,可能有两个值,故不一定能确定数列,所以也不一定1a n a 11n n a a q -=n q 是数列的一个基本量.(4)由与由,故数列 能够确定,是数列 的一个基本量; q n a 11n n a a q -={}n a {}n a 故答案为:①④.二、选择题(共4小题,每小题4分,满分16分)13.(4分)在下列关于直线、与平面、的命题中,真命题是 l m αβ()A .若,且,则 B .若,且,则 l β⊂αβ⊥l α⊥l β⊥//αβl α⊥C .若,且,则D .若,且,则m αβ= l m ⊥//l αl β⊥αβ⊥//l α【解答】解:不正确,由面面垂直的性质定理可推出;不正确,可能;A C l α⊂正确,由线面垂直的定义和定理,面面平行的性质定理可推出;B 不正确,由面面垂直的性质定理可知,,且,,则; D m αβ= l m ⊥l β⊥l α⊂故选:.B 14.(4分)三角方程的解集为 2sin()12x π-=()A ., B ., {|23x x k ππ=+}k Z ∈5{|23x x k ππ=+}k Z ∈C .,D ., {|23x x k ππ=±}k Z ∈{|(1)K x x k π=+-}k Z ∈【解答】解: 12sin()12cos 1cos 22x x x π-=∴=∴=,23x k ππ∴=±k Z ∈故选:.C 15.(4分)若函数的图象可由的图象绕坐标原点逆时针旋转得到,则等于 ()y f x =(1)y lg x =+O 2π()f x ()A . B . C . D .101x --101x -110x --110x -【解答】解:函数的图象绕坐标原点逆时针旋转后,得到的函数与原函数的反函数的图象关于轴对O 90︒y 称.故由题意知,函数与的反函数的图象关于轴对称. ()y f x =(1)y lg x =+y ,,反函数为,即,(1)y lg x =+ 101y x ∴=-∴101x y =-()101x f x -=-故选:.A 16.(4分)某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下 行业名称 计算机 机械 营销 物流 贸易 应聘人数 2158302002501546767457065280行业名称 计算机 营销 机械 建筑 化工 招聘人数124620102935891157651670436若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是 ()A .计算机行业好于化工行业 B .建筑行业好于物流行业C .机械行业最紧张D .营销行业比贸易行业紧张【解答】解:用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况, 建筑行业招聘人数是76516,而应聘人数没有排在前五位,小于65280,∴建筑行业人才是供不应求,物流行业应聘人数是74570,而招聘人数不在前五位,要小于70436, 物流行业是供大于求,∴就业形势是建筑行业好于物流行业,∴故选:.B 三、解答题(共6小题,满分86分)17.(12分)已知复数满足,,其中为虚数单位,,若,1z 1(1)15i z i +=-+22z a i =--i a R ∈121||||z z z -<求的取值范围. a 【解答】解:由题意得, 115231iz i i-+==++于是,, 12|||42|z z a i -=-+1||z =<得,.2870a a -+<17a <<18.(12分)某单位用木料制作如图所示的框架,框架的下部是边长分别为、(单位:的矩形.上x y )m 部是等腰直角三角形.要求框架围成的总面积.问、分别为多少(精确到时用料最省?28m x y 0.001)m【解答】解:由题意得, 2184xy x +=.2884(04x x y x x x -∴==-<<框架用料长度为,.31622)(2l x y x x x=++=+…当,即时等号成立.316(2x x +=8x =-此时,,.2.343x≈ 2.828y =≈故当为,为时,用料最省.x 2.343m y 2.828m 19.(14分)记函数的定义域为,,的定义域为.若()f x =A ()[(1)(2)]g x lg x a a x =---(1)a <B ,求实数的取值范围.B A ⊆a 【解答】解:由得:,解得或, 3201x x +-+ (101)x x -+…1x <-1x …即,(,1)[1A =-∞- )+∞由得:(1)(2)0x a a x --->(1)(2)0x a x a ---<由得,1a <12a a +>(2,1)B a a ∴=+,或B A ⊆ 21a ∴…11a +-…即或,而,或 12a …2a -…1a <∴112a <…2a -…故当时,实数的取值范围是 B A ⊆a 1(,2][,1)2-∞- 20.(14分)已知二次函数的图象以原点为顶点且过点,反比例函数的图象与直线1()y f x =(1,1)2()y f x =的两个交点间距离为8,.y x =12()()()f x f x f x =+(1)求函数的表达式;()f x (2)证明:当时,关于的方程(a )有三个实数解.3a >x ()f x f =【解答】解:(1)由已知,设,过点,21()f x ax =(1,1)即(1),得,1f 1=1a =.21()f x x ∴=设,它的图象与直线的交点分别为 2()(0)k f x k x=>y x =A (B 由,得,..故. ||8AB =8k =28()f x x ∴=28()f x x x =+(2)证法一:(a ),得, ()f x f =2288x a x a +=+即. 2288x a x a=-++在同一坐标系内作出和的大致图象, 28()f x x =2238()f x x a a =-++其中的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线,2()f x 与的图象是以为顶点,开口向下的抛物线. 3()f x 28(0,a a+因此,与的图象在第三象限有一个交点,2()f x 3()f x 即(a )有一个负数解.()f x f =又(2),(2) 2f 4=3f 284a a =-++当时,.(2)(2), 3a >3f 2f -2880a a=+->当时,在第一象限的图象上存在一点,(2)在图象的上方. ∴3a >3()f x (2f )2()f x 与的图象在第一象限有两个交点,即(a )有两个正数解.2()f x ∴3()f x ()f x f =因此,方程(a )有三个实数解.()f x f =证法二:由(a ),得, ()f x f =2288x a x a +=+即,得方程的一个解. 8()(0x a x a ax -+-=1x a =方程化为, 80x a ax+-=2280ax a x +-=由,△,得3a >4320a a =+>, 2x 3x =,,,且.20x < 30x >12x x ∴≠23x x ≠若,即,则,, 13x x =a =23a =44a a =得或,这与矛盾,.0a =a =3a >13x x ∴≠故原方程(a )有三个实数解.()f x f =21.(16分)如图,是底面边长为1的正三棱锥,、、分别为棱长、、上的点,P ABC -D E F PA PB PC 截面底面,且棱台与棱锥的棱长和相等.(棱长和是指多面体中所有//DEF ABC DEF ABC -P ABC -棱的长度之和)(1)证明:为正四面体;P ABC -(2)若求二面角的大小;(结果用反三角函数值表示) 12PD DA ==D BC A --(3)设棱台的体积为,是否存在体积为且各棱长均相等的直平行六面体,使得它与棱台DEF ABC -V V 有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,DEF ABC -请说明理由.【解答】证明:(1)棱台与棱锥的棱长和相等,DEF ABC -P ABC -.DE EF FD PD OE PF ∴++=++又截面底面,//DEF ABC ,,是正四面体 DE EF FD PD PE PF ∴=====60DPE EPF FPD ∠=∠=∠=︒P ABC ∴-解:(2)取的中点,连拉,..BC M PM DM AM ,,平面,,BC PM ⊥ BC AM ⊥BC ∴⊥PAM BC DM ⊥则为二面角的平面角.DMA ∠D BC A --由(1)知,的各棱长均为1,P ABC -是的中点,得 PM AM ∴==D PA. sin AD DMA AM ∠==DMA ∴∠=(3)存在满足条件的直平行六面体.棱台的棱长和为定值6,体积为.DEF ABC -V 设直平行六面体的棱长均为,底面相邻两边夹角为, 12α则该六面体棱长和为6,体积为. 1sin 8V α=正四面体,,.可知 P ABC -0V ∴<<081V <<arcsin(8)V α=故构造棱长均为,底面相邻两边夹角为的直平行六面体即满足要求. 12arcsin(8)V22.(18分)设,,,,,,,是二次曲线上的点,且,11(P x 1)y 12(P x 2)y ⋯(n n Px )(3n y n …)n N ∈C 211||a OP =,,构成了一个公差为的等差数列,其中是坐标原点.记222||a OP =⋯2||n n a OP =(0)d d ≠O .12n n S a a a =++⋯+(1)若的方程为,.点及,求点的坐标;(只需写出一个) C 22110025x y +=3n =1(10,0)P 3255S =3P (2)若的方程为.点,对于给定的自然数,当公差变化时,求的最C 22221(0)x y a b a b+=>>1(,0)P a n d n S 小值;(3)请选定一条除椭圆外的二次曲线及上的一点,对于给定的自然数,写出符合条件的点,C C 1P n 1P ,存在的充要条件,并说明理由.2P n P ⋯符号意义本试卷所用符号 等同于《实验教材》符号 向量坐标, {a x = }y (,)a x y = 正切 tgtan 【解答】解:(1),由,得. 211||100a OP ==3133()2552S a a =+=333||70a OP ==由,得,222211002570x y x y ⎧+=⎪⎨⎪+=⎩226010x y ⎧=⎨=⎩点的坐标可以为.∴3P(2)原点到二次曲线上各点的最小距离为,最大距离为. O 2222:1(0)x y C a b a b+=>>b a ,2211||a OP a ==,且, 0d ∴<222||(1)n n a OP a n d b ==+-…., ∴2201b a d n -<-…3n …(1)02n n ->在,上递增, 2(1)2n n n S na d -∴=+22[1b a n --0)故的最小值为. n S 22222(1)()212n n b a n a b na n --++=-(3)若双曲线,点, 2222:1x y C a b -=1(,0)P a 则对于给定的,点,,存在的充要条件是.n 1P 2P n P 0d >原点到双曲线上各点的距离,,且,O C [||h a ∈)+∞21||OP a =点,,存在当且仅当,即. ∴1P 2P n P 221||||n OPOP >0d >。

2004年高考数学试题

2004年高考数学试题

(A)56 个
(B)57 个
(C)58 个
(D)60 个
二、填空题:本大题共 4 小题,每小题 4 分,共 16分.把答案填在题中横线上.
(13)从装有 3 个红球,2 个白球的袋中随机取出 2 个球,设其中有 ξ 个红球,则随机变量 ξ 的概率分布为
ξ
0
1
2
P
x 0,
(14)设 x,y 满足约束条件 x y, 则 z=3x+2y 的最大值是
5
(16)②④
sin AcosB cos Asin B 3 sin AcosB 2
5 ∴ sin AcosB cos Asin B 1
5
5 cos Asin B 1
5
tan A 2 ,∴ tan A 2 tan B . tan B
(II)解:∵ <A+B<π, sin(A B) 3 , ∴ cos(A B) 4 , tan(A B) 3
(1)C
(2)A
(3)C
(4)C
(5)A
(6)D
(7)B
(8)B
(9)D
(10)B
(11)B
(12)C
二、填空题:本大题共 4 小题,每小题 4 分,共 16分.
(13)0.1,0.6,0.3
(14)5
17.(I)证明:∵sin(A+B)= 3 ,sin(A-B)= 1
1
(15)
2
x +y2=1
2
5
(22)(本小题满分 14 分)已知函数 f(x)=ln(1+x)-x,g(x)=xlnx. (1)求函数 f(x)的最大值;
ab (2)设 0<a<b,证明:0<g(a)+g(b)-2g( 2 )<(b-a)ln2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2004年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题满分48分,每小题4分)1.若tg α=21,则tg(α+4π)=.2.设抛物线的顶点坐标为(2,0),准线方程为x=-1,则它的焦点坐标为.3.设集合A={5,log 2(a +3)},集合B={a ,b}.若A∩B={2},则A∪B =.4.设等比数列{a n }(n∈N)的公比q=-21,且∞→n lim (a 1+a 3+a 5+…+a 2n-1)=38,则a 1=.5.设奇函数f(x)的定义域为[-5,5].若当x∈[0,5]时,f(x)的图象如右图,则不等式f(x)<0的解是.6.已知点A(1,-2),若向量AB 与a ={2,3}同向,AB =213,则点B 的坐标为.7.在极坐标系中,点M(4,3π)到直线l :ρ(2cos θ+sin θ)=4的距离d=.8.圆心在直线2x -y-7=0上的圆C 与y 轴交于两点A(0,-4),B(0,-2),则圆C 的方程为.9.若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是.(结果用分数表示)10.若函数f(x)=a 2+-b x 在[0,+∞]上为增函数,则实数a 、b 的取值范围是.11.教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是.12.若干个能唯一确定一个数列的量称为该数列的“基本量”.设{a n }是公比为q 的无穷等比数列,下列{a n }的四组量中,一定能成为该数列“基本量”的是第组.(写出所有符合要求的组号)①S 1与S 2;②a 2与S 3;③a 1与a n ;④q 与a n .其中n 为大于1的整数,S n 为{a n }的前n 项和.二、选择题(本大题满分16分,每小题4分)13.在下列关于直线l 、m 与平面α、β的命题中,真命题是()A.若l ⊂β且α⊥β,则l⊥α.B.若l ⊥β且α∥β,则l ⊥α.C.若l ⊥β且α⊥β,则l∥α.D.若α∩β=m 且l ∥m,则l∥α.14.已知)(x f y =是周期为2π的函数,当21)(,2sin)(,)2,0[==∈x f x x f x 则时π的解集为()A.{x │x =2k π+3π,k∈Z}.B.{x |x =2kπ+35π,k∈Z}.C.{x │x =2k π±3π,k∈Z}.D.{x|x =2k π3π+(-1)K,k∈Z}.15.若函数y=f(x)的图象可由函数y=lg(x +1)的图象绕坐标原点O 逆时针旋转2π得到,则f(x)=()A.10-x-1.B.10x -1.C.1-10-x .D.1-10x.16.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是()A.计算机行业好于化工行业.B.建筑行业好于物流行业.C.机械行业最紧张.D.营销行业比贸易行业紧张.三、解答题(本大题满分86分)17.(本题满分12分)已知复数z 1满足(1+i )z 1=-1+5i ,z 2=a -2-i ,其中i 为虚数单位,a∈R,若21z z -<1z ,求a 的取值范围.行业名称计算机机械营销物流贸易应聘人数2158302002501546767457065280行业名称计算机营销机械建筑化工招聘人数12462010293589115765167043618.(本题满分12分)某单位用木料制作如图所示的框架,框架的下部是边长分别为x、y(单位:m)的矩形.上部是等腰直角三角形.要求框架围成的总面积8m2.问x、y分别为多少(精确到0.001m)时用料最省?19.(本题满分14分)第1小题满分6分,第2小题满分8分.记函数f(x)=132++-x x 的定义域为A,g(x )=lg[(x -a -1)(2a -x )](a <1)的定义域为B.(1)求A;(2)若B ⊆A,求实数a 的取值范围.20.(本题满分14分)第1小题满分6分,第2小题满分8分已知二次函数y=f 1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f 2(x )的图象与直线y=x 的两个交点间距离为8,f(x)=f 1(x)+f 2(x ).(1)求函数f(x)的表达式;(2)证明:当a >3时,关于x 的方程f(x)=f(a)有三个实数解.21.(本题满分16分)第1小题满分4分,第2小题满分6分,第3小题满分6分如图,P—ABC 是底面边长为1的正三棱锥,D、E、F 分别为棱长PA、PB、PC 上的点,截面DEF∥底面ABC,且棱台DEF—ABC 与棱锥P—ABC 的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1)证明:P—ABC 为正四面体;(2)若PD=21PA,求二面角D—BC—A 的大小;(结果用反三角函数值表示)(3)设棱台DEF—ABC 的体积为V,是否存在体积为V 且各棱长均相等的直平行六面体,使得它与棱台DEF—ABC 有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.22.(本题满分18分)第1小题满分6分,第2小题满分8分,第3小题满分4分.设P 1(x 1,y 1),P 1(x 2,y 2),…,P n (x n ,y n )(n≥3,n∈N)是二次曲线C 上的点,且a 1=1OP 2,a 2=2OP 2,…,a n =n OP 2构成了一个公差为d(d≠0)的等差数列,其中O 是坐标原点.记S n =a 1+a 2+…+a n .(1)若C 的方程为2510022y x +=1,n=3.点P 1(10,0)及S 3=255,求点P 3的坐标;(只需写出一个)(2)若C 的方程为12222=+by a x (a >b>0).点P 1(a ,0),对于给定的自然数n,当公差d变化时,求S n 的最小值;(3)请选定一条除椭圆外的二次曲线C 及C 上的一点P 1,对于给定的自然数n,写出符合条件的点P 1,P 2,…,P n 存在的充要条件,并说明理由.2004年普通高等学校招生全国统一考试数学参考答案(理工类)(上海卷)一、填空题(本大题满分48分,每小题4分)1.32.(5,0)3.{1,2,5}4.25.(-2,0)∪(2,5]6.(5,4)7.51528.(x -2)2+(y+3)2=59.11410.a >0且b≤011.用代数的方法研究图形的几何性质12.①、④二、选择题(本大题满分16分,每小题4分)13.B 14.C 15.A 16.B 三、解答题(本大题满分86分)17.【解】由题意得z 1=ii++-151=2+3i ,于是21z z -=i a 24+-=4)4(2+-a ,1z =13.由4)4(2+-a <13,得a 2-8a +7<0,1<a <7.18.【解】由题意得x y+41x 2=8,∴y=xx 482-=48x x -(0<x <42).于是,框架用料长度为l =2x +2y+2(x 22)=(23+2)x +x 16≥)223(162+=4246+.当(23+2)x=x16,即x=8-42时等号成立.此时,x ≈2.343,y=22≈2.828.故当x 为2.343m,y 为2.828m 时,用料最省.19.【解】(1)2-13++x x ≥0,得11+-x x ≥0,x <-1或x ≥1即A=(-∞,-1)∪[1,+∞](2)由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a)<0.∵a <1,∴a +1>2a ,∴B=(2a ,a +1).∵B ⊆A,∴2a ≥1或a +1≤-1,即a ≥21或a ≤-2,而a <1,∴21≤a <1或a ≤-2,故当B ⊆A 时,实数a 的取值范围是(-∞,-2]∪[21,1)20.【解】(1)由已知,设f 1(x)=ax 2,由f 1(1)=1,得a =1,∴f 1(x)=x 2.设f 2(x)=xk(k>0),它的图象与直线y=x 的交点分别为A(k ,k )B(-k ,-k )由AB =8,得k=8,.∴f 2(x )=x 8.故f(x)=x 2+x8.(2)【证法一】f(x)=f(a),得x 2+x 8=a 2+a8,即x 8=-x 2+a 2+a8.在同一坐标系内作出f 2(x)=x8和f 3(x)=-x 2+a 2+a8的大致图象,其中f 2(x)的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线,f 3(x)的图象是以(0,a 2+a8)为顶点,开口向下的抛物线.因此,f 2(x)与f 3(x )的图象在第三象限有一个交点,即f(x)=f(a)有一个负数解.又∵f 2(2)=4,f 3(2)=-4+a 2+a8当a >3时,.f 3(2)-f 2(2)=a 2+a8-8>0,∴当a >3时,在第一象限f 3(x )的图象上存在一点(2,f 3(2))在f 2(x)图象的上方.∴f 2(x )与f 3(x)的图象在第一象限有两个交点,即f(x)=f(a)有两个正数解.因此,方程f(x)=f(a)有三个实数解.【证法二】由f(x)=f(a),得x 2+x 8=a 2+a8,即(x-a )(x+a -ax8)=0,得方程的一个解x 1=a .方程x+a -ax8=0化为ax 2+a 2x -8=0,由a >3,△=a 4+32a >0,得x 2=a a a a 23242+--,x 3=aaa a 23242++-,∵x 2<0,x 3>0,∴x 1≠x 2,且x 2≠x 3.若x 1=x 3,即a =aaa a 23242++-,则3a 2=a a 324+,a 4=4a ,得a =0或a =34,这与a >3矛盾,∴x 1≠x 3.故原方程有三个实数解.21.【证明】(1)∵棱台DEF—ABC 与棱锥P—ABC 的棱长和相等,∴DE+EF+FD=PD+PE+PF.又∵截面DEF∥底面ABC,∴DE=EF=FD=PD=PE=PF,∠DPE=∠EPF=∠FPD=60°,∴P—ABC 是正四面体.【解】(2)取BC 的中点M,连接PM,DM.AM.∵BC⊥PM,BC⊥AM,∴BC⊥平面PAM,BC⊥DM,则∠DMA 为二面角D—BC—A 的平面角.由(1)知,P—ABC 的各棱长均为1,∴PM=AM=23,由D 是PA 的中点,得sin∠DMA=33=AM AD ,∴∠DMA=arcsin 33.(3)存在满足条件的直平行六面体.棱台DEF—ABC 的棱长和为定值6,体积为V.设直平行六面体的棱长均为21,底面相邻两边夹角为α,则该六面体棱长和为6,体积为81sin α=V.∵正四面体P—ABC 的体积是122,∴0<V<122,0<8V<1.可知α=arcsim(8V)故构造棱长均为21,底面相邻两边夹角为arcsim(8V)的直平行六面体即满足要求.22.【解】(1)a 1=1OP 2=100,由S 3=23(a 1+a 3)=255,得a 3=3OP 2=70.∴点P 3的坐标可以为(215,10).(2)【解法一】原点O 到二次曲线C:12222=+by a x (a>b>0)上各点的最小距离为b,最大距离为a .∵a 1=1OP 2=a 2,∴d<0,且a n =n OP 2=a 2+(n-1)d≥b 2,∴122--n a b ≤d<0.∵n≥3,2)1(-n n >0∴S n =n a 2+2)1(-n n d 在[122--n a b ,0)上递增,故S n 的最小值为n a 2+2)1(-n n ·122--n a b =2)(22b a n +.【解法二】对每个自然数k(2≤k≤n),由2510022y x +=1,得x 23=60x 23+y 23=70y 23=10由2k =a 2+(k-1)d,解得y 2k =222)1(b a d k b ---22b y k =1∵0<y 2k ≤b 2,得122--k a b ≤d<0∴122--n a b ≤d<0以下与解法一相同.(3)解法一】若双曲线C:22a x -22by =1,点P 1(a ,0),则对于给定的n,点P 1,P 2,…P n 存在的充要条件是d>0.∵原点O 到双曲线C 上各点的距离h∈[a ,+∞],且1OP =a 2,∴点P 1,P 2,…,P n 存在当且仅当n OP 2>1OP 2,即d>0.【解法二】若抛物线C:y 2=2P x ,点P 1(0,0),则对于给定的n,点P 1,P 2,…P n 存在的充要条件是d>0.理由同上【解法三】若圆C:(x -a )2+y 2=a 2(a ≠0),P 1(0,0),则对于给定的n,点P 1,P 2,…,P n 存在的充要条件是0<d≤142-n a .∵原点O 到圆C 上各点的最小距离为0,最大距离为2a ,且1OP 2=0,∴d>0且n OP 2=(n-1)d≤4a 2.即0<d≤142-n a .即.1402-≤<n a d。

相关文档
最新文档