2017上海高考数学试题(完整Word版含解析)
2017年数学真题及解析_2017年上海市高考数学试卷
2017年上海市高考数学试卷一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.(4分)已知集合A={1,2,3,4},集合B={3,4,5},则A∩B=.2.(4分)若排列数=6×5×4,则m=.3.(4分)不等式>1的解集为.4.(4分)已知球的体积为36π,则该球主视图的面积等于.5.(4分)已知复数z满足z+=0,则|z|=.6.(4分)设双曲线﹣=1(b>0)的焦点为F1、F2,P为该双曲线上的一点,若|PF1|=5,则|PF2|=.7.(5分)如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是.8.(5分)定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)=为奇函数,则f﹣1(x)=2的解为.9.(5分)已知四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为.10.(5分)已知数列{a n}和{b n},其中a n=n2,n∈N*,{b n}的项是互不相等的正整数,若对于任意n∈N*,{b n}的第a n项等于{a n}的第b n项,则= .11.(5分)设a 1、a 2∈R ,且,则|10π﹣a 1﹣a 2|的最小值等于 .12.(5分)如图,用35个单位正方形拼成一个矩形,点P 1、P 2、P 3、P 4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P 1,P 2,P 3,P 4},点P ∈Ω,过P 作直线l P ,使得不在l P 上的“▲”的点分布在l P 的两侧.用D 1(l P )和D 2(l P )分别表示l P 一侧和另一侧的“▲”的点到l P 的距离之和.若过P 的直线l P 中有且只有一条满足D 1(l P )=D 2(l P ),则Ω中所有这样的P 为 .二、选择题(本大题共4题,每题5分,共20分) 13.(5分)关于x 、y 的二元一次方程组的系数行列式D 为( )A .B .C .D .14.(5分)在数列{a n }中,a n =(﹣)n ,n ∈N *,则a n ( )A .等于B .等于0C .等于D .不存在15.(5分)已知a 、b 、c 为实常数,数列{x n }的通项x n =an 2+bn +c ,n ∈N *,则“存在k ∈N *,使得x 100+k 、x 200+k 、x 300+k 成等差数列”的一个必要条件是( ) A .a ≥0B .b ≤0C .c=0D .a ﹣2b +c=016.(5分)在平面直角坐标系xOy 中,已知椭圆C 1:=1和C 2:x 2+=1.P为C 1上的动点,Q 为C 2上的动点,w 是的最大值.记Ω={(P ,Q )|P 在C 1上,Q 在C 2上,且=w },则Ω中元素个数为( )A.2个 B.4个 C.8个 D.无穷个三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB 和AC的长分别为4和2,侧棱AA1的长为5.(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.18.(14分)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积.19.(14分)根据预测,某地第n(n∈N*)个月共享单车的投放量和损失量分别为a n和b n(单位:辆),其中a n=,b n=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n个月底的单车容纳量S n=﹣4(n﹣46)2+8800(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20.(16分)在平面直角坐标系xOy中,已知椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.(1)若P在第一象限,且|OP|=,求P的坐标;(2)设P(),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且,,求直线AQ的方程.21.(18分)设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2).(1)若f(x)=ax3+1,求a的取值范围;(2)若f(x)是周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”.2017年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.(4分)已知集合A={1,2,3,4},集合B={3,4,5},则A∩B={3,4} .【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2,3,4},集合B={3,4,5},∴A∩B={3,4}.故答案为:{3,4}.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.(4分)若排列数=6×5×4,则m=3.【分析】利用排列数公式直接求解.【解答】解:∵排列数=6×5×4,∴由排列数公式得,∴m=3.故答案为:m=3.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意排列数公式的合理运用.3.(4分)不等式>1的解集为(﹣∞,0).【分析】根据分式不等式的解法求出不等式的解集即可.【解答】解:由>1得:,故不等式的解集为:(﹣∞,0),故答案为:(﹣∞,0).【点评】本题考查了解分式不等式,考查转化思想,是一道基础题.4.(4分)已知球的体积为36π,则该球主视图的面积等于9π.【分析】由球的体积公式,可得半径R=3,再由主视图为圆,可得面积.【解答】解:球的体积为36π,设球的半径为R,可得πR3=36π,可得R=3,该球主视图为半径为3的圆,可得面积为πR2=9π.故答案为:9π.【点评】本题考查球的体积公式,以及主视图的形状和面积求法,考查运算能力,属于基础题.5.(4分)已知复数z满足z+=0,则|z|=.【分析】设z=a+bi(a,b∈R),代入z2=﹣3,由复数相等的条件列式求得a,b 的值得答案.【解答】解:由z+=0,得z2=﹣3,设z=a+bi(a,b∈R),由z2=﹣3,得(a+bi)2=a2﹣b2+2abi=﹣3,即,解得:.∴.则|z|=.故答案为:.【点评】本题考查复数代数形式的乘除运算,考查了复数相等的条件以及复数模的求法,是基础题.6.(4分)设双曲线﹣=1(b>0)的焦点为F1、F2,P为该双曲线上的一点,若|PF1|=5,则|PF2|=11.【分析】根据题意,由双曲线的方程可得a的值,结合双曲线的定义可得||PF1|﹣|PF2||=6,解可得|PF2|的值,即可得答案.【解答】解:根据题意,双曲线的方程为:﹣=1,其中a==3,则有||PF1|﹣|PF2||=6,又由|PF1|=5,解可得|PF2|=11或﹣1(舍)故|PF2|=11,故答案为:11.【点评】本题考查双曲线的几何性质,关键是掌握双曲线的定义.7.(5分)如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是(﹣4,3,2).【分析】由的坐标为(4,3,2),分别求出A和C1的坐标,由此能求出结果.【解答】解:如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,∵的坐标为(4,3,2),∴A(4,0,0),C1(0,3,2),∴.故答案为:(﹣4,3,2).【点评】本题考查空间向量的坐标的求法,考查空间直角坐标系等基础知识,考查运算求解能力,考查数形结合思想,是基础题.8.(5分)定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)=为奇函数,则f﹣1(x)=2的解为.【分析】由奇函数的定义,当x>0时,﹣x<0,代入已知解析式,即可得到所求x>0的解析式,再由互为反函数的两函数的自变量和函数值相反,即可得到所求值.【解答】解:若g(x)=为奇函数,可得当x>0时,﹣x<0,即有g(﹣x)=3﹣x﹣1,由g(x)为奇函数,可得g(﹣x)=﹣g(x),则g(x)=f(x)=1﹣3﹣x,x>0,由定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),且f﹣1(x)=2,可由f(2)=1﹣3﹣2=,可得f﹣1(x)=2的解为x=.故答案为:.【点评】本题考查函数的奇偶性和运用,考查互为反函数的自变量和函数值的关系,考查运算能力,属于基础题.9.(5分)已知四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为.【分析】从四个函数中任选2个,基本事件总数n=,再利用列举法求出事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件的个数,由此能求出事件A:“所选2个函数的图象有且只有一个公共点”的概率.【解答】解:给出四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从四个函数中任选2个,基本事件总数n=,③④有两个公共点(0,0),(1,1).事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件有:①③,①④共2个,∴事件A:“所选2个函数的图象有且只有一个公共点”的概率为P(A)==.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.10.(5分)已知数列{a n}和{b n},其中a n=n2,n∈N*,{b n}的项是互不相等的正整数,若对于任意n∈N*,{b n}的第a n项等于{a n}的第b n项,则= 2.【分析】a n=n2,n∈N*,若对于一切n∈N*,{b n}中的第a n项恒等于{a n}中的第b项,可得==.于是b1=a1=1,=b4,=b9,=b16.即n可得出.【解答】解:∵a n=n2,n∈N*,若对于一切n∈N*,{b n}中的第a n项恒等于{a n}中的第b n项,∴==.∴b1=a1=1,=b4,=b9,=b16.∴b1b4b9b16=.∴=2.故答案为:2.【点评】本题考查了数列递推关系、对数的运算性质,考查了推理能力与计算能力,属于中档题.11.(5分)设a1、a2∈R,且,则|10π﹣a1﹣a2|的最小值等于.【分析】由题意,要使+=2,可得sinα1=﹣1,sin2α2=﹣1.求出α1和α2,即可求出|10π﹣α1﹣α2|的最小值【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1],要使+=2,∴sinα1=﹣1,sin2α2=﹣1.则:,k1∈Z.,即,k2∈Z.那么:α1+α2=(2k1+k2)π,k1、k2∈Z.∴|10π﹣α1﹣α2|=|10π﹣(2k1+k2)π|的最小值为.故答案为:.【点评】本题主要考察三角函数性质,有界限的范围的灵活应用,属于基本知识的考查.12.(5分)如图,用35个单位正方形拼成一个矩形,点P1、P2、P3、P4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P1,P2,P3,P4},点P∈Ω,过P作直线l P,使得不在l P上的“▲”的点分布在l P的两侧.用D1(l P)和D2(l P)分别表示l P一侧和另一侧的“▲”的点到l P的距离之和.若过P的直线l P中有且只有一条满足D1(l P)=D2(l P),则Ω中所有这样的P为P1、P3、P4.【分析】根据任意四边形ABCD两组对边中点的连线交于一点,过此点作直线,使四边形的四个顶点不在该直线的同一侧,则该直线两侧的四边形的顶点到直线的距离之和相等;由此得出结论.【解答】解:设记为“▲”的四个点是A,B,C,D,线段AB,BC,CD,DA的中点分别为E,F,G,H,易知EFGH为平行四边形,如图所示;又平行四边形EFGH的对角线交于点P2,则符合条件的直线l P一定经过点P2,且过点P2的直线有无数条;由过点P1和P2的直线有且仅有1条,过点P3和P2的直线有且仅有1条,过点P4和P2的直线有且仅有1条,所以符合条件的点是P1、P3、P4.故答案为:P1、P3、P4.【点评】本题考查了数学理解力与转化力的应用问题,也考查了对基本问题的阅读理解和应用转化能力.二、选择题(本大题共4题,每题5分,共20分)13.(5分)关于x、y的二元一次方程组的系数行列式D为()A.B.C.D.【分析】利用线性方程组的系数行列式的定义直接求解.【解答】解:关于x、y的二元一次方程组的系数行列式:D=.故选:C.【点评】本题考查线性方程组的系数行列式的求法,是基础题,解题时要认真审题,注意线性方程组的系数行列式的定义的合理运用.14.(5分)在数列{a n}中,a n=(﹣)n,n∈N*,则a n()A.等于 B.等于0 C.等于D.不存在【分析】根据极限的定义,求出a n=的值.【解答】解:数列{a n}中,a n=(﹣)n,n∈N*,则a n==0.故选:B.【点评】本题考查了极限的定义与应用问题,是基础题.15.(5分)已知a 、b 、c 为实常数,数列{x n }的通项x n =an 2+bn +c ,n ∈N *,则“存在k ∈N *,使得x 100+k 、x 200+k 、x 300+k 成等差数列”的一个必要条件是( )A .a ≥0B .b ≤0C .c=0D .a ﹣2b +c=0【分析】由x 100+k ,x 200+k ,x 300+k 成等差数列,可得:2x 200+k =x 100+k x 300+k ,代入化简即可得出.【解答】解:存在k ∈N *,使得x 100+k 、x 200+k 、x 300+k 成等差数列,可得:2[a (200+k )2+b (200+k )+c ]=a (100+k )2+b (100+k )+c +a (300+k )2+b (300+k )+c ,化为:a=0.∴使得x 100+k ,x 200+k ,x 300+k 成等差数列的必要条件是a ≥0.故选:A .【点评】本题考查了等差数列的通项公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.16.(5分)在平面直角坐标系xOy 中,已知椭圆C 1:=1和C 2:x 2+=1.P 为C 1上的动点,Q 为C 2上的动点,w 是的最大值.记Ω={(P ,Q )|P 在C 1上,Q 在C 2上,且=w },则Ω中元素个数为( )A .2个B .4个C .8个D .无穷个【分析】设出P (6cosα,2sinα),Q (cosβ,3sinβ),0≤α\β<2π,由向量数量积的坐标表示和两角差的余弦公式和余弦函数的值域,可得最大值及取得的条件,即可判断所求元素的个数.【解答】解:椭圆C 1:=1和C 2:x 2+=1.P 为C 1上的动点,Q 为C 2上的动点,可设P (6cosα,2sinα),Q (cosβ,3sinβ),0≤α\β<2π, 则=6cosαcosβ+6sinαsinβ=6cos (α﹣β), 当α﹣β=2kπ,k ∈Z 时,w 取得最大值6,则Ω={(P,Q)|P在C1上,Q在C2上,且=w}中的元素有无穷多对.另解:令P(m,n),Q(u,v),则m2+9n2=36,9u2+v2=9,由柯西不等式(m2+9n2)(9u2+v2)=324≥(3mu+3nv)2,当且仅当mv=nu,即O、P、Q共线时,取得最大值6,显然,满足条件的P、Q有无穷多对,D项正确.故选:D.【点评】本题考查椭圆的参数方程的运用,以及向量数量积的坐标表示和余弦函数的值域,考查集合的几何意义,属于中档题.三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB 和AC的长分别为4和2,侧棱AA1的长为5.(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.【分析】(1)三棱柱ABC﹣A1B1C1的体积V=S△ABC×AA1=,由此能求出结果.(2)连结AM,∠A1MA是直线A1M与平面ABC所成角,由此能求出直线A1M 与平面ABC所成角的大小.【解答】解:(1)∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.∴三棱柱ABC﹣A1B1C1的体积:V=S△ABC×AA1===20.(2)连结AM,∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5,M是BC中点,∴AA1⊥底面ABC,AM==,∴∠A1MA是直线A1M与平面ABC所成角,tan∠A1MA===,∴直线A1M与平面ABC所成角的大小为arctan.【点评】本题考查三棱柱的体积的求法,考查线面角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.18.(14分)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积.【分析】(1)由二倍角的余弦公式和余弦函数的递增区间,解不等式可得所求增区间;(2)由f(A)=0,解得A,再由余弦定理解方程可得c,再由三角形的面积公式,计算即可得到所求值.【解答】解:(1)函数f(x)=cos2x﹣sin2x+=cos2x+,x∈(0,π),由2kπ﹣π≤2x≤2kπ,解得kπ﹣π≤x≤kπ,k∈Z,k=1时,π≤x≤π,可得f(x)的增区间为[,π);(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,即有cos2A+=0,解得2A=π,即A=π,由余弦定理可得a2=b2+c2﹣2bccosA,化为c2﹣5c+6=0,解得c=2或3,若c=2,则cosB=<0,即有B为钝角,c=2不成立,则c=3,△ABC的面积为S=bcsinA=×5×3×=.【点评】本题考查二倍角公式和余弦函数的图象和性质,考查解三角形的余弦定理和面积公式的运用,考查运算能力,属于中档题.19.(14分)根据预测,某地第n(n∈N*)个月共享单车的投放量和损失量分别为a n和b n(单位:辆),其中a n=,b n=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n个月底的单车容纳量S n=﹣4(n﹣46)2+8800(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【分析】(1)计算出{a n}和{b n}的前4项和的差即可得出答案;(2)令a n≥b n得出n≤42,再计算第42个月底的保有量和容纳量即可得出结论.【解答】解:(1)∵a n=,b n=n+5∴a1=5×14+15=20a2=5×24+15=95a3=5×34+15=420a4=﹣10×4+470=430b1=1+5=6b2=2+5=7b3=3+5=8b4=4+5=9∴前4个月共投放单车为a1+a2+a3+a4=20+95+420+430=965,前4个月共损失单车为b1+b2+b3+b4=6+7+8+9=30,∴该地区第4个月底的共享单车的保有量为965﹣30=935.(2)令a n≥b n,显然n≤3时恒成立,当n≥4时,有﹣10n+470≥n+5,解得n≤,∴第42个月底,保有量达到最大.当n≥4,{a n}为公差为﹣10等差数列,而{b n}为等差为1的等差数列,∴到第42个月底,单车保有量为×39+535﹣×42=×39+535﹣×42=8782.S42=﹣4×16+8800=8736.∵8782>8736,∴第42个月底单车保有量超过了容纳量.【点评】本题考查了数列模型的应用,等差数列的求和公式,属于中档题.20.(16分)在平面直角坐标系xOy中,已知椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.(1)若P在第一象限,且|OP|=,求P的坐标;(2)设P(),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且,,求直线AQ的方程.【分析】(1)设P(x,y)(x>0,y>0),联立,能求出P点坐标.(2)设M(x0,0),A(0,1),P(),由∠P=90°,求出x0=;由∠M=90°,求出x0=1或x0=;由∠A=90°,则M点在x轴负半轴,不合题意.由此能求出点M的横坐标.(3)设C(2cosα,sinα),推导出Q(4cosα,2sinα﹣1),设P(2cosβ,sinβ),M(x0,0)推导出x0=cosβ,从而4cosα﹣2cosβ=﹣5cosβ,且2sinα﹣sinβ﹣1=﹣4sinβ,cosβ=﹣cosα,且sinα=(1﹣2sinα),由此能求出直线AQ.【解答】解:(1)设P(x,y)(x>0,y>0),∵椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,P在第一象限,且|OP|=,∴联立,解得P(,).(2)设M(x0,0),A(0,1),P(),若∠P=90°,则•,即(x0﹣,﹣)•(﹣,)=0,∴(﹣)x0+﹣=0,解得x0=.如图,若∠M=90°,则•=0,即(﹣x0,1)•(﹣x0,)=0,∴=0,解得x0=1或x0=,若∠A=90°,则M点在x轴负半轴,不合题意.∴点M的横坐标为,或1,或.(3)设C(2cosα,sinα),∵,A(0,1),∴Q(4cosα,2sinα﹣1),又设P(2cosβ,sinβ),M(x0,0),∵|MA|=|MP|,∴x02+1=(2cosβ﹣x0)2+(sinβ)2,整理得:x0=cosβ,∵=(4cosα﹣2cosβ,2sinα﹣sinβ﹣1),=(﹣cosβ,﹣sinβ),,∴4cosα﹣2cosβ=﹣5cosβ,且2sinα﹣sinβ﹣1=﹣4sinβ,∴cosβ=﹣cosα,且sinα=(1﹣2sinα),以上两式平方相加,整理得3(s inα)2+sinα﹣2=0,∴sinα=,或sinα=﹣1(舍去),此时,直线AC的斜率k AC=﹣=(负值已舍去),如图.∴直线AQ为y=x+1.【点评】本题考查点的坐标的求法,考查直线方程的求法,考查椭圆、直线方程、三角函数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方思想,是中档题.21.(18分)设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2).(1)若f(x)=ax3+1,求a的取值范围;(2)若f(x)是周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”.【分析】(1)直接由f(x1)﹣f(x2)≤0求得a的取值范围;(2)若f(x)是周期函数,记其周期为T k,任取x0∈R,则有f(x0)=f(x0+T k),证明对任意x∈[x0,x0+T k],f(x0)≤f(x)≤f(x0+T k),可得f(x0)=f(x0+nT k),n∈Z,再由…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,可得对任意x∈R,f(x)=f(x0)=C,为常数;(3)分充分性及必要性证明.类似(2)证明充分性;再证必要性,然后分类证明.【解答】(1)解:由f(x1)≤f(x2),得f(x1)﹣f(x2)=a(x13﹣x23)≤0,∵x1<x2,∴x13﹣x23<0,得a≥0.故a的范围是[0,+∞);(2)证明:若f(x)是周期函数,记其周期为T k,任取x0∈R,则有f(x0)=f(x0+T k),由题意,对任意x∈[x0,x0+T k],f(x0)≤f(x)≤f(x0+T k),∴f(x0)=f(x)=f(x0+T k).又∵f(x0)=f(x0+nT k),n∈Z,并且…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,∴对任意x∈R,f(x)=f(x0)=C,为常数;(3)证明:充分性:若f(x)是常值函数,记f(x)=c1,设g(x)的一个周期为T g,则h(x)=c1•g(x),则对任意x0∈R,h(x0+T g)=c1•g(x0+T g)=c1•g(x0)=h(x0),故h(x)是周期函数;必要性:若h(x)是周期函数,记其一个周期为T h.若存在x1,x2,使得f(x1)>0,且f(x2)<0,则由题意可知,x1>x2,那么必然存在正整数N1,使得x2+N1T k>x1,∴f(x2+N1T k)>f(x1)>0,且h(x2+N1T k)=h(x2).又h(x2)=g(x2)f(x2)<0,而h(x2+N1T k)=g(x2+N1T k)f(x2+N1T k)>0≠h(x2),矛盾.综上,f(x)>0恒成立.由f(x)>0恒成立,任取x0∈A,则必存在N2∈N,使得x0﹣N2T h≤x0﹣T g,即[x0﹣T g,x0]⊆[x0﹣N2T h,x0],∵…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,∴…∪[x0﹣2N2T h,x0﹣N2T h]∪[x0﹣N2T h,x0]∪[x0,x0+N2T h]∪[x0+N2T h,x0+2N2T h]∪…=R.h(x0)=g(x0)•f(x0)=h(x0﹣N2T h)=g(x0﹣N2T h)•f(x0﹣N2T h),∵g(x0)=M≥g(x0﹣N2T h)>0,f(x0)≥f(x0﹣N2T h)>0.因此若h(x0)=h(x0﹣N2T h),必有g(x0)=M=g(x0﹣N2T h),且f(x0)=f(x0﹣N2T h)=c.而由(2)证明可知,对任意x∈R,f(x)=f(x0)=C,为常数.综上,必要性得证.【点评】本题考查抽象函数及其应用,考查逻辑思维能力与理论运算能力考查分类讨论的数学思想方法,题目设置难度过大.。
2017年上海市黄浦区高考数学二模试卷Word版含解析
2017年上海市虹口区高考数学二模试卷一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.集合A={1,2,3,4},B={x|(x﹣1)(x﹣5)<0},则A∩B=.2.复数所对应的点在复平面内位于第象限.3.已知首项为1公差为2的等差数列{a n},其前n项和为S n,则=.4.若方程组无解,则实数a=.5.若(x+a)7的二项展开式中,含x6项的系数为7,则实数a=.6.已知双曲线,它的渐近线方程是y=±2x,则a的值为.7.在△ABC中,三边长分别为a=2,b=3,c=4,则=.8.在平面直角坐标系中,已知点P(﹣2,2),对于任意不全为零的实数a、b,直线l:a(x﹣1)+b(y+2)=0,若点P到直线l的距离为d,则d的取值范围是.9.函数f(x)=,如果方程f(x)=b有四个不同的实数解x1、x2、x3、x4,则x1+x2+x3+x4=.10.三条侧棱两两垂直的正三棱锥,其俯视图如图所示,主视图的边界是底边长为2的等腰三角形,则主视图的面积等于.11.在直角△ABC中,,AB=1,AC=2,M是△ABC内一点,且,若,则λ+2μ的最大值.12.无穷数列{a n}的前n项和为S n,若对任意的正整数n都有S n∈{k1,k2,k3,…,k10},则a10的可能取值最多有个.二、选择题(每小题5分,满分20分)13.已知a,b,c是实数,则“a,b,c成等比数列”是“b2=ac”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件14.l1、l2是空间两条直线,α是平面,以下结论正确的是()A.如果l1∥α,l2∥α,则一定有l1∥l2B.如果l1⊥l2,l2⊥α,则一定有l1⊥αC.如果l1⊥l2,l2⊥α,则一定有l1∥αD.如果l1⊥α,l2∥α,则一定有l1⊥l215.已知函数,x1、x2、x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值()A.一定等于零 B.一定大于零 C.一定小于零 D.正负都有可能16.已知点M(a,b)与点N(0,﹣1)在直线3x﹣4y+5=0的两侧,给出以下结论:①3a﹣4b+5>0;②当a>0时,a+b有最小值,无最大值;③a2+b2>1;④当a>0且a≠1时,的取值范围是(﹣∞,﹣)∪(,+∞).正确的个数是()A.1 B.2 C.3 D.4三、解答题(本大题满分76分)17.如图ABC﹣A1B1C1是直三棱柱,底面△ABC是等腰直角三角形,且AB=AC=4,直三棱柱的高等于4,线段B1C1的中点为D,线段BC的中点为E,线段CC1的中点为F.(1)求异面直线AD、EF所成角的大小;(2)求三棱锥D﹣AEF的体积.18.已知定义在(﹣,)上的函数f(x)是奇函数,且当x∈(0,)时,f(x)=.(1)求f(x)在区间(﹣,)上的解析式;(2)当实数m为何值时,关于x的方程f(x)=m在(﹣,)有解.19.已知数列{a n}是首项等于且公比不为1的等比数列,S n是它的前n项和,满足.(1)求数列{a n}的通项公式;(2)设b n=log a a n(a>0且a≠1),求数列{b n}的前n项和T n的最值.20.已知椭圆C:=1(a>b>0),定义椭圆C上的点M(x0,y0)的“伴随点”为.(1)求椭圆C上的点M的“伴随点”N的轨迹方程;(2)如果椭圆C上的点(1,)的“伴随点”为(,),对于椭圆C上的任意点M及它的“伴随点”N,求的取值范围;(3)当a=2,b=时,直线l交椭圆C于A,B两点,若点A,B的“伴随点”分别是P,Q,且以PQ为直径的圆经过坐标原点O,求△OAB的面积.21.对于定义域为R的函数y=f(x),部分x与y的对应关系如表:(1)求f{f[f(0)]};)都在函数y=f(x)的(2)数列{x n}满足x1=2,且对任意n∈N*,点(x n,x n+1图象上,求x1+x2+…+x4n;(3)若y=f(x)=Asin(ωx+φ)+b,其中A>0,0<ω<π,0<φ<π,0<b<3,求此函数的解析式,并求f(1)+f(2)+…+f(3n)(n∈N*).2017年上海市虹口区高考数学二模试卷参考答案与试题解析一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.集合A={1,2,3,4},B={x|(x﹣1)(x﹣5)<0},则A∩B={2,3,4} .【考点】1E:交集及其运算.【分析】解关于B的不等式,求出A、B的交集即可.【解答】解:A={1,2,3,4},B={x|(x﹣1)(x﹣5)<0}={x|1<x<5},则A∩B={2,3,4};故答案为:{2,3,4}.2.复数所对应的点在复平面内位于第四象限.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:复数==﹣i所对应的点在复平面内位于第四象限.故答案为:四.3.已知首项为1公差为2的等差数列{a n},其前n项和为S n,则=4.【考点】6F:极限及其运算;85:等差数列的前n项和.【分析】由题意,a n=1+2(n﹣1)=2n﹣1,S n=n+=n2,即可求极限.【解答】解:由题意,a n=1+2(n﹣1)=2n﹣1,S n=n+=n2,∴==4,故答案为:4.4.若方程组无解,则实数a=±2.【考点】54:根的存在性及根的个数判断.【分析】根据题意,若方程组无解,则直线ax+2y=3与直线2x+2y=2平行,由直线平行的判定方法分析可得a的值,即可得答案.【解答】解:根据题意,方程组无解,则直线ax+2y=3与直线2x+2y=2平行,则有a×a=2×2,且a×2≠2×3,即a2=4,a≠3,解可得a=±2,故答案为:±2.5.若(x+a)7的二项展开式中,含x6项的系数为7,则实数a=1.【考点】DB:二项式系数的性质.=x r a7﹣r,令r=6,则=7,【分析】(x+a)7的二项展开式的通项公式:T r+1解得a.=x r a7﹣r,【解答】解:(x+a)7的二项展开式的通项公式:T r+1令r=6,则=7,解得a=1.故答案为:1.6.已知双曲线,它的渐近线方程是y=±2x,则a的值为2.【考点】KC:双曲线的简单性质.【分析】根据题意,由双曲线的方程可得其渐近线方程为:y=±ax,结合题意中渐近线方程可得a=2,即可得答案.【解答】解:根据题意,双曲线的方程为:,其焦点在x轴上,其渐近线方程为:y=±ax,又有其渐近线方程是y=±2x,则有a=2;故答案为:2.7.在△ABC中,三边长分别为a=2,b=3,c=4,则=.【考点】HP:正弦定理.【分析】由已知利用余弦定理可求cosA,cosB,进而利用同角三角函数基本关系式可求sinA,sinB的值,即可利用二倍角的正弦函数公式化简求值得解.【解答】解:在△ABC中,∵a=2,b=3,c=4,∴cosA==,可得:sinA==,cosB==,sinB==,∴===.故答案为:.8.在平面直角坐标系中,已知点P(﹣2,2),对于任意不全为零的实数a、b,直线l:a(x﹣1)+b(y+2)=0,若点P到直线l的距离为d,则d的取值范围是[0,5] .【考点】IT:点到直线的距离公式.【分析】由题意,直线过定点Q(1,﹣2),PQ⊥l时,d取得最大值=5,直线l过P时,d取得最小值0,可得结论.【解答】解:由题意,直线过定点Q(1,﹣2),PQ⊥l时,d取得最大值=5,直线l过P时,d取得最小值0,∴d的取值范围[0,5],故答案为[0,5].9.函数f(x)=,如果方程f(x)=b有四个不同的实数解x1、x2、x3、x4,则x1+x2+x3+x4=4.【考点】54:根的存在性及根的个数判断.【分析】作出f(x)的图象,由题意可得y=f(x)和y=b的图象有4个交点,不妨设x1<x2<x3<x4,由x1、x2关于原点对称,x3、x4关于(2,0)对称,计算即可得到所求和.【解答】解:作出函数f(x)=的图象,方程f(x)=b有四个不同的实数解,等价为y=f(x)和y=b的图象有4个交点,不妨设它们交点的横坐标为x1、x2、x3、x4,且x1<x2<x3<x4,由x1、x2关于原点对称,x3、x4关于(2,0)对称,可得x1+x2=0,x3+x4=4,则x1+x2+x3+x4=4.故答案为:4.10.三条侧棱两两垂直的正三棱锥,其俯视图如图所示,主视图的边界是底边长为2的等腰三角形,则主视图的面积等于.【考点】L7:简单空间图形的三视图.【分析】由题意,正三棱锥有三个面都是等腰直角三角形,且边长相等.根据俯视图可得,底面是边长为2的等边三角形.利用体积法,求其高,即可得主视图的高.可得主视图的面积【解答】解:由题意,正三棱锥有三个面都是等腰直角三角形,(如图:SAB,SBC,SAC)且边长相等为,其体积为V==根据俯视图可得,底面是边长为2的等边三角形.其面积为:.设主视图的高OS=h,则=.∴h=.主视图的边界是底边长为2的等腰三角形,其高为.∴得面积S=.故答案为11.在直角△ABC中,,AB=1,AC=2,M是△ABC内一点,且,若,则λ+2μ的最大值.【考点】9H:平面向量的基本定理及其意义.【分析】建立平面直角坐标系,则A(0,0),B(0,1),C(2,0),M(,),(0<θ<),由已知可得,则λ+2μ=,即可求解.【解答】解:如图建立平面直角坐标系,则A(0,0),B(0,1),C(2,0)M(,)(0<θ<),∵,∴(.∴,则λ+2μ=,∴当θ=时,λ+2μ最大值为,故答案为:12.无穷数列{a n}的前n项和为S n,若对任意的正整数n都有S n∈{k1,k2,k3,…,k10},则a10的可能取值最多有91个.【考点】8E:数列的求和.【分析】根据数列递推公式可得a10=S10﹣S9,而S10,S9∈{k1,k2,k3,…,k10},分类讨论即可求出答案.【解答】解:a10=S10﹣S9,而S10,S9∈{k1,k2,k3,…,k10},若S10≠S9,则有A102=10×9=90种,若S10=S9,则有a10=0,根据分类计数原理可得,共有90+1=91种,故答案为:91二、选择题(每小题5分,满分20分)13.已知a,b,c是实数,则“a,b,c成等比数列”是“b2=ac”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合等比数列的定义进行判断即可.【解答】解:若a,b,c成等比数列,则b2=ac成立,若a=b=c=0,满足b2=ac,但a,b,c不能成等比数列,故“a,b,c成等比数列”是“b2=ac”的充分不必要条件,故选:A.14.l1、l2是空间两条直线,α是平面,以下结论正确的是()A.如果l1∥α,l2∥α,则一定有l1∥l2B.如果l1⊥l2,l2⊥α,则一定有l1⊥αC.如果l1⊥l2,l2⊥α,则一定有l1∥αD.如果l1⊥α,l2∥α,则一定有l1⊥l2【考点】LP:空间中直线与平面之间的位置关系.【分析】由空间中直线与直线、直线与平面、平面与平面的关系逐一核对四个选项得答案.【解答】解:若l1∥α,l2∥α,则有l1∥l2或l1与l2相交或l1与l2异面,故A错误;如果l1⊥l2,l2⊥α,则有l1∥α或l1⊂α,故B、C错误;如果l1⊥α,则l1垂直α内的所有直线,又l2∥α,则过l2与α相交的平面交α于a,则l2∥a,∴l1⊥l2,故D正确.故选:D.15.已知函数,x1、x2、x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值()A.一定等于零 B.一定大于零 C.一定小于零 D.正负都有可能【考点】57:函数与方程的综合运用.【分析】先判断奇偶性和单调性,先由单调性定义由自变量的关系得到函数关系,然后三式相加得解.【解答】解:函数,f(﹣x)=﹣f(x),函数f(x)是奇函数,根据同增为增,可得函数f(x)是增函数,∵x1+x2>0,x2+x3>0,x3+x1>0,∴x1>﹣x2,x2>﹣x3x3>﹣x1,∴f(x1)>f(﹣x2,f(x2)>f(﹣x3),f(x3)>f(﹣x1)∴f(x1)+f(x2)>0,f(x2)+f(x3)>0,f(x3)+f(x1)>0,三式相加得:f(x1)+f(x2)+f(x3)>0,故选:B.16.已知点M(a,b)与点N(0,﹣1)在直线3x﹣4y+5=0的两侧,给出以下结论:①3a﹣4b+5>0;②当a>0时,a+b有最小值,无最大值;③a2+b2>1;④当a>0且a≠1时,的取值范围是(﹣∞,﹣)∪(,+∞).正确的个数是()A.1 B.2 C.3 D.4【考点】2K:命题的真假判断与应用.【分析】根据点M(a,b)与点N(1,0)在直线3x﹣4y+5=0的两侧,可以画出点M(a,b)所在的平面区域,进而结合二元一次不等式的几何意义,两点之间距离公式的几何意义,及两点之间连线斜率的几何意义,逐一分析四个命题得结论.【解答】解:∵点M(a,b)与点N(0,﹣1)在直线3x﹣4y+5=0的两侧,∴(3a﹣4b+5)(3×0+4+5)<0,即3a﹣4b+5<0,故①错误;当a>0时,a+b>,a+b即无最小值,也无最大值,故②错误;设原点到直线3x﹣4y+5=0的距离为d,则d=,则a2+b2>4,故③错误;当a>0且a≠1时,表示点M(a,b)与P(1,﹣1)连线的斜率.∵当a=0,b=时,=,又直线3x﹣4y+5=0的斜率为,故的取值范围为(﹣∞,﹣)∪(,+∞),故④正确.∴正确命题的个数是2个.故选:B.三、解答题(本大题满分76分)17.如图ABC﹣A1B1C1是直三棱柱,底面△ABC是等腰直角三角形,且AB=AC=4,直三棱柱的高等于4,线段B1C1的中点为D,线段BC的中点为E,线段CC1的中点为F.(1)求异面直线AD、EF所成角的大小;(2)求三棱锥D﹣AEF的体积.【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角.【分析】(1)以A为原点建立空间坐标系,求出,的坐标,利用向量的夹角公式得出AD,EF的夹角;,代入体积公式计算.(2)证明AE⊥平面DEF,求出AE和S△DEF【解答】解:(1)以A为坐标原点,AB、AC、AA1分别为x轴,y轴,z轴建立空间直角坐标系.依题意有D(2,2,4),A(0,0,0),E(2,2,0),F(0,4,2),所以.设异面直线AD、EF所成角为α,则==,所以,即异面直线AD、EF所成角的大小为.(2)∵AB=AC=4,AB⊥AC,∴,,DE=AA1=4,==4,∴S△DEF由E为线段BC的中点,且AB=AC,∴AE⊥BC,又BB1⊥面ABC,∴AE⊥BB1,∴AE⊥面BB1C1C,∴,∴三棱锥D﹣AEF的体积为.18.已知定义在(﹣,)上的函数f(x)是奇函数,且当x∈(0,)时,f(x)=.(1)求f(x)在区间(﹣,)上的解析式;(2)当实数m为何值时,关于x的方程f(x)=m在(﹣,)有解.【考点】3L:函数奇偶性的性质.【分析】(1)利用奇函数的定义,结合x∈(0,)时,f(x)=,求f(x)在区间(﹣,)上的解析式;(2)分类讨论,利用函数的解析式,可得结论.【解答】解:(1)设,则,∵f(x)是奇函数,则有…∴f(x)=…(2)设,令t=tanx,则t>0,而.∵1+t>1,得,从而,∴y=f(x)在的取值范围是0<y<1.…又设,则,由此函数是奇函数得f(x)=﹣f(﹣x),0<f(﹣x)<1,从而﹣1<f(x)<0.…综上所述,y=f(x)的值域为(﹣1,1),所以m的取值范围是(﹣1,1).…19.已知数列{a n}是首项等于且公比不为1的等比数列,S n是它的前n项和,满足.(1)求数列{a n}的通项公式;(2)设b n=log a a n(a>0且a≠1),求数列{b n}的前n项和T n的最值.【考点】8E:数列的求和;8H:数列递推式.【分析】(1)根据求和公式列方程求出q,代入通项公式即可;(2)对a进行讨论,判断{b n}的单调性和首项的符号,从而得出T n的最值.【解答】解:(1)∵,∵q≠1,∴.整理得q2﹣3q+2=0,解得q=2或q=1(舍去).∴.(2)b n=log a a n=(n﹣5)log a2.1)当a>1时,有log a2>0,数列{b n}是以log a2为公差,以﹣4log a2为首项的等差数列,∴{b n}是递增数列,∴T n没有最大值.由b n≤0,得n≤5.所以(T n)min=T4=T5=﹣10log a2.2)当0<a<1时,有log a2<0,数列{b n}是以log a2为公差的等差数列,∴{b n}是首项为正的递减等差数列.∴T n没有最小值.令b n≥0,得n≤5,(T n)max=T4=T5=﹣10log a2.20.已知椭圆C:=1(a>b>0),定义椭圆C上的点M(x0,y0)的“伴随点”为.(1)求椭圆C上的点M的“伴随点”N的轨迹方程;(2)如果椭圆C上的点(1,)的“伴随点”为(,),对于椭圆C上的任意点M及它的“伴随点”N,求的取值范围;(3)当a=2,b=时,直线l交椭圆C于A,B两点,若点A,B的“伴随点”分别是P,Q,且以PQ为直径的圆经过坐标原点O,求△OAB的面积.【考点】K4:椭圆的简单性质.【分析】(1)由,代入椭圆方程即可求得椭圆C上的点M的“伴随点”N 的轨迹方程;(2)由题意,求得椭圆的方程,根据向量的坐标运算,即可求得的取值范围;(3)求得椭圆方程,设方程为y=kx+m,代入椭圆方程,利用韦达定理,根据向量数量积的坐标求得3+4k2=2m2,弦长公式及点到直线的距离公式,即可求得△OAB的面积,直线l的斜率不存在时,设方程为x=m,代入椭圆方程,即可求得△OAB的面积.【解答】解:(1)设N(x,y)由题意,则,又,∴,从而得x2+y2=1…(2)由,得a=2.又,得.…∵点M(x0,y0)在椭圆上,,,且,•=(x,y0)(,)=+=x02+,由于,的取值范围是[,2](3)设A(x1,y1),B(x2,y2),则;1)当直线l的斜率存在时,设方程为y=kx+m,由,得(3+4k2)x2+8kmx+4(m2﹣3)=0;有①…由以PQ为直径的圆经过坐标原点O可得:3x1x2+4y1y2=0;整理得:②将①式代入②式得:3+4k2=2m2,…3+4k2>0,则m2>0,△=48m2>0,又点O到直线y=kx+m的距离,丨AB丨==×=×,∴…2)当直线l的斜率不存在时,设方程为x=m(﹣2<m<2)联立椭圆方程得;代入3x1x2+4y1y2=0,得,解得m2=2,从而,=丨AB丨×d=丨m丨丨y1﹣y2丨=,S△OAB综上:△OAB的面积是定值.…21.对于定义域为R的函数y=f(x),部分x与y的对应关系如表:(1)求f{f[f(0)]};(2)数列{x n}满足x1=2,且对任意n∈N*,点(x n,x n)都在函数y=f(x)的+1图象上,求x1+x2+…+x4n;(3)若y=f(x)=Asin(ωx+φ)+b,其中A>0,0<ω<π,0<φ<π,0<b<3,求此函数的解析式,并求f(1)+f(2)+…+f(3n)(n∈N*).【考点】H2:正弦函数的图象;3O:函数的图象.【分析】(1)根据复合函数的性质,由内往外计算可得答案.)都在函数y=f(x)的图象上,带入,化简,不难发现函(2)根据点(x n,x n+1数y是周期函数,即可求解x1+x2+…+x4n的值.(3)根据表中的数据,带入计算即可求解函数的解析式.【解答】解:(1)根据表中的数据:f{f[f(0)]}=f(f(3))=f(﹣1)=2.)都在函数y=f(x)的图象上,(2)由题意,x1=2,点(x n,x n+1=f(x n)即x n+1∴x2=f(x1)=f(2)=0,x3=f(x2)=3,x4=f(x3)=﹣1,x5=f(x4)=2∴x5=x1,∴函数y是周期为4的函数,故得:x1+x2+…+x4n=4n.(3)由题意得由(1)﹣(2)∴sin(ω+φ)=sin(﹣ω+φ)∴sinωcosφ=0.又∵0<ω<π∴sinω≠0.∴cosφ=0而0<φ<π∴从而有.∴2A2﹣4A+2﹣2A2+3A=0.∴A=2.b=1,∵0<ω<π,∴.∴.此函数的最小正周期T==6,f(6)=f(0)=3∵f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=6,∴①当n=2k(k∈N*)时.f(1)+f(2)+…+f(3n)=f(1)+f(2)+…+f(6k)=k[f(1)+f(2)+…+f(6)]=6k=3n.②当n=2k﹣1(k∈N*)时.f(1)+f(2)+…+f(3n)=f(1)+f(2)+…+f(6k)﹣f(6k﹣2)﹣f(6k﹣1)﹣f(6k)=k[f(1)+f(2)+…+f(6)]﹣5=6k﹣5=3n ﹣2.2017年5月22日。
(江苏专用)高考数学总复习 专题1.1 集合试题(含解析)-人教版高三全册数学试题
专题1.1 集合【三年高考】1.【2017高考某某1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ . 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】集合的运算、元素的互异性【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误. (3)防X 空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.2.【2016高考某某1】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B . 【答案】{}1,2- 【解析】 试题分析:{}{}{}1,2,3,6231,2AB x x =--<<=-.故答案应填:{}1,2-【考点】集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难度不大.一要注意培养良好的答题习惯,避免出现粗心而出错,二是明确某某高考对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解.2.【2015高考某某1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 【答案】5【解析】{123}{245}{12345}A B ==,,,,,,,,,,,则集合B A 中元素的个数为5个. 【考点定位】集合运算3.【2014某某1】已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂=. 【答案】{1,3}- 【解析】由题意得{1,3}AB =-.4.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=。
2017年高考真题 专题15+工艺流程题Word版含解析
1.【2017新课标1卷】(14分)Li4Ti5O12和LiFePO4都是锂离子电池的电极材料,可利用钛铁矿(主要成分为FeTiO3,还含有少量MgO、SiO2等杂质)来制备,工艺流程如下:回答下列问题:(1)―酸浸‖实验中,铁的浸出率结果如下图所示。
由图可知,当铁的浸出率为70%时,所采用的实验条件为___________________。
(2)―酸浸‖后,钛主要以错误!未找到引用源。
形式存在,写出相应反应的离子方程式__________________。
(3)TiO2·x H2O沉淀与双氧水、氨水反应40 min所得实验结果如下表所示:分析40 ℃时TiO2·x H2O转化率最高的原因__________________。
(4)Li2Ti5O15中Ti的化合价为+4,其中过氧键的数目为__________________。
(5)若―滤液②‖中错误!未找到引用源。
,加入双氧水和磷酸(设溶液体积增加1倍),使错误!未找到引用源。
恰好沉淀完全即溶液中错误!未找到引用源。
,此时是否有Mg3(PO4)2沉淀生成?(列式计算)。
FePO4、Mg3(PO4)2的K sp分别为错误!未找到引用源。
(6)写出―高温煅烧②‖中由FePO4制备LiFePO4的化学方程式。
【答案】(1)100℃、2h,90℃,5h (2)FeTiO3+ 4H++4Cl− = Fe2++ 错误!未找到引用源。
+ 2H2O (3)低于40℃,TiO2·x H2O转化反应速率随温度升高而增加;超过40℃,双氧水分解与氨气逸出导致TiO2·x H2O转化反应速率下降(4)4(5)Fe3+恰好沉淀完全时,c(错误!未找到引用源。
)=错误!未找到引用源。
mol·L−1=1.3×10–17 mol·L−1,c3(Mg2+)×c2(错误!未找到引用源。
)=(0.01)3×(1.3×10–17)2=1.7×10–40<K sp,因此不会生成Mg3(PO4)2沉淀。
2017年高考江苏数学试题及答案(word解析版)
2017年普通高等学校招生全国统一考试(江苏卷)数学I一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2017年江苏,1,5分】已知集合}2{1A =,,23{},B a a =+.若{}1A B =,则实数a 的值为_______.【答案】1【解析】∵集合}2{1A =,,23{},B a a =+.{}1A B =,∴1a =或231a +=,解得1a =.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.(2)【2017年江苏,2,5分】已知复数()()1i 12i z =-+,其中i 是虚数单位,则z 的模是_______. 【答案】10【解析】复数()()1i 12i 123i 13i z =-+=-+=-+,∴()221310z =-+=.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题. (3)【2017年江苏,3,5分】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取_______件. 【答案】18【解析】产品总数为2004003001001000+++=件,而抽取60辆进行检验,抽样比例为6061000100=,则应从丙 种型号的产品中抽取630018100⨯=件.【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.(4)【2017年江苏,4,5分】如图是一个算法流程图:若输入x 的值为116,则输出y 的值是_______.【答案】2-【解析】初始值116x =,不满足1x ≥,所以41216222log 2log 2y =+=-=-. 【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.(5)【2017年江苏,5,5分】若1tan 46πα⎛⎫-= ⎪⎝⎭.则tan α=_______.【答案】75【解析】tan tantan 114tan 4tan 161tan tan 4παπααπαα--⎛⎫-=== ⎪+⎝⎭+,∴6tan 6tan 1αα-=+,解得7tan 5α=. 【点评】本题考查了两角差的正切公式,属于基础题. (6)【2017年江苏,6,5分】如如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12VV 的值是________.【答案】32【解析】设球的半径为R ,则球的体积为:343R π,圆柱的体积为:2322R R R ππ⋅=.则313223423V R R V ππ==.【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力.(7)【2017年江苏,7,5分】记函数2()6f x x x =+- 的定义域为D .在区间[45]-,上随机取一个数x ,则x ∈D 的概率是________.【答案】59【解析】由260x x +-≥得260x x --≤,得23x -≤≤,则2[]3D =-,,则在区间[45]-,上随机取一个数x ,则x ∈D 的概率()()325549P --==--. 【点评】本题主要考查几何概型的概率公式的计算,结合函数的定义域求出D ,以及利用几何概型的概率公式是解决本题的关键.(8)【2017年江苏,8,5分】在平面直角坐标系xoy 中 ,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是1F ,2F ,则四边形12F PF Q 的面积是_______. 【答案】23【解析】双曲线2213x y -=的右准线:32x =,双曲线渐近线方程为:33y x =,所以33,22P ⎛⎫ ⎪ ⎪⎝⎭,33,22Q ⎛⎫- ⎪ ⎪⎝⎭, ()12,0F -.()22,0F .则四边形12F PF Q 的面积是:143232⨯⨯=.【点评】本题考查双曲线的简单性质的应用,考查计算能力.(9)【2017年江苏,9,5分】等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知374S =,6634S =,则8a =________. 【答案】32【解析】设等比数列{}n a 的公比为1q ≠,∵374S =,6634S =,∴()311714a q q -=-,()6116314a q q -=-, 解得114a =,2q =.则7812324a =⨯=.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题. (10)【2017年江苏,10,5分】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费之和最小,则x 的值是________. 【答案】30【解析】由题意可得:一年的总运费与总存储费用之和=6009006442240x x x x⨯+≥⨯⨯⋅=(万元). 当且仅当30x =时取等号.【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题.(11)【2017年江苏,11,5分】已知函数()312x x f x x x e e=-+-,其中e 是自然数对数的底数,若()()2120f a f a -+≤,则实数a 的取值范围是________.【答案】11,2⎡⎤-⎢⎥⎣⎦【解析】函数()312x xf x x x e e =-+-的导数为:()21132220x xxx f x x e e e e '=-++≥-+⋅=,可得()f x 在R 上 递增;又()()()331220x x x x f x f x x x e e x x e e--+=-++-+-+-=,可得()f x 为奇函数,则()()2120f a f a -+≤,即有()()()2211f a f a f a ≤--=-,即有221a a ≤-,解得112a -≤≤.【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.(12)【2017年江苏,12,5分】如图,在同一个平面内,向量OA ,OB ,OC ,的模分别为1,1,2,OA 与OC 的夹角为α,且tan 7α=,OB 与OC 的夹角为45︒。
2017年高考数学试题全国各地试卷14套精校Word版真题含答案
2017年全国各地数学高考试题精校Word版目录-2017年全国卷文科数学试题(全国Ⅰ卷)Word版试卷精校版含答案······-2017年全国卷理科数学试题(全国Ⅰ卷)Word版试卷精校版含答案······-2017年全国卷文科数学试题(全国Ⅱ卷)Word版试卷精校版含答案·······-2017年全国卷理科数学试题(全国Ⅱ卷)Word版试卷精校版含答案·······-2017年全国卷文科数学试题(全国Ⅲ卷)Word版试卷精校版含答案·······-2017年全国卷理科数学试题(全国Ⅲ卷)Word版试卷精校版含答案·······-2017年北京卷文科数学试题Word版试卷精校版含答案·················-2017年北京卷理科数学试题Word版试卷精校版含答案·················-2017年天津卷文科数学试题Word版试卷精校版含答案·················-2017年天津卷理科数学试题Word版试卷精校版含答案·················-2017年江苏卷数学试题Word版试卷精校版含答案······················-2017年浙江卷数学试题Word版试卷精校版含答案·····················-2017年山东卷理科数学试题Word版试卷精校版含答案··················-2017年山东卷文科数学试题Word版试卷精校版含答案··················绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
2017年高考浙江数学试题及答案(word解析版)
2017年普通高等学校招生全国统一考试(浙江卷)数学(理科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2017年浙江,1,4分】已知{|11}P x x =-<<,{20}Q x =-<<,则P Q =( )(A )(2,1)- (B)(1,0)- (C )(0,1) (D )(2,1)-- 【答案】A【解析】取,P Q 所有元素,得P Q =(2,1)-,故选A .【点评】本题考查集合的基本运算,并集的求法,考查计算能力.(2)【2017年浙江,2,4分】椭圆22194x y +=的离心率是( )(A )133 (B )53 (C )23 (D )59【答案】B【解析】94533e -==,故选B . 【点评】本题考查椭圆的简单性质的应用,考查计算能力.(3)【2017年浙江,3,4分】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )(A )12π+ (B )32π+(C)312π+ (D)332π+【答案】A【解析】由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为2111π3(21)13222V π⨯=⨯⨯+⨯⨯=+,故选A .【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.(4)【2017年浙江,4,4分】若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是( )(A)[]0,6 (B )[]0,4(C)[]6,+∞ (D )[]4,+∞【答案】D【解析】如图,可行域为一开放区域,所以直线过点()2,1时取最小值4,无最大值,故选D .【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.(5)【2017年浙江,5,4分】若函数()2f x x ax b =++在区间[]01,上的最大值是M ,最小值是m ,则–M m ( ) (A )与a 有关,且与b 有关 (B )与a 有关,但与b 无关(C )与a 无关,且与b 无关 (D )与a 无关,但与b 有关 【答案】B【解析】解法一:因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,故选B .解法二:函数()2f x x ax b =++的图象是开口朝上且以直线2a x =-为对称轴的抛物线,①当12a->或02a-<,即2a <-,或0a >时,函数()f x 在区间[]0,1上单调,此时()()10M m f f a -=-=,故M m -的值与a 有关,与b 无关;②当1122a ≤-≤,即21a -≤≤-时,函数()f x 在区间0,2a ⎡⎤-⎢⎥⎣⎦上递减,在,12a ⎡⎤-⎢⎥⎣⎦上递增,且()()01f f >,此时()2024a aM m f f ⎛⎫-=--= ⎪⎝⎭,故M m -的值与a 有关,与b 无关;③当1022a ≤-<,即10a -<≤时,函数()f x 在区间0,2a ⎡⎤-⎢⎥⎣⎦上递减,在,12a ⎡⎤-⎢⎥⎣⎦上递增,且()()01f f <,此时()2024a a M m f f a ⎛⎫-=--=- ⎪⎝⎭,故M m -的值与a 有关,与b 无关.综上可得:M m -的值与a 有关,与b 无关,故选B .【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键. (6)【2017年浙江,6,4分】已知等差数列[]n a 的公差为d ,前n 项和为n S ,则“0d >"是“4652S S S +>"的( )(A )充分不必要条件 (B )必要不充分条件 (C)充分必要条件 (D )既不充分也不必要条件 【答案】C【解析】由()46511210212510S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“0d >”是“4652S S S +>"的充要条件,故选C .【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题.(7)【2017年浙江,7,4分】函数()y f x =的导函数()y f x '=的图像如图所示,则函数()y f x =的图像可能是( )(A)(B)(C )(D ) 【答案】D 【解析】解法一:由当()0f x '<时,函数f x ()单调递减,当()0f x '>时,函数f x ()单调递增,则由导函数()y f x =' 的图象可知:()f x 先单调递减,再单调递增,然后单调递减,最后单调递增,排除A ,C,且第二个拐点(即函数的极大值点)在x 轴上的右侧,排除B ,,故选D .解法二:原函数先减再增,再减再增,且0x =位于增区间内,故选D .【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.(8)【2017年浙江,8,4分】已知随机变量1ξ满足()11i P p ξ==,()101i P p ξ==-,1,2i =.若12102p p <<<,则( )(A )12E()E()ξξ<,12D()D()ξξ<(B)12E()E()ξξ<,12D()D()ξξ>(C)12E()E()ξξ>,12D()D()ξξ< (D)12E()E()ξξ>,12D()D()ξξ< 【答案】A【解析】112212(),(),()()E p E p E E ξξξξ==∴<111222()(1),()(1)D p p D p p ξξ=-=-,121212()()()(1)0D D p p p p ξξ∴-=---<,故选A .【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.(9)【2017年浙江,9,4分】如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),PQR分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA==,分别记二面角––D PR Q ,––D PQ R ,––D QR P 的平面较为α,β,γ,则( )(A )γαβ<< (B )αγβ<< (C )αβγ<< (D )βγα<< 【答案】B【解析】解法一:如图所示,建立空间直角坐标系.设底面ABC ∆的中心为O .不妨设3OP =.则()0,0,0O ,()0,3,0P -,()0,6,0C -,()0,0,62D ,()3,2,0Q ,()23,0,0R -,()23,3,0PR =-,()0,3,62PD =,()3,5,0PQ =,()33,2,0QR =--,()3,2,62QD =--.设平面PDR 的法向量为(),,n x y z =,则0n PR n PD ⎧⋅=⎪⎨⋅=⎪⎩,可得 23303620x y y z ⎧-+=⎪⎨+=⎪⎩,可得()6,22,1n =-,取平面ABC 的法向量()0,0,1m =. 则1cos ,15m n m n m n⋅==-,取1arccos 15α=.同理可得:3arccos 681β=. 2arccos95γ=.∵1231595681>>.∴αγβ<<.解法二:如图所示,连接OD OQ OR ,,,过点O 发布作垂线:OE DR ⊥,OF DQ ⊥,OG QR ⊥,垂足分别为E F G ,,,连接PE PF PG ,,.设OP h =.则cos ODR PDR S OES PE α∆∆==22OE OE h =+.同理可得:22cos OF OF PF OF h β==+c,22cos OG OG PG OG hγ==+.由已知可得:OE OG OF >>.∴cos cos cos αγβ>>,αβγ,,为锐角.∴α<γ<β,故选B .【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.(10)【2017年浙江,10,4分】如图,已知平面四边形ABCD ,AB BC ⊥,2AB BC AD ===,3CD =,AC 与BD 交于点O ,记1·I OA OB =,2·I OB OC =,3·I OC OD =,则( ) (A )123I I I << (B )132I I I << (C )312I I I << (D )223I I I <<【答案】C【解析】∵AB BC ⊥,2AB BC AD ===,3CD =,∴22AC =,∴90AOB COD ∠=∠>︒,由图象知OA OC <,OB OD <,∴0OA OB OC OD >⋅>⋅,0OB OC ⋅>,即312I I I <<,故选C .【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.第Ⅱ卷(非选择题 共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.(11)【2017年浙江,11,4分】我国古代数学家刘徽创立的“割圆术"可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S 内,S =内 . 【答案】332【解析】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF 中,AOB ∆是边长为1的正三角形,所以正六边形ABCDEF 的面积为133=611sin 6022S ⎛⎫⨯⨯⨯⨯=⎪⎝⎭内. 【点评】本题考查了已知圆的半径求其内接正六边形面积的应用问题,是基础题.(12)【2017年浙江,12,6分】已知ab ∈R ,2i 34i a b +=+()(i 是虚数单位)则22a b += ,ab = . 【答案】5;2【解析】由题意可得222i 34i a b ab -+=+,则2232a b ab ⎧-=⎨=⎩,解得2241a b ⎧=⎨=⎩,则225,2a b ab +==.【点评】本题考查了复数的运算法则、复数的相等、方程的解法,考查了推理能力与计算能力,属于基础题.(13)【2017年浙江,13,6分】已知多项式()()12543211234512x x x a x a x a x a x a +++++++=,则4a = ,5a = .【答案】16;4【解析】由二项式展开式可得通项公式为:32r r m mC x C x ,分别取0,1r m ==和1,0r m ==可得441216a =+=,令0x =可得325124a =⨯=.【点评】本题考查二项式定理的应用,考查计算能力,是基础题.(14)【2017年浙江,14,6分】已知ABC ∆,4AB AC ==,2BC =. 点D 为AB 延长线上一点,2BD =,连结CD ,则BDC ∆的面积是 ;cos BDC ∠= .【答案】152;104【解析】取BC 中点E ,DC 中点F ,由题意:,AE BC BF CD ⊥⊥,ABE ∆中,1cos 4BE ABC AB ∠==,1115cos ,sin 14164DBC DBC ∴∠=-∠=-=,BC 115sin 22D S BD BC DBC ∴=⨯⨯⨯∠=△.又2110cos 12sin ,sin 44DBC DBF DBF ∴∠=-∠=-∴∠=,10cos sin 4BDC DBF ∴∠=∠=,综上可得,BCD ∆面积为152,10cos 4BDC ∠=.【点评】本题考查了解三角形的有关知识,关键是转化,属于基础题. (15)【2017年浙江,15,6分】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是 __;最大值是 __. 【答案】4;25【解析】解法一:设向量a 和b 的夹角为θ,由余弦定理有2212212cos 54cos a b θθ-=+-⨯⨯⨯=-, ()2212212cos 54cos a b πθθ+=+-⨯⨯⨯-=+,则54cos 54cos a b a b θθ++-=++-, 令54cos 54cos y θθ=++-,则[]221022516cos 16,20y θ=+-∈,据此可得:()maxa b a b ++-2025==,()min164a b a b++-==,即a b a b ++-的最小值为4,最大值为25.解法二记AOB α∠=,则0απ≤≤,如图,由余弦定理可得:54cos a b θ-=-,54cos a b θ+=+,令54cos x θ=-,54cos y θ=+,则()2210,1x y x y +=≥, 其图象为一段圆弧MN ,如图,令z x y =+,则y x z =-+,则直线y x z =-+过M 、N 时z 最小为13314min z =+=+=,当直线y x z =-+与圆弧MN 相切时z 最大,由平面几 何知识易知max z 即为原点到切线的距离的2倍,也就是圆弧MN 所在圆的半径的2倍, 所以21025max z =⨯=.综上所述,a b a b ++-的最小值为4,最大值为25.【点评】本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题.(16)【2017年浙江,16,4分】从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有 中不同的选法.(用数字作答) 【答案】660【解析】解法一:由题意可得:“从8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队”中的选择方法为:411843C C C ⨯⨯种方法,其中“服务队中没有女生"的选法有411643C C C ⨯⨯种方法,则满足题意的选法有:411411843643660C C C C C C ⨯⨯-⨯⨯=种.解法二:第一类,先选1女3男,有316240C C =种,这4人选2人作为队长和副队有2412A =种,故有4012480⨯=种,第二类,先选2女2男,有226215C C =种,这4人选2人作为队长和副队有2412A =种, 故有1512180⨯=种,根据分类计数原理共有480180660+=种,故答案为:660.【点评】本题考查了分类计数原理和分步计数原理,属于中档题.(17)【2017年浙江,17,4分】已知α∈R ,函数()4f x x a a x=+-+在区间[]1,4上的最大值是5,则a 的取值 范围是 .【答案】9(,]2-∞【解析】[][]41,4,4,5x x x ∈+∈,分类讨论:①当5a ≥时,()442f x a x a a x x x =--+=--,函数的最大值245a -=,92a ∴=,舍去;②当4a ≤时,()445f x x a a x x x =+-+=+≤,此时命题成立;③当45a <<时,(){}maxmax 4,5f x a a a a =-+-+⎡⎤⎣⎦,则:4545a a a a a a ⎧-+≥-+⎪⎨-+=⎪⎩或:4555a a a aa a ⎧-+<-+⎪⎨-+=⎪⎩, 解得:92a =或92a <,综上可得,实数a 的取值范围是9,2⎛⎤-∞ ⎥⎝⎦.【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题. 三、解答题:本大题共5题,共74分.解答应写出文字说明,演算步骤或证明过程.(18)【2017年浙江,18,14分】已知函数()22sin cos 23sin cos fx x x x x x =--∈R (). (1)求23f π⎛⎫⎪⎝⎭的值;(2)求()f x 的最小正周期及单调递增区间.解:(1)()22πsin cos 23sin cos cos 23sin 22sin 26f x x x x x x x x ⎛⎫=--=--=-+ ⎪⎝⎭,4ππsin 232236f π⎛⎫+=⎪⎝⎛⎫=- ⎪⎭⎭⎝. (2)由()π2sin 26f x x ⎛⎫=-+ ⎪⎝⎭,()f x 的最小正周期为π.令πππ2π22π262k x k -≤+≤+,k Z ∈,得ππππ36k x k -≤≤+,k Z ∈,函数()f x 的单调递增区间为ππππ.36k k k Z ,,⎡⎤-+∈⎢⎥⎣⎦.【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档. (19)【2017年浙江,19,15分】如图,已知四棱锥–P ABCD ,PAD ∆是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点. (1)证明://CE 平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值. 解:解法一:(1)取AD 的中点F ,连接EF ,CF ,∵E 为PD 的重点,∴//EF PA ,在四边形ABCD 中,//BC AD ,22AD DC CB ==,F 为中点易得//CF AB ,∴平面//EFC 平面ABP , EC ⊂平面EFC ,//EC ∴平面PAB .(2)连结BF ,过F 作FM PB ⊥与M ,连结PF ,因为PA PD =,所以PF AD ⊥,易知四边形BCDF 为矩形,所以BF AD ⊥,所以AD ⊥平面PBF ,又//AD BC , 所以BC ⊥平面PBF ,所以BC PB ⊥,设1DC CB ==,则2AD PC ==,所以2PB =,1BF PF ==,所以12MF =,又BC ⊥平面PBF ,所以BC MF ⊥,所以MF ⊥平面PBC ,即点F 到平面PBC 的距离为12,也即点D 到平面PBC 的距离为12,因为E 为PD 的中点,所以点E 到平面PBC 的距离为14,在PCD ∆中,2PC =,1CD =,2PD =,由余弦定理可得2CE =,设直线CE 与平面PBC 所成的角为θ,则124sin =8CE θ=.解法二:(1)略;构造平行四边形.(2)过P 作PH CD ⊥,交CD 的延长线于点H 在Rt PDH 中,设DH x =,则易知2222(2)(1)2x x -++=(Rt PCH ),解得12DH =,过H 作BC 的平行线,取 1DH BC ==,由题易得3,0,02B ⎛⎫ ⎪⎝⎭,1,1,02D ⎛⎫ ⎪⎝⎭,3,1,02C ⎛⎫⎪⎝⎭,30,0,2P ⎛⎫ ⎪ ⎪⎝⎭, 113,,424E ⎛⎫ ⎪ ⎪⎝⎭,则513(,,)424CE =-- ,33(,0,)22PB =-,(0,1,0)BC =, 设平面PBC 的法向量为(,,)n x y z = ,则330220n PB x z n BC y ⎧⋅=-=⎪⎨⎪⋅==⎩ ,令1x =,则3t =,故(1,0,3)n =, 设直线CE 与平面PBC 所成的角为θ,则531|3|2442sin =|cos <,n|=8251322216416CE θθ-+⨯==++⨯ 故直线CE 与平面PBC 所成角的正弦值为28. 【点评】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.(20)【2017年浙江,20,15分】已知函数()()1212x f x x x e x -⎛⎫=--≥ ⎪⎝⎭.(1)求()f x 的导函数;(2)求()f x 在区间1[+)2∞,上的取值范围.解:(1)()()()11212112111212121x xx x f x e x x e x x e x e x x x ----⎛⎫⎛⎫⎛⎫'=----=--+-=-- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭. (2)令()21g x x x =--,则()1121g x x '=--,当112x ≤<时,()0g x '<,当1x >时,()0g x '>,则()g x在1x =处取得最小值,既最小值为0,又0x e ->,则()f x 在区间1,2⎡⎫+∞⎪⎢⎣⎭上的最小值为0.当x 变化时,()f x ,()f x '的变化如下表:x 1,12⎛⎫ ⎪⎝⎭ 1 51,2⎛⎫ ⎪⎝⎭ 52 5,2⎛⎫+∞ ⎪⎝⎭ ()f x ' — 0 + 0 — ()f x↘↗↘又121122f e -⎛⎫= ⎪⎝⎭,()10f =,525122f e -⎛⎫= ⎪⎝⎭,则()f x 在区间1,2⎡⎫+∞⎪⎢⎣⎭上的最大值为1212e -.综上,()f x 在区间1,2⎡⎫+∞⎪⎢⎣⎭上的取值范围是1210,2e -⎡⎤⎢⎥⎣⎦..【点评】本题考查导数的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导是解题的关键,属于中档题.(21)【2017年浙江,21,15分】如图,已知抛物线2x y =,点11,24A ⎛⎫- ⎪⎝⎭,39,24B ⎛⎫⎪⎝⎭,抛物线上的点()1124P x y x ⎛⎫-<< ⎪⎝⎭,.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围;(2)求AP PQ ⋅的最大值.解:(1)由题易得()2,P x x ,1322x -<<,故()21141,1122AP x K x x -==-∈-+,故直线AP 斜率的取值范围为()1,1-. (2)由(1)知()2,P x x ,1322x -<<,所以211,24PA x x ⎛⎫=--- ⎪⎝⎭,设直线AP 的斜率为k ,则11:24AP y kx k =++, 139:24BP y x k k =-++,联立直线AP 、BP 方程可知222234981,2244k k k k Q k k ⎛⎫+-++ ⎪++⎝⎭, 故23432221,11k k k k k k k PQ k k ⎛⎫+----++= ⎪++⎝⎭,又因为()21,PA k k k =----, 故()()()()()()33232211111111k k k k k PA PQ PA PQ k k kk+-+--⋅=⋅=+=+-++,所以()()311PA PQ k k ⋅=+-,令()()()311f x x x =+-,11x -<<,则()()()()()221242121f x x x x x '=+-=-+-,由于当112x -<<-时()0f x '>,当112x <<时()0f x '<,故()max 127216f x f ⎛⎫== ⎪⎝⎭,即PA PQ ⋅的最大值为2716. 【点评】本题考查圆锥曲线的最值问题,考查运算求解能力,考查函数思想,注意解题方法的积累,属于中档题. (22)【2017年浙江,22,15分】已知数列{}n x 满足:11x =,()()11ln 1*n n n x x x n N ++=++∈.证明:当*n N ∈时,(1)10n n x x +<<;(2)1122n n n n x x x x++-≤;(3)121122n n n x ++≤≤.解:(1)令函数()ln(1)f x x x =++,则易得()f x 在[0,)+∞上为增函数.又1()n n x f x +=,若0n x >⇒1()(0)0n f x f +>=恒成立10n x +⇒>,又由11ln(1)n n n x x x ++=++可知0n x >,由111111ln(1)ln(1)0n n n n n n n n x x x x x x x x ++++++-=++-=+>⇒>.所以10n n x x +<<.(2)令()()()()22ln 1ln 1ln 1222x x x g x x x x x x x +=++--+=++-⎡⎤⎡⎤⎣⎦⎣⎦,0x >,则()()()()()()()121111ln 11ln 1ln 12212212212x x g x x x x x x x x x x +'=+++-=+-+=+++-+++, 令()()()111ln 12212h x x x x =+++-+,则()()()()2221125210212121x x h x x x x ++'=-+=>+++, 所以()h x 单调递增.所以()()00h x h >=,即()0g x '>,()g x 单调递增.所以()()00g x g >=⇒()()ln 1ln 12xx x x x ++>-+⎡⎤⎣⎦, 所以()()11111112ln 1ln 122n n n n n n n n n x x x x x x x x x +++++++⎡⎤-=-+≤++=⎣⎦,1122n n n n x xx x ++-≤. (3)11112111212222n n n n n n n n x x x x x x x x ++++-≤⇒-≤⇒≥-,即121111222n n n n n x x +++≥-⇒递推得 12+11111(1)11111182122224212n n nk n k n x x -+=-≥-=-=+⇒-∑2211(2)1222n n n x n --≤≤≥+. 由11x =知21(N*)2n n x n -≤∈,又由()ln(1)0h x x x =-+>可知112()()0n n n x x h x h x ++-=>=.即11111112(N*)222n n n n n n n n x x x x x x n ++-->⇒>⇒≥=∈.综上可知,121122n n n x --≤≤. 【点评】本题考查了数列的概念,递推关系,数列的函数的特征,导数和函数的单调性的关系,不等式的证明,考查了推理论证能力,分析解决问题的能力,运算能力,放缩能力,运算能力,属于难题.。
2017年高考数学真题试题(江苏卷)(Word版+答案+解析)
2017年高考数学真题试卷(江苏卷)一、填空题1.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为________.2.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是________.3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.4.如图是一个算法流程图:若输入x的值为116,则输出y的值是________.5.若tan(α﹣π4)= 16.则tanα=________.6.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则V1V2的值是________.7.记函数f (x )= √6+x −x 2 定义域为D .在区间[﹣4,5]上随机取一个数x ,则x ∈D 的概率是________.8.在平面直角坐标系xOy 中,双曲线x 23﹣y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 , 则四边形F 1PF 2Q 的面积是________.9.等比数列{a n }的各项均为实数,其前n 项为S n , 已知S 3= 74 ,S 6= 634,则a 8=________.10.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.11.已知函数f (x )=x 3﹣2x+e x ﹣ 1e x ,其中e 是自然对数的底数.若f (a ﹣1)+f (2a 2)≤0.则实数a 的取值范围是________.12.如图,在同一个平面内,向量 OA⃗⃗⃗⃗⃗ , OB ⃗⃗⃗⃗⃗ , OC ⃗⃗⃗⃗⃗ 的模分别为1,1, √2 , OA ⃗⃗⃗⃗⃗ 与 OC ⃗⃗⃗⃗⃗ 的夹角为α,且tanα=7, OB ⃗⃗⃗⃗⃗ 与 OC ⃗⃗⃗⃗⃗ 的夹角为45°.若 OC ⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m ,n ∈R ),则m+n=________.13.在平面直角坐标系xOy 中,A (﹣12,0),B (0,6),点P 在圆O :x 2+y 2=50上.若 PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ ≤20,则点P 的横坐标的取值范围是________.14.设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )= {x 2,x ∈D x ,x ∉D,其中集合D={x|x=n−1n,n ∈N *},则方程f (x )﹣lgx=0的解的个数是________.二、解答题15.如图,在三棱锥A ﹣BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(Ⅰ)EF ∥平面ABC ; (Ⅱ)AD ⊥AC .16.已知向量a=(cosx,sinx),b⃗=(3,﹣√3),x∈[0,π].(Ⅰ)若a∥b⃗,求x的值;(Ⅱ)记f(x)= a⋅b⃗,求f(x)的最大值和最小值以及对应的x的值.17.如图,在平面直角坐标系xOy中,椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为12,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.18.如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10 √7cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(Ⅰ)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(Ⅱ)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.19.对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k+1+…+a n ﹣1+a n+1+…a n+k ﹣1+a n+k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(Ⅰ)证明:等差数列{a n }是“P (3)数列”;(Ⅱ)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.20.已知函数f (x )=x 3+ax 2+bx+1(a >0,b ∈R )有极值,且导函数f′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(Ⅰ)求b 关于a 的函数关系式,并写出定义域; (Ⅱ)证明:b 2>3a ;(Ⅲ)若f (x ),f′(x )这两个函数的所有极值之和不小于﹣ 72 ,求a 的取值范围. 21.如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P 为垂足.求证:(Ⅰ)∠PAC=∠CAB ; (Ⅱ)AC 2 =AP•AB .22.已知矩阵A= [0110] ,B= [1002] .(Ⅰ)求AB ; (Ⅱ)若曲线C 1:x 28+y 22=1在矩阵AB 对应的变换作用下得到另一曲线C 2 , 求C 2的方程.23.在平面直角坐标系xOy 中,已知直线l 的参数方程为 {x =−8+ty =t 2 (t 为参数),曲线C 的参数方程为{x =2s 2y =2√2s (s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.24.已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明ac+bd≤8.25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= √3,∠BAD=120°.(Ⅰ)求异面直线A1B与AC1所成角的余弦值;(Ⅱ)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).(Ⅰ)试求编号为2的抽屉内放的是黑球的概率p;(Ⅱ)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<n.(m+n)(n−1)答案解析部分一、<b >填空题1.【答案】1【考点】交集及其运算【解析】【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【分析】利用交集定义直接求解.2.【答案】√10【考点】复数代数形式的乘除运算,复数求模【解析】【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|= √(−1)2+32= √10.故答案为:√10.【分析】利用复数的运算法则、模的计算公式即可得出.3.【答案】18【考点】分层抽样方法= 【解析】【解答】解:产品总数为200+400+300+100=1000件,而抽取60辆进行检验,抽样比例为6010006,100=18件,则应从丙种型号的产品中抽取300× 6100故答案为:18,再由此比例计算出应从丙种型号的产品中抽取的数目.【分析】由题意先求出抽样比例即为61004.【答案】-2【考点】选择结构,程序框图,不满足x≥1,【解析】【解答】解:初始值x= 116=2﹣log224=﹣2,所以y=2+log2116故答案为:﹣2.【分析】直接模拟程序即得结论.5.【答案】75【考点】两角和与差的正切公式【解析】【解答】解:∵tan(α﹣π4)=tanα−tanπ41+tanαtanπ4= tanα−1tanα+1= 16∴6tanα﹣6=tanα+1,解得tanα= 75,故答案为:75.【分析】直接根据两角差的正切公式计算即可6.【答案】32【考点】旋转体(圆柱、圆锥、圆台),球的体积和表面积【解析】【解答】解:设球的半径为R,则球的体积为:43πR3,圆柱的体积为:πR2•2R=2πR3.则V1V2=2πR34πR33= 32.故答案为:32.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.7.【答案】59【考点】一元二次不等式的解法,几何概型【解析】【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0,得﹣2≤x≤3,则D=[﹣2,3],则在区间[﹣4,5]上随机取一个数x,则x∈D的概率P= 3−(−2)5−(−4)= 59,故答案为:59【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.8.【答案】2 √3【考点】双曲线的简单性质【解析】【解答】解:双曲线x23﹣y2=1的右准线:x= 32,双曲线渐近线方程为:y= √33x,所以P(32,√32),Q(32,﹣√32),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:12×4×√3=2 √3.故答案为:2 √3.【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.9.【答案】32【考点】等比数列的通项公式,等比数列的前n项和【解析】【解答】解:设等比数列{a n}的公比为q≠1,∵S3= 74,S6= 634,∴a1(1−q3)1−q= 74,a1(1−q6)1−q= 634,解得a1= 14,q=2.则a8= 14×27=32.故答案为:32.【分析】设等比数列{a n}的公比为q≠1,S3= 74,S6= 634,可得a1(1−q3)1−q= 74,a1(1−q6)1−q= 634,联立解出即可得出.10.【答案】30【考点】基本不等式,基本不等式在最值问题中的应用【解析】【解答】解:由题意可得:一年的总运费与总存储费用之和= 600x ×6+4x≥4×2× √900x⋅x=240(万元).当且仅当x=30时取等号.故答案为:30.【分析】由题意可得:一年的总运费与总存储费用之和= 600x×6+4x,利用基本不等式的性质即可得出.11.【答案】[-1,12]【考点】函数奇偶性的性质,利用导数研究函数的单调性,一元二次不等式的解法,基本不等式【解析】【解答】解:函数f(x)=x3﹣2x+e x﹣1e x的导数为:f′(x)=3x2﹣2+e x+ 1e x ≥﹣2+2 √e x⋅1e x=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣1e x=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f (2a 2)≤﹣f (a ﹣1)=f (1﹣a ), 即有2a 2≤1﹣a , 解得﹣1≤a≤ 12 , 故答案为:[﹣1, 12 ].【分析】求出f (x )的导数,由基本不等式和二次函数的性质,可得f (x )在R 上递增;再由奇偶性的定义,可得f (x )为奇函数,原不等式即为2a 2≤1﹣a ,运用二次不等式的解法即可得到所求范围. 12.【答案】 3【考点】平面向量的基本定理及其意义,两角和与差的余弦公式,两角和与差的正弦公式,同角三角函数间的基本关系【解析】【解答】解:如图所示,建立直角坐标系.A (1,0).由 OA⃗⃗⃗⃗⃗ 与 OC ⃗⃗⃗⃗⃗ 的夹角为α,且tanα=7. ∴cosα= 5√2 ,sinα= 5√2 . ∴C (15,75) .cos (α+45°)= √22 (cosα﹣sinα)= −35 .sin (α+45°)= √22(sinα+cosα)= 45 .∴B (−35,45) .∵ OC⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m ,n ∈R ), ∴ 15 =m ﹣ 35 n , 75 =0+ 45 n , 解得n= 74 ,m= 54 . 则m+n=3. 故答案为:3.【分析】如图所示,建立直角坐标系.A (1,0).由 OA⃗⃗⃗⃗⃗ 与 OC ⃗⃗⃗⃗⃗ 的夹角为α,且tanα=7.可得cosα= 5√2,sinα= 5√2 .C (15,75) .可得cos (α+45°)= −35 .sin (α+45°)= 45 .B (−35,45) .利用 OC ⃗⃗⃗⃗⃗ =m OA⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m ,n ∈R ),即可得出. 13.【答案】 [-5 √2 ,1]【考点】平面向量数量积的运算,直线和圆的方程的应用【解析】【解答】解:根据题意,设P (x 0 , y 0),则有x 02+y 02=50,PA⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =(﹣12﹣x 0 , ﹣y 0)•(﹣x 0 , 6﹣y 0)=(12+x 0)x 0﹣y 0(6﹣y 0)=12x 0+6y+x 02+y 02≤20, 化为:12x 0+6y 0+30≤0,即2x 0+y 0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,联立 {x 02+y 02=502x 0+y 0+5=0 ,解可得x 0=﹣5或x 0=1, 结合图形分析可得:点P 的横坐标x 0的取值范围是[﹣5 √2 ,1], 故答案为:[﹣5 √2 ,1].【分析】根据题意,设P (x 0 , y 0),由数量积的坐标计算公式化简变形可得2x 0+y 0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案. 14.【答案】 8【考点】分段函数的解析式求法及其图象的作法,函数的周期性,对数函数的图象与性质,根的存在性及根的个数判断【解析】【解答】解:∵在区间[0,1)上,f (x )= {x 2,x ∈Dx ,x ∉D ,第一段函数上的点的横纵坐标均为有理数, 又f (x )是定义在R 上且周期为1的函数,∴在区间[1,2)上,f (x )= {(x −1)2,x ∈Dx −1,x ∉D ,此时f (x )的图象与y=lgx 有且只有一个交点;同理:区间[2,3)上,f (x )的图象与y=lgx 有且只有一个交点; 区间[3,4)上,f (x )的图象与y=lgx 有且只有一个交点; 区间[4,5)上,f (x )的图象与y=lgx 有且只有一个交点; 区间[5,6)上,f (x )的图象与y=lgx 有且只有一个交点; 区间[6,7)上,f (x )的图象与y=lgx 有且只有一个交点; 区间[7,8)上,f (x )的图象与y=lgx 有且只有一个交点; 区间[8,9)上,f (x )的图象与y=lgx 有且只有一个交点; 在区间[9,+∞)上,f (x )的图象与y=lgx 无交点; 故f (x )的图象与y=lgx 有8个交点; 即方程f (x )﹣lgx=0的解的个数是8, 故答案为:8【分析】由已知中f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )= {x 2,x ∈Dx ,x ∉D ,其中集合D={x|x= n−1n,n ∈N *},分析f (x )的图象与y=lgx 图象交点的个数,进而可得答案.二、<b >解答题15.【答案】 证明:(Ⅰ)因为AB ⊥AD ,EF ⊥AD ,且A 、B 、E 、F 四点共面, 所以AB ∥EF ,又因为EF ⊊平面ABC ,AB ⊆平面ABC ,所以由线面平行判定定理可知:EF ∥平面ABC ;(Ⅱ)在线段CD 上取点G ,连结FG 、EG 使得FG ∥BC ,则EG ∥AC , 因为BC ⊥BD ,所以FG ⊥BC , 又因为平面ABD ⊥平面BCD , 所以FG ⊥平面ABD ,所以FG ⊥AD , 又因为AD ⊥EF ,且EF∩FG=F , 所以AD ⊥平面EFG ,所以AD ⊥EG , 故AD ⊥AC .【考点】空间中直线与直线之间的位置关系,直线与平面平行的判定 【解析】【分析】(Ⅰ)利用AB ∥EF 及线面平行判定定理可得结论;(Ⅱ)通过取线段CD 上点G ,连结FG 、EG 使得FG ∥BC ,则EG ∥AC ,利用线面垂直的性质定理可知FG ⊥AD ,结合线面垂直的判定定理可知AD ⊥平面EFG ,从而可得结论.16.【答案】 解:(Ⅰ)∵ a =(cosx ,sinx ), b ⃗ =(3,﹣ √3 ), a ∥ b⃗ ,∴﹣ √3 cosx+3sinx=0, ∴tanx= √3 , ∵x ∈[0,π], ∴x= π3 ,(Ⅱ)f (x )= a ⋅b ⃗ =3cosx ﹣ √3 sinx=2 √3 ( √32cosx ﹣ 12sinx )=2 √3 cos (x+ π6 ), ∵x ∈[0,π], ∴x+ π6 ∈[ π6 ,7π6],∴﹣1≤cos (x+ π6 )≤ √32,当x=0时,f (x )有最大值,最大值3, 当x=5π6时,f (x )有最小值,最大值﹣2 √3【考点】平面向量共线(平行)的坐标表示,平面向量数量积的运算,三角函数中的恒等变换应用,三角函数的最值,同角三角函数间的基本关系【解析】【分析】(Ⅰ)根据向量的平行即可得到tanx= √3 ,问题得以解决,(Ⅱ)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出 17.【答案】 解:(Ⅰ)由题意可知:椭圆的离心率e= ca = 12 ,则a=2c ,①椭圆的准线方程x=±a 2c,由2×a 2c=8,②由①②解得:a=2,c=1, 则b 2=a 2﹣c 2=3, ∴椭圆的标准方程:x 24+y 23=1 ;(Ⅱ)设P (x 0 , y 0),则直线PF 2的斜率 k PF 2 = y 0x 0−1 , 则直线l 2的斜率k 2=﹣x 0−1y 0,直线l 2的方程y=﹣x 0−1y 0(x ﹣1),直线PF 1的斜率 k PF 1 = y 0x 0+1 , 则直线l 2的斜率k 2=﹣x 0+1y 0,直线l 2的方程y=﹣x 0+1y 0(x+1),联立 {y =−x 0−1y 0(x −1)y =−x 0+1y(x +1) ,解得: {x =−x 0y =x 02−1y 0,则Q (﹣x 0 , x 02−1y 0 ),由Q 在椭圆上,则y 0=x 02−1y 0,则y 02=x 02﹣1,则 {x 024+y 023=1y 02=x 02−1 ,解得: {x 02=167y 02=97,则 {x 0=±4√77y 0=±3√77, ∵P 在第一象限,所以P 点的坐标为(4√77,3√77)【考点】直线的点斜式方程,两条直线的交点坐标,椭圆的简单性质,直线与圆锥曲线的关系 【解析】【分析】(Ⅰ)由椭圆的离心率公式求得a=2c ,由椭圆的准线方程x=± 2a 2c,则2×2a 2c=8,即可求得a 和c 的值,则b 2=a 2﹣c 2=3,即可求得椭圆方程;(Ⅱ)设P 点坐标,分别求得直线PF 2的斜率及直线PF 1的斜率,则即可求得l 2及l 1的斜率及方程,联立求得Q 点坐标,由Q 在椭圆方程,求得y 02=x 02﹣1,联立即可求得P 点坐标; 18.【答案】 解:(Ⅰ)设玻璃棒在CC 1上的点为M ,玻璃棒与水面的交点为N ,在平面ACM 中,过N 作NP ∥MC ,交AC 于点P , ∵ABCD ﹣A 1B 1C 1D 1为正四棱柱,∴CC 1⊥平面ABCD , 又∵AC ⊂平面ABCD ,∴CC 1⊥AC ,∴NP ⊥AC , ∴NP=12cm ,且AM 2=AC 2+MC 2 , 解得MC=30cm , ∵NP ∥MC ,∴△ANP ∽△AMC , ∴ ANAM = NPMC ,AN 40=1230 ,得AN=16cm .∴玻璃棒l 没入水中部分的长度为16cm .(Ⅱ)设玻璃棒在GG 1上的点为M ,玻璃棒与水面的交点为N , 在平面E 1EGG 1中,过点N 作NP ⊥EG ,交EG 于点P , 过点E 作EQ ⊥E 1G 1 , 交E 1G 1于点Q ,∵EFGH ﹣E 1F 1G 1H 1为正四棱台,∴EE 1=GG 1 , EG ∥E 1G 1 , EG≠E 1G 1 ,∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图,∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1= 45,sin∠EGM=sin∠EE1G1= 45,cos ∠EGM=−35,根据正弦定理得:EMsin∠EGM= EGsin∠EMG,∴sin ∠EMG=725,cos ∠EMG=2425,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG= 35,∴EN= NPsin∠GEM =1235=20cm.∴玻璃棒l没入水中部分的长度为20cm.【考点】棱柱、棱锥、棱台的体积,直线与平面垂直的判定,直线与平面垂直的性质,正弦定理【解析】【分析】(Ⅰ)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC 于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.(Ⅱ)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG于点P,过点E 作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM= 35,由此能求出玻璃棒l没入水中部分的长度.19.【答案】解:(Ⅰ)证明:设等差数列{a n}首项为a1,公差为d,则a n=a1+(n﹣1)d,则a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(Ⅱ)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n,①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,②由①可知:a n﹣3+a n﹣2+a n+a n+1=4a n﹣1,③a n﹣1+a n+a n+2+a n+3=4a n+1,④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.【考点】等差数列的通项公式,数列的应用,等差关系的确定,等差数列的性质【解析】【分析】(Ⅰ)由题意可知根据等差数列的性质,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=(a n﹣3+a n+3)+(a n ﹣2+a n+2)+(a n﹣1+a n+1)═2×3a n,根据“P(k)数列”的定义,可得数列{a n}是“P(3)数列”;(Ⅱ)由“P(k)数列”的定义,则a n﹣2+a n﹣1+a n+1+a n+2=4a n,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,变形整理即可求得2a n=a n﹣1+a n+1,即可证明数列{a n}是等差数列.20.【答案】(Ⅰ)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣a3.由于当x>﹣a3时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣a3时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣a3,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣a3)=0,即﹣a327+ a39﹣ab3+1=0,所以b= 2a29+ 3a(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣2a23+ 9a>0,解得a>3,所以b= 2a29+ 3a(a>3).(Ⅱ)证明:由(1)可知h(a)=b2﹣3a= 4a481﹣5a3+ 9a2= 181a2(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(Ⅲ)解:由(1)可知f′(x)的极小值为f′(﹣a3)=b﹣a23,设x1,x2是y=f(x)的两个极值点,则x1+x2= −2a3,x1x2= b3,所以f(x1)+f(x2)= x13+ x23+a(x12+ x22)+b(x1+x2)+2 =(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2= 4a327﹣2ab3+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣72,所以b﹣a23+ 4a327﹣2ab3+2= 3a﹣a29≥﹣72,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].【考点】导数的运算,利用导数研究函数的单调性,利用导数研究函数的极值,导数在最大值、最小值问题中的应用【解析】【分析】(Ⅰ)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣a3,从而f(﹣a3)=0,整理可知b= 2a29+ 3a(a>0),结合f(x)=x3+ax2+bx+1(a>0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(Ⅱ)通过(1)构造函数h(a)=b2﹣3a= 4a481﹣5a3+ 9a2= 181a2(4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;(Ⅲ)通过(1)可知f′(x)的极小值为f′(﹣a3)=b﹣a23,利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为4a327﹣2ab3+2,进而问题转化为解不等式b﹣a23+ 4a327﹣2ab3+2= 3a﹣a29≥﹣72,因式分解即得结论.21.【答案】证明:(Ⅰ)∵直线PC切半圆O于点C,∴∠ACP=∠ABC.∵AB为半圆O的直径,∴∠ACB=90°.∵AP⊥PC,∴∠APC=90°.∴∠PAC=90°﹣∠ACP,∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(Ⅱ)由(Ⅰ)可得:△APC∽△ACB,∴ACAB = APAC.∴AC 2 =AP•AB .【考点】相似三角形的判定,相似三角形的性质,弦切角,与圆有关的比例线段【解析】【分析】(Ⅰ)利用弦切角定理可得:∠ACP=∠ABC .利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(Ⅱ)由(Ⅰ)可得:△APC ∽△ACB ,即可证明. 22.【答案】 解:(Ⅰ)AB= (0110)(1002) = (0210) ,(Ⅱ)设点P (x ,y )为曲线C 1的任意一点, 点P 在矩阵AB 的变换下得到点P′(x 0 , y 0), 则 (0210)(x y ) = (2yx) ,即x 0=2y ,y 0=x , ∴x=y 0 , y= x 02,∴y 028+x 028=1 ,即x 02+y 02=8,∴曲线C 2的方程为x 2+y 2=8.【考点】矩阵变换的性质,矩阵与矩阵的乘法的意义 【解析】【分析】(Ⅰ)按矩阵乘法规律计算;(Ⅱ)求出变换前后的坐标变换规律,代入曲线C 1的方程化简即可. 23.【答案】 解:直线l 的直角坐标方程为x ﹣2y+8=0,∴P 到直线l 的距离d=2√2s+8|√5=√2s−2)2√5,∴当s= √2 时,d 取得最小值 √5 = 4√55.【考点】二次函数在闭区间上的最值,点到直线的距离公式,参数方程化成普通方程,函数最值的应用 【解析】【分析】求出直线l 的直角坐标方程,代入距离公式化简得出距离d 关于参数s 的函数,从而得出最短距离.24.【答案】 证明:∵a 2+b 2=4,c 2+d 2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos (α﹣β)≤8.当且仅当cos (α﹣β)=1时取等号.因此ac+bd≤8.【考点】两角和与差的余弦公式,三角函数的最值,圆的参数方程,不等式的证明,同角三角函数基本关系的运用【解析】【分析】a 2+b 2=4,c 2+d 2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.代入ac+bd 化简,利用三角函数的单调性即可证明.25.【答案】 解:在平面ABCD 内,过A 作Ax ⊥AD ,∵AA 1⊥平面ABCD ,AD 、Ax ⊂平面ABCD , ∴AA 1⊥Ax ,AA 1⊥AD ,以A 为坐标原点,分别以Ax 、AD 、AA 1所在直线为x 、y 、z 轴建立空间直角坐标系. ∵AB=AD=2,AA 1= √3 ,∠BAD=120°,∴A (0,0,0),B ( √3,−1,0 ),C ( √3 ,1,0), D (0,2,0),A 1(0,0, √3 ),C 1( √3,1,√3 ).A 1B ⃗⃗⃗⃗⃗⃗⃗ =( √3,−1,−√3 ), AC 1⃗⃗⃗⃗⃗⃗⃗ =( √3,1,√3 ), DB ⃗⃗⃗⃗⃗⃗ =(√3,−3,0) , DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,−2,√3) .(Ⅰ)∵cos < A 1B ⃗⃗⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >=A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ||AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |= √7×√7=−17 .∴异面直线A 1B 与AC 1所成角的余弦值为 17 ; (Ⅱ)设平面BA 1D 的一个法向量为 n ⃗ =(x ,y ,z) ,由 {n ⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0n ⃗ ⋅DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =0 ,得 {√3x −3y =0−2y +√3z =0 ,取x= √3 ,得 n ⃗ =(√3,1,2√33) ; 取平面A 1AD 的一个法向量为 m ⃗⃗ =(1,0,0) . ∴cos < m ⃗⃗ ,n ⃗ >= m⃗⃗⃗ ⋅n ⃗ |m⃗⃗⃗ ||n ⃗ |= √31×√3+1+43=34. ∴二面角B ﹣A 1D ﹣A 的正弦值为 34 ,则二面角B ﹣A 1D ﹣A 的正弦值为 √1−(34)2=√74.【考点】异面直线及其所成的角,直线与平面垂直的性质,用空间向量求直线间的夹角、距离,二面角的平面角及求法【解析】【分析】在平面ABCD 内,过A 作Ax ⊥AD ,由AA 1⊥平面ABCD ,可得AA 1⊥Ax ,AA 1⊥AD ,以A 为坐标原点,分别以Ax 、AD 、AA 1所在直线为x 、y 、z 轴建立空间直角坐标系.结合已知求出A ,B ,C ,D ,A 1 , C 1 的坐标,进一步求出 A 1B ⃗⃗⃗⃗⃗⃗⃗ , AC 1⃗⃗⃗⃗⃗⃗⃗ , DB ⃗⃗⃗⃗⃗⃗ , DA 1⃗⃗⃗⃗⃗⃗⃗⃗ 的坐标.(Ⅰ)直接利用两法向量所成角的余弦值可得异面直线A 1B 与AC 1所成角的余弦值;(Ⅱ)求出平面BA 1D 与平面A 1AD 的一个法向量,再由两法向量所成角的余弦值求得二面角B ﹣A 1D ﹣A 的余弦值,进一步得到正弦值.26.【答案】 解:(Ⅰ)设事件A i 表示编号为i 的抽屉里放的是黑球,则p=p (A 2)=P (A 2|A 1)P (A 1)+P (A 2| A 1̅̅̅ )P ( A 1̅̅̅ ) = n−1m+n−1×n m+n ×n m+n−1×mm+n = n 2−n+mn (m+n)(m+n−1) = nm+n .证明:(Ⅱ)∵X 的所有可能取值为 1n ,1n+1 ,…, 1n+m , P (x= 1k )= C k−1n−1C m+nn,k=n ,n+1,n+2,…,n+m ,∴E (X )= ∑n+m k=1( 1k ⋅C k−1n−1C n+mn )= 1C n+mn⋅∑n+m k=n C k−1n−1k= 1C n+mn⋅∑n+m k=nC k−1n−1k< 1C n+mn⋅∑n+m k=nC k−1n−1k−1= 1C n+mn⋅∑n+m k=nC k−2n−2n−1= 1(n−1)C n+mn •( C n−2n−2+C n−1n−2+⋯+C n+m−2n−2 ) = 1(n−1)C m+nn⋅C m+n−1n−1= n(m+n)(n−1) ,∴E (X )< n(m+n)(n−1) .【考点】离散型随机变量的期望与方差,条件概率与独立事件【解析】【分析】(Ⅰ)设事件A i 表示编号为i 的抽屉里放的是黑球,则p=p (A 2)=P (A 2|A 1)P (A 1)+P (A 2| A 1̅̅̅ )P ( A 1̅̅̅ ),由此能求出编号为2的抽屉内放的是黑球的概率.(Ⅱ)X 的所有可能取值为 1n ,1n+1 ,…, 1n+m ,P (x= 1k )= C k−1n−1C m+nn,k=n ,n+1,n+2,…,n+m ,从而E (X )= ∑n+m k=1( 1k ⋅C k−1n−1C n+mn)= 1C n+mn ⋅∑n+m k=nC k−1n−1k,由此能证明E (X )< n(m+n)(n−1) .。
2017年高考山东理科数学试题及答案(word解析版)
2017年普通高等学校招生全国统一(tǒngyī)考试(山东(shān dōnɡ)卷)数学(shùxué)(理科(lǐkē))第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有(zhǐyǒu)一项是符合题目要求的.(1)【2017年山东,理1,5分】设函数的定义域为,函数的定义域为,则()(A)(B)(C)(D)【答案】D【解析】由得,由得,,故选D.(2)【2017年山东,理2,5分】已知,是虚数单位,若,,则()(A)1或(B)或(C)(D)【答案】A【解析】由得,所以,故选A.(3)【2017年山东,理3,5分】已知命题:,;命题:若,则,下列命题为真命题的是()(A)(B)(C)(D)【答案】B【解析】由时有意义,知p是真命题,由可知q是假命题,即p,均是真命题,故选B.(4)【2017年山东,理4,5分】已知、满足约束条件,则的最大值是()(A)0 (B)2 (C)5 (D)6【答案】C【解析】由画出可行域及直线如图所示,平移20x y+=发现,当其经过直线与的交点时,2=+最大为z x y,故选C.(5)【2017年山东,理5,5分】为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为,已知,,,该班某学生的脚长为24,据此估计其身高为()(A)160 (B)163 (C)166 (D)170【答案】C【解析】,故选C.(6)【2017年山东(shān dōnɡ),理6,5分】执行(zhíxíng)两次如图所示的程序框图,若第一次输入的x值为7,第二次输入(shūrù)的x值为9,则第一次、第二次输出(shūchū)的值分别(fēnbié)为()(A)0,0 (B)1,1 (C)0,1 (D)1,0【答案】D【解析】第一次;第二次,故选D.(7)【2017年山东,理7,5分】若,且,则下列不等式成立的是()(A)(B)(C)(D)【答案】B【解析】,故选B.(8)【2017年山东,理8,5分】从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()(A)(B)(C)(D)【答案】C【解析】,故选C.(9)【2017年山东,理9,5分】在中,角A、B、的对边分别为a、、,若ABC∆为锐角三角形,且满足,则下列等式成立的是()(A)(B)(C)(D)【答案】A【解析】所以,故选A.(10)【2017年山东,理10,5分】已知当时,函数的图象与的图象有且只有一个交点,则正实数的取值范围是()(A)(B)(C)(D)【答案】B【解析】当时,,2=+单调递=-单调递减,且,y x m(1)y mx增,且,此时有且仅有一个交点;当时,,2=-在y mx(1)上单调递增,所以要有且仅有一个交点,需,故选B.第II卷(共100分)二、填空题:本大题共5小题,每小题5分(11)【2017年山东,理11,5分】已知的展开式中含有的系数是54,则.【答案】4【解析】,令得:,解得.(12)【2017年山东,理12,5分】已知、是互相垂直的单位向量,若与的夹角为,则实数的值是 . 【答案(dá àn)】【解析(jiě xī)】,,,,解得:.(13)【2017年山东(shān dōnɡ),理13,5分】由一个(yī ɡè)长方体和两个圆柱体构成(gòuchéng)的几何体的三视图如图,则该几何体的体积为 . 【答案】【解析】该几何体的体积为.(14)【2017年山东,理14,5分】在平面直角坐标系中,双曲线(,)的右支与焦点为的抛物线()交于A 、B 两点,若,则该双曲线的渐近线方程为 .【答案】【解析】,因为,所以渐近线方程为22y x =±. (15)【2017年山东,理15,5分】若函数(是自然对数的底数)在的定义域上单调递增,则称函数()f x 具有M 性质。
2017年上海市高考数学试卷及参考答案与试题解析
2017年上海市高考数学试卷及参考答案与试题解析一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1.(4分)已知集合A ={1,2,3,4},集合B ={3,4,5},则A ∩B = . 2.(4分)若排列数=6×5×4,则m = .3.(4分)不等式>1的解集为 .4.(4分)已知球的体积为36π,则该球主视图的面积等于 .5.(4分)已知复数z 满足z +=0,则|z|= .6.(4分)设双曲线-=1(b >0)的焦点为F 1、F 2,P 为该双曲线上的一点,若|PF 1|=5,则|PF 2|= .7.(5分)如图,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是 .8.(5分)定义在(0,+∞)上的函数y =f(x)的反函数为y =f -1(x),若g(x)=为奇函数,则f -1(x)=2的解为 .9.(5分)已知四个函数:①y =-x,②y =-,③y =x 3,④y =x,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为 .10.(5分)已知数列{a n }和{b n },其中a n =n 2,n ∈N *,{b n }的项是互不相等的正整数,若对于任意n∈N *,{b n }的第a n 项等于{a n }的第b n 项,则= .11.(5分)设a 1、a 2∈R,且,则|10π-a 1-a 2|的最小值等于 .12.(5分)如图,用35个单位正方形拼成一个矩形,点P 1、P 2、P 3、P 4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P 1,P 2,P 3,P 4},点P ∈Ω,过P 作直线l P ,使得不在l P 上的“▲”的点分布在l P 的两侧.用D 1(l P )和D 2(l P )分别表示l P 一侧和另一侧的“▲”的点到l P 的距离之和.若过P 的直线l P 中有且只有一条满足D 1(l P )=D 2(l P ),则Ω中所有这样的P 为 .二、选择题(本大题共4题,每题5分,共20分)13.(5分)关于x、y的二元一次方程组的系数行列式D为( )A. B. C. D.14.(5分)在数列{an }中,an=(-)n,n∈N*,则an( )A.等于B.等于0C.等于D.不存在15.(5分)已知a、b、c为实常数,数列{xn }的通项xn=an2+bn+c,n∈N*,则“存在k∈N*,使得x100+k 、x200+k、x300+k成等差数列”的一个必要条件是( )A.a≥0B.b≤0C.c=0D.a-2b+c=016.(5分)在平面直角坐标系xOy中,已知椭圆C1:=1和C2:x2+=1.P为C1上的动点,Q为C2上的动点,w是的最大值.记Ω={(P,Q)|P在C1上,Q在C2上,且=w},则Ω中元素个数为( )A.2个B.4个C.8个D.无穷个三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,直三棱柱ABC-A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.(1)求三棱柱ABC-A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.18.(14分)已知函数f(x)=cos2x-sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积.19.(14分)根据预测,某地第n(n∈N*)个月共享单车的投放量和损失量分别为an 和bn(单位:辆),其中an =,bn=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n个月底的单车容纳量Sn=-4(n-46)2+8800(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20.(16分)在平面直角坐标系xOy中,已知椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.(1)若P在第一象限,且|OP|=,求P的坐标;(2)设P(),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且,,求直线AQ的方程.21.(18分)设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2).(1)若f(x)=ax3+1,求a的取值范围;(2)若f(x)是周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”.2017年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.(4分)已知集合A={1,2,3,4},集合B={3,4,5},则A∩B={3,4} .【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2,3,4},集合B={3,4,5},∴A∩B={3,4}.故答案为:{3,4}.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.(4分)若排列数=6×5×4,则m= 3 .【分析】利用排列数公式直接求解.【解答】解:∵排列数=6×5×4,∴由排列数公式得,∴m=3.故答案为:m=3.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意排列数公式的合理运用.3.(4分)不等式>1的解集为(-∞,0) .【分析】根据分式不等式的解法求出不等式的解集即可.【解答】解:由>1得:,故不等式的解集为:(-∞,0),故答案为:(-∞,0).【点评】本题考查了解分式不等式,考查转化思想,是一道基础题.4.(4分)已知球的体积为36π,则该球主视图的面积等于9π.【分析】由球的体积公式,可得半径R=3,再由主视图为圆,可得面积.【解答】解:球的体积为36π,设球的半径为R,可得πR3=36π,可得R=3,该球主视图为半径为3的圆,可得面积为πR2=9π.故答案为:9π.【点评】本题考查球的体积公式,以及主视图的形状和面积求法,考查运算能力,属于基础题.5.(4分)已知复数z满足z+=0,则|z|=.【分析】设z=a+bi(a,b∈R),代入z2=-3,由复数相等的条件列式求得a,b的值得答案.【解答】解:由z+=0,得z2=-3,设z=a+bi(a,b∈R),由z2=-3,得(a+bi)2=a2-b2+2abi=-3,即,解得:.∴.则|z|=.故答案为:.【点评】本题考查复数代数形式的乘除运算,考查了复数相等的条件以及复数模的求法,是基础题.6.(4分)设双曲线-=1(b>0)的焦点为F1、F2,P为该双曲线上的一点,若|PF1|=5,则|PF2|=11 .【分析】根据题意,由双曲线的方程可得a的值,结合双曲线的定义可得||PF1|-|PF2||=6,解可得|PF2|的值,即可得答案.【解答】解:根据题意,双曲线的方程为:-=1, 其中a==3,则有||PF1|-|PF2||=6,又由|PF1|=5,解可得|PF2|=11或-1(舍)故|PF2|=11,故答案为:11.【点评】本题考查双曲线的几何性质,关键是掌握双曲线的定义.7.(5分)如图,以长方体ABCD-A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是(-4,3,2) .【分析】由的坐标为(4,3,2),分别求出A和C1的坐标,由此能求出结果.【解答】解:如图,以长方体ABCD-A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,∵的坐标为(4,3,2),∴A(4,0,0),C1(0,3,2),∴.故答案为:(-4,3,2).【点评】本题考查空间向量的坐标的求法,考查空间直角坐标系等基础知识,考查运算求解能力,考查数形结合思想,是基础题.8.(5分)定义在(0,+∞)上的函数y=f(x)的反函数为y=f-1(x),若g(x)=为奇函数,则f-1(x)=2的解为.【分析】由奇函数的定义,当x>0时,-x<0,代入已知解析式,即可得到所求x>0的解析式,再由互为反函数的两函数的自变量和函数值相反,即可得到所求值.【解答】解:若g(x)=为奇函数,可得当x>0时,-x<0,即有g(-x)=3-x-1,由g(x)为奇函数,可得g(-x)=-g(x),则g(x)=f(x)=1-3-x,x>0,由定义在(0,+∞)上的函数y=f(x)的反函数为y=f-1(x),且f-1(x)=2,可由f(2)=1-3-2=,可得f-1(x)=2的解为x=.故答案为:.【点评】本题考查函数的奇偶性和运用,考查互为反函数的自变量和函数值的关系,考查运算能力,属于基础题.9.(5分)已知四个函数:①y=-x,②y=-,③y=x3,④y=x,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为.【分析】从四个函数中任选2个,基本事件总数n=,再利用列举法求出事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件的个数,由此能求出事件A:“所选2个函数的图象有且只有一个公共点”的概率.【解答】解:给出四个函数:①y=-x,②y=-,③y=x3,④y=x,从四个函数中任选2个,基本事件总数n=,③④有两个公共点(0,0),(1,1).事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件有:①③,①④共2个,∴事件A:“所选2个函数的图象有且只有一个公共点”的概率为P(A)==.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.10.(5分)已知数列{an }和{bn},其中an=n2,n∈N*,{bn}的项是互不相等的正整数,若对于任意n∈N*,{bn }的第an项等于{an}的第bn项,则= 2 .【分析】an =n2,n∈N*,若对于一切n∈N*,{bn}中的第an项恒等于{an}中的第bn项,可得==.于是b1=a1=1,=b4,=b9,=b16.即可得出.【解答】解:∵an =n2,n∈N*,若对于一切n∈N*,{bn}中的第an项恒等于{an}中的第bn项,∴==.∴b1=a1=1,=b4,=b9,=b16.∴b1b4b9b16=.∴=2.故答案为:2.【点评】本题考查了数列递推关系、对数的运算性质,考查了推理能力与计算能力,属于中档题.11.(5分)设a 1、a 2∈R,且,则|10π-a 1-a 2|的最小值等于.【分析】由题意,要使+=2,可得sinα1=-1,sin2α2=-1.求出α1和α2,即可求出|10π-α1-α2|的最小值【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[-1,1],要使+=2,∴sinα1=-1,sin2α2=-1.则:,k 1∈Z.,即,k 2∈Z. 那么:α1+α2=(2k 1+k 2)π,k 1、k 2∈Z.∴|10π-α1-α2|=|10π-(2k 1+k 2)π|的最小值为.故答案为:.【点评】本题主要考察三角函数性质,有界限的范围的灵活应用,属于基本知识的考查.12.(5分)如图,用35个单位正方形拼成一个矩形,点P 1、P 2、P 3、P 4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P 1,P 2,P 3,P 4},点P ∈Ω,过P 作直线l P ,使得不在l P 上的“▲”的点分布在l P 的两侧.用D 1(l P )和D 2(l P )分别表示l P 一侧和另一侧的“▲”的点到l P的距离之和.若过P 的直线l P 中有且只有一条满足D 1(l P )=D 2(l P ),则Ω中所有这样的P 为 P 1、P 3、P 4 .【分析】根据任意四边形ABCD 两组对边中点的连线交于一点, 过此点作直线,使四边形的四个顶点不在该直线的同一侧,则该直线两侧的四边形的顶点到直线的距离之和相等;由此得出结论.【解答】解:设记为“▲”的四个点是A,B,C,D, 线段AB,BC,CD,DA的中点分别为E,F,G,H,易知EFGH为平行四边形,如图所示;又平行四边形EFGH的对角线交于点P2,则符合条件的直线lP 一定经过点P2,且过点P2的直线有无数条;由过点P1和P2的直线有且仅有1条,过点P3和P2的直线有且仅有1条,过点P4和P2的直线有且仅有1条,所以符合条件的点是P1、P3、P4.故答案为:P1、P3、P4.【点评】本题考查了数学理解力与转化力的应用问题,也考查了对基本问题的阅读理解和应用转化能力.二、选择题(本大题共4题,每题5分,共20分)13.(5分)关于x、y的二元一次方程组的系数行列式D为( )A. B. C. D.【分析】利用线性方程组的系数行列式的定义直接求解.【解答】解:关于x、y的二元一次方程组的系数行列式:D=.故选:C.【点评】本题考查线性方程组的系数行列式的求法,是基础题,解题时要认真审题,注意线性方程组的系数行列式的定义的合理运用.14.(5分)在数列{an }中,an=(-)n,n∈N*,则an( )A.等于B.等于0C.等于D.不存在【分析】根据极限的定义,求出an=的值.【解答】解:数列{an }中,an=(-)n,n∈N*,则an==0.故选:B.【点评】本题考查了极限的定义与应用问题,是基础题.15.(5分)已知a、b、c为实常数,数列{xn }的通项xn=an2+bn+c,n∈N*,则“存在k∈N*,使得x100+k 、x200+k、x300+k成等差数列”的一个必要条件是( )A.a≥0B.b≤0C.c=0D.a-2b+c=0【分析】由x100+k ,x200+k,x300+k成等差数列,可得:2x200+k=x100+kx300+k,代入化简即可得出.【解答】解:存在k∈N*,使得x100+k 、x200+k、x300+k成等差数列,可得:2[a(200+k)2+b(200+k)+c]=a(100+k)2+b(100+k)+c+a(300+k)2+b(300+k)+c,化为:a=0.∴使得x100+k ,x200+k,x300+k成等差数列的必要条件是a≥0.故选:A.【点评】本题考查了等差数列的通项公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.16.(5分)在平面直角坐标系xOy中,已知椭圆C1:=1和C2:x2+=1.P为C1上的动点,Q为C2上的动点,w是的最大值.记Ω={(P,Q)|P在C1上,Q在C2上,且=w},则Ω中元素个数为( )A.2个B.4个C.8个D.无穷个【分析】设出P(6cosα,2sinα),Q(cosβ,3sinβ),0≤α\β<2π,由向量数量积的坐标表示和两角差的余弦公式和余弦函数的值域,可得最大值及取得的条件,即可判断所求元素的个数.【解答】解:椭圆C1:=1和C2:x2+=1.P为C1上的动点,Q为C2上的动点,可设P(6cosα,2sinα),Q(cosβ,3sinβ),0≤α\β<2π,则=6cosαcosβ+6sinαsinβ=6cos(α-β),当α-β=2kπ,k∈Z时,w取得最大值6,则Ω={(P,Q)|P在C1上,Q在C2上,且=w}中的元素有无穷多对.另解:令P(m,n),Q(u,v),则m2+9n2=36,9u2+v2=9,由柯西不等式(m2+9n2)(9u2+v2)=324≥(3mu+3nv)2,当且仅当mv=nu,即O、P、Q共线时,取得最大值6,显然,满足条件的P、Q有无穷多对,D项正确.故选:D.【点评】本题考查椭圆的参数方程的运用,以及向量数量积的坐标表示和余弦函数的值域,考查集合的几何意义,属于中档题.三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,直三棱柱ABC-A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.(1)求三棱柱ABC-A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.【分析】(1)三棱柱ABC-A1B1C1的体积V=S△ABC×AA1=,由此能求出结果.(2)连结AM,∠A1MA是直线A1M与平面ABC所成角,由此能求出直线A1M与平面ABC所成角的大小.【解答】解:(1)∵直三棱柱ABC-A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.∴三棱柱ABC-A1B1C1的体积:V=S△ABC ×AA1===20.(2)连结AM,∵直三棱柱ABC-A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5,M是BC中点,∴AA1⊥底面ABC,AM==,∴∠A1MA是直线A1M与平面ABC所成角,tan∠A1MA===,∴直线A1M与平面ABC所成角的大小为arctan.【点评】本题考查三棱柱的体积的求法,考查线面角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.18.(14分)已知函数f(x)=cos2x-sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积.【分析】(1)由二倍角的余弦公式和余弦函数的递增区间,解不等式可得所求增区间;(2)由f(A)=0,解得A,再由余弦定理解方程可得c,再由三角形的面积公式,计算即可得到所求值.【解答】解:(1)函数f(x)=cos2x-sin2x+=cos2x+,x∈(0,π),由2kπ-π≤2x≤2kπ,解得kπ-π≤x≤kπ,k∈Z,k=1时,π≤x≤π,可得f(x)的增区间为[,π);(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,即有cos2A+=0,解得2A=π,即A=π,由余弦定理可得a2=b2+c2-2bccosA,化为c2-5c+6=0,解得c=2或3,若c=2,则cosB=<0,即有B为钝角,c=2不成立,则c=3,△ABC的面积为S=bcsinA=×5×3×=.【点评】本题考查二倍角公式和余弦函数的图象和性质,考查解三角形的余弦定理和面积公式的运用,考查运算能力,属于中档题.19.(14分)根据预测,某地第n(n∈N*)个月共享单车的投放量和损失量分别为an 和bn(单位:辆),其中an =,bn=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n个月底的单车容纳量Sn=-4(n-46)2+8800(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【分析】(1)计算出{an }和{bn}的前4项和的差即可得出答案;(2)令an ≥bn得出n≤42,再计算第42个月底的保有量和容纳量即可得出结论.【解答】解:(1)∵an =,bn=n+5∴a1=5×14+15=20a2=5×24+15=95a3=5×34+15=420a4=-10×4+470=430b1=1+5=6b2=2+5=7b3=3+5=8b4=4+5=9∴前4个月共投放单车为a1+a2+a3+a4=20+95+420+430=965,前4个月共损失单车为b1+b2+b3+b4=6+7+8+9=30,∴该地区第4个月底的共享单车的保有量为965-30=935.(2)令an ≥bn,显然n≤3时恒成立,当n≥4时,有-10n+470≥n+5,解得n≤, ∴第42个月底,保有量达到最大.当n≥4,{an }为公差为-10等差数列,而{bn}为等差为1的等差数列,∴到第42个月底,单车保有量为×39+535-×42=×39+535-×42=8782.S42=-4×16+8800=8736.∵8782>8736,∴第42个月底单车保有量超过了容纳量.【点评】本题考查了数列模型的应用,等差数列的求和公式,属于中档题.20.(16分)在平面直角坐标系xOy中,已知椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.(1)若P在第一象限,且|OP|=,求P的坐标;(2)设P(),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且,,求直线AQ的方程.【分析】(1)设P(x,y)(x>0,y>0),联立,能求出P点坐标.(2)设M(x0,0),A(0,1),P(),由∠P=90°,求出x=;由∠M=90°,求出x=1或x=;由∠A=90°,则M点在x轴负半轴,不合题意.由此能求出点M的横坐标.(3)设C(2cosα,sinα),推导出Q(4cosα,2sinα-1),设P(2cosβ,sinβ),M(x,0)推导出x=cosβ,从而4cosα-2cosβ=-5cosβ,且2sinα-sinβ-1=-4sinβ,cosβ=-cosα,且sinα=(1-2sinα),由此能求出直线AQ.【解答】解:(1)设P(x,y)(x>0,y>0),∵椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,P在第一象限,且|OP|=,∴联立,解得P(,).(2)设M(x,0),A(0,1),P(),若∠P=90°,则•,即(x-,-)•(-,)=0,∴(-)x0+-=0,解得x=.如图,若∠M=90°,则•=0,即(-x0,1)•(-x,)=0,∴=0,解得x0=1或x=,若∠A=90°,则M点在x轴负半轴,不合题意.∴点M的横坐标为,或1,或.(3)设C(2cosα,sinα),∵,A(0,1),∴Q(4cosα,2sinα-1),又设P(2cosβ,sinβ),M(x,0),∵|MA|=|MP|,∴x02+1=(2cosβ-x)2+(sinβ)2,整理得:x=cosβ,∵=(4cosα-2cosβ,2sinα-sinβ-1),=(-cosβ,-sinβ),,∴4cosα-2cosβ=-5cosβ,且2sinα-sinβ-1=-4sinβ,∴cosβ=-cosα,且sinα=(1-2sinα),以上两式平方相加,整理得3(sinα)2+sinα-2=0,∴sinα=,或sinα=-1(舍去),此时,直线AC的斜率kAC=-= (负值已舍去),如图.∴直线AQ为y=x+1.【点评】本题考查点的坐标的求法,考查直线方程的求法,考查椭圆、直线方程、三角函数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方思想,是中档题.21.(18分)设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2).(1)若f(x)=ax3+1,求a的取值范围;(2)若f(x)是周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h (x)是周期函数”的充要条件是“f (x)是常值函数”. 【分析】(1)直接由f(x 1)-f(x 2)≤0求得a 的取值范围;(2)若f(x)是周期函数,记其周期为T k ,任取x 0∈R,则有f(x 0)=f(x 0+T k ),证明对任意x ∈[x 0,x 0+T k ],f(x 0)≤f(x)≤f(x 0+T k ),可得f(x 0)=f(x 0+nT k ),n ∈Z,再由…∪[x 0-3T k ,x 0-2T k ]∪[x 0-2T k ,x 0-T k ]∪[x 0-T k ,x 0]∪[x 0,x 0+T k ]∪[x 0+T k ,x 0+2T k ]∪…=R,可得对任意x ∈R,f(x)=f(x 0)=C,为常数;(3)分充分性及必要性证明.类似(2)证明充分性;再证必要性,然后分类证明. 【解答】(1)解:由f(x 1)≤f(x 2),得f(x 1)-f(x 2)=a(x 13-x 23)≤0, ∵x 1<x 2,∴x 13-x 23<0,得a ≥0. 故a 的范围是[0,+∞);(2)证明:若f(x)是周期函数,记其周期为T k ,任取x 0∈R,则有 f(x 0)=f(x 0+T k ),由题意,对任意x ∈[x 0,x 0+T k ],f(x 0)≤f(x)≤f(x 0+T k ), ∴f(x 0)=f(x)=f(x 0+T k ).又∵f(x 0)=f(x 0+nT k ),n ∈Z,并且…∪[x 0-3T k ,x 0-2T k ]∪[x 0-2T k ,x 0-T k ]∪[x 0-T k ,x 0]∪[x 0,x 0+T k ]∪[x 0+T k ,x 0+2T k ]∪…=R,∴对任意x ∈R,f(x)=f(x 0)=C,为常数;(3)证明:充分性:若f(x)是常值函数,记f(x)=c 1,设g(x)的一个周期为T g ,则 h(x)=c 1•g(x),则对任意x 0∈R,h(x 0+T g )=c 1•g(x 0+T g )=c 1•g(x 0)=h(x 0),故h(x)是周期函数;必要性:若h(x)是周期函数,记其一个周期为T h .若存在x 1,x 2,使得f(x 1)>0,且f(x 2)<0,则由题意可知, x 1>x 2,那么必然存在正整数N 1,使得x 2+N 1T k >x 1, ∴f(x 2+N 1T k )>f(x 1)>0,且h(x 2+N 1T k )=h(x 2). 又h(x 2)=g(x 2)f(x 2)<0,而h(x 2+N 1T k )=g(x 2+N 1T k )f(x 2+N 1T k )>0≠h(x 2),矛盾. 综上,f(x)>0恒成立. 由f(x)>0恒成立,任取x 0∈A,则必存在N 2∈N,使得x 0-N 2T h ≤x 0-T g , 即[x 0-T g ,x 0]⊆[x 0-N 2T h ,x 0],∵…∪[x 0-3T k ,x 0-2T k ]∪[x 0-2T k ,x 0-T k ]∪[x 0-T k ,x 0]∪[x 0,x 0+T k ]∪[x 0+T k ,x 0+2T k ]∪…=R,∴…∪[x 0-2N 2T h ,x 0-N 2T h ]∪[x 0-N 2T h ,x 0]∪[x 0,x 0+N 2T h ]∪[x 0+N 2T h ,x 0+2N 2T h ]∪…=R. h(x 0)=g(x 0)•f(x 0)=h(x 0-N 2T h )=g(x 0-N 2T h )•f(x 0-N 2T h ),∵g(x 0)=M ≥g(x 0-N 2T h )>0,f(x 0)≥f(x 0-N 2T h )>0.因此若h(x 0)=h(x 0-N 2T h ),必有g(x 0)=M =g(x 0-N 2T h ),且f(x 0)=f(x 0-N 2T h )=c. 而由(2)证明可知,对任意x ∈R,f(x)=f(x 0)=C,为常数. 综上,必要性得证. 【点评】本题考查抽象函数及其应用,考查逻辑思维能力与理论运算能力考查分类讨论的数学思想方法,题目设置难度过大.。
2017年高考数学上海试题及解析
x y 6.11 【解析】 双曲线 - 2 =1 中, a= 9=3 ,由双曲线的定义,可得 9 b 解得 |PF2|=11 或﹣ 1 (舍去),故 |PF2|=11. 7. ( 2017 年上海)如图,以长方体 所在的直线为坐标轴, 坐标是 .
||PF1|-|PF2||=6,又 |PF1|=5,
1 1 + =2 ,则 |10π -α 1- α 2 |的最小值等于 2+sin α 1 2+sin 2 α 2
.
π 1 1 1 1 可得 1≤ 2+sin α 则 ≤ ≤ 1. 同理可得 ≤ 【 解析】由 -1 ≤ sin α 1≤ 1, 1≤ 3, 4 3 2+sin α 3 2+sin 2 α 2 1 π 1 1 1 1 , + =2, 则 = =1 , 即 sin α 1=sin 2 α 2 =-1. 所以 α 1=2k 1π 2+sin α 1 2+sin 2 α 2 2+sin α 1 2+sin 2 α 2 2 π π π 3π , k 1 ,k2∈ Z .所以 |10π -α π π 1- α 2 |=|10π -(2k 1 )-(k 2 )|=|10 π + -(2k 1+k 2)π |, 2 2 4 4 π 4 .
2017 年上海市高考数学试卷 一、填空题(本大题共 12 题,满分 54 分,第 1~ 6 题每题 4 分,第 7~ 12 题每题 5 分) . 1.已知集合 A={1 , 2, 3 , 4} ,集合 B={3 , 4, 5} ,则 A∩ B= {3,4} 【解析】∵集合
A={1 , 2 , 3, 4} ,集合 B={3 , 4 , 5} ,∴ A∩ B={3 , 4} .
2017年高考全国Ⅱ理科数学试题及答案(word解析版)
2017年普通高等学校招生全国统一考试(全国II )数学(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2017年全国Ⅱ,理1,5分】31i i+=+( ) (A )12i + (B )12i - (C )2i + (D )2i -【答案】D 【解析】()()()()3i 1i 3i 42i 2i 1i 1i 1i 2+-+-===-++-,故选D . (2)【2017年全国Ⅱ,理2,5分】设集合{}1,2,4A =,{}240B x x x m =-+=.若{1}A B = ,则B =( )(A ){}1,3- (B ){}1,0 (C ){}1,3 (D ){}1,5【答案】C【解析】集合{}1,2,4A =,24{|}0B x x x m -=+=.若{}1A B = ,则1A ∈且1B ∈,可得140m -+=-,解得3m =, 即有243013{|}{,}B x x x =+==-,故选C .(3)【2017年全国Ⅱ,理3,5分】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )(A )1盏 (B )3盏 (C )5盏 (D )9盏【答案】B【解析】设这个塔顶层有a 盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a 为首项的等比数列,又总共有灯381盏,∴()71238112712a a -==-,解得3a =, 则这个塔顶层有3盏灯,故选B .(4)【2017年全国Ⅱ,理4,5分】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何 体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )(A )90π (B )63π (C )42π (D )36π【答案】B【解析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,22131036632V πππ=⋅⨯-⋅⋅⨯=,故选B . (5)【2017年全国Ⅱ,理5,5分】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )(A )15- (B )9- (C )1 (D )9【答案】A【解析】x 、y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩的可行域如图:2z x y =+经过可行域的A时,目标函数取得最小值,由32330y x y =-⎧⎨-+=⎩解得()6,3A --,则2z x y =+的最 小值是:15-,故选A .(6)【2017年全国Ⅱ,理6,5分】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )(A )12种 (B )18种 (C )24种 (D )36种【答案】D【解析】4项工作分成3组,可得:24C 6=,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:336A 36⨯=种,故选D .(7)【2017年全国Ⅱ,理7,5分】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )(A )乙可以知道四人的成绩 (B )丁可以知道四人的成绩(C )乙、丁可以知道对方的成绩 (D )乙、丁可以知道自己的成绩【答案】D【解析】四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁中也为一优一良,丁知自己的成绩,故选D .(8)【2017年全国Ⅱ,理8,5分】执行右面的程序框图,如果输入的1a =-,则输出的S = ( )(A )2 (B )3 (C )4 (D )5【答案】B【解析】执行程序框图,有0S =,1k =,1a =-,代入循环,第一次满足循环,1S =-,1a =,2k =;满足条件,第二次满足循环,1S =,1a =-,3k =;满足条件,第三次满足循环,2S =-,1a =,4k =;满足条件,第四次满足循环,2S =,1a =-,5k =;满足条件,第五次满足循环,3S =-,1a =,6k =;满足条件,第六次满足循环,3S =,1a =-,7k =;76≤不成立,退出循环输出,3S =,故选B .(9)【2017年全国Ⅱ,理9,5分】若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )(A )2 (B (C (D 【答案】A 【解析】双曲线()2222:10,0x y C a b a b-=>>的一条渐近线不妨为:0bx ay +=,圆()2242x y +=-的圆心()2,0, 半径为:2,双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2242x y +=-所截得的弦长为2,可==得:222443c a c -=,可得2e 4=,即e 2=,故选A . (10)【2017年全国Ⅱ,理10,5分】已知直三棱柱111ABC A B C -中,120ABC ∠= ,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )(A (B ) (C ) (D 【答案】C【解析】如图所示,设M 、N 、P 分别为AB ,1BB 和11B C 的中点,则1AB 、1BC 夹角为MN和NP 夹角或其补角(因异面直线所成角为0,2π⎛⎤ ⎥⎝⎦,可知112MN AB =,112NP BC ==作BC 中点Q ,则PQM ∆为直角三角形;∵1PQ =,12MQ AC =, ABC ∆中,由余弦定理得2222AC AB BC AB BC cos ABC =+-⋅⋅∠141221172⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,∴AC =MQ =MQP ∆中,MP =;在PMN ∆中,由余弦定理得222222cos 2MN NP PM MNP MH NP +-+-∠===⋅⋅;又异面 直线所成角的范围是0,2π⎛⎤ ⎥⎝⎦,∴1AB 与1BC,故选C . (11)【2017年全国Ⅱ,理11,5分】若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )(A )1- (B )32e -- (C )35e - (D )1【答案】A【解析】函数()()121x f x x ax e -=+-,得()()()11221x x e f x x a x ax e --'=+++-,2x =-是21`()(1)x f x x ax e -=+-的极值点,得:()4320a a -++-=.得1a =-.可得()()()()211212211x x x e e x x e f x x x x ---'=-+--=+-,函数的极值点为:2x =-,1x =,当2x <-或1x >时,()0f x '>函数是增函数,()2,1x ∈-时,函数是减函数,1x =时,函数取得极小值:()()21111111f e -=--=-,故选A . (12)【2017年全国Ⅱ,理12,5分】已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+ 的最小值是( )(A )2- (B )32- (C )43- (D )1- 【答案】B【解析】建立如图所示的坐标系,以BC中点为坐标原点,则(A ,()1,0B -,()1,0C ,设(),P x y ,则()PA x y =- ,()1,PB x y =--- ,()1,PC x y =-- ,则()P A P B P C ⋅+222232224x y x y ⎡⎤⎛⎢⎥=-+=+-- ⎢⎥⎝⎭⎣⎦∴当0x =,y =时,取得最小值33242⎛⎫⨯-=- ⎪⎝⎭,故选B . 二、填空题:本题共4小题,每小题5分,共20分.(13)【2017年全国Ⅱ,理13,5分】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =______.【答案】1.96【解析】由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,0.02p =,100n =, 则()11000.020.98 1.96DX npq np p ==-=⨯⨯=.(14)【2017年全国Ⅱ,理14,5分】函数()23sin 0,42f x x x x π⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是______. 【答案】1【解析】()2233sin 1cos 44f x x x x x =-=--,令cos x t =且[]0,1t ∈, 则()22114f t t t ⎛=-+=-+ ⎝⎭,当t =时,()max 1f t =,即()f x 的最大值为1. (15)【2017年全国Ⅱ,理15,5分】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11n k k S ==∑______. 【答案】21n n + 【解析】等差数列{}n a 的前n 项和为n S ,33a =,410S =,()423210S a a =+=,可得22a =,数列的首项为1,公差为1,()12n n n S -=,()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭,则11111111121223341n k kS n n =⎡⎤=-+-+-++-⎢⎥+⎣⎦∑122111n n n ⎛⎫=-= ⎪++⎝⎭. (16)【2017年全国Ⅱ,理16,5分】已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y轴于点N .若M 为FN 的中点,则FN =_______.【答案】6【解析】抛物线C :28y x =的焦点()2,0F ,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,可知M 的横坐标为:1,则M的纵坐标为:±26FN FM ==.三、解答题:共70分。
2017上海高考数学试题(完整Word版含解析)
2017上海高考数学试题(完整Word版含解析)2017年上海市高考数学试卷1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B =2. 若排列数6654mP =⨯⨯,则m =3. 不等式11x x ->的解集为4. 已知球的体积为36π,则该球主视图的面积等于 5. 已知复数z 满足30z z +=,则||z = 6. 设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =,则2||PF =7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0xx g x f x x ⎧-≤⎪=⎨>⎪⎩为 奇函数,则1()2f x -=的解为9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为 10. 已知数列{}na 和{}nb ,其中2nan =,*n ∈N ,{}nb 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第nb 项,则149161234lg()lg()b b b b b b b b = 11. 设1a 、2a ∈R ,且121122sin2sin(2)αα+=++,则12|10|παα--的最小值等于12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“ ”的点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线Pl ,使得不在Pl 上的“ ”的点分布在Pl 的两侧. 用1()PD l 和2()PD l 分别表示Pl 一侧 和另一侧的“ ”的点到Pl 的距离之和. 若过P 的直线Pl 中有且只有一条满足12()()PPD l D l =,则Ω中所有这样的P 为二. 选择题(本大题共4题,每题5分,共20分)13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A.0543B.1024C.1523D.605414. 在数列{}na 中,1()2nna=-,*n ∈N ,则lim nn a →∞( )17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积;(2)设M 是BC 中点,求直线1A M与平面ABC 所成角的大小.18. 已知函数221()cossin 2f x x x =-+,(0,)x π∈.(1)求()f x 的单调递增区间; (2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和nb (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5nbn =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量; (2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800nSn =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20. 在平面直角坐标系xOy 中,已知椭圆22:14xy Γ+=,A 为Γ的上顶点,P 为Γ上异于 上、下顶点的动点,M 为x 正半轴上的动点. (1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =, 求直线AQ 的方程.21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax=+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数; (3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值.函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.2017年上海市高考数学试卷2017.6一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B =【解析】{3,4}AB =2. 若排列数6654mP =⨯⨯,则m =【解析】3m =3. 不等式11x x ->的解集为 【解析】111100x x x->⇒<⇒<,解集为(,0)-∞ 4. 已知球的体积为36π,则该球主视图的面积等于【解析】3436393rr S πππ=⇒=⇒= 5. 已知复数z 满足30z z +=,则||z = 【解析】23||zz z =-⇒=⇒=6. 设双曲线22219x y b-=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =, 则2||PF =【解析】226||11a PF =⇒=7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为【解析】(4,0,0)A ,1(0,3,2)C ,1(4,3,2)AC =-8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y fx -=,若31,0()(),0xx g x f x x ⎧-≤⎪=⎨>⎪⎩为 奇函数,则1()2fx -=的解为【解析】()31(2)918xf x f =-+⇒=-+=-,∴1()2f x -=的解为8x =-9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为 【解析】①③、①④的图像有一个公共点,∴概率为24213C = 10. 已知数列{}na 和{}nb ,其中2nan =,*n ∈N ,{}nb 的项是互不相等的正整数,若对于任意*n ∈N ,{}nb 的第n a 项等于{}n a 的第nb 项,则149161234lg()lg()b b b b b b b b = 【解析】222149161491612341234lg()()2lg()nn a b n n b b b b ba b b b b b b b b b b b b b b =⇒=⇒=⇒=11. 设1a 、2a ∈R ,且121122sin2sin(2)αα+=++,则12|10|παα--的最小值等于【解析】111[,1]2sin 3α∈+,211[,1]2sin(2)3α∈+,∴121112sin 2sin(2)αα==++, 即12sin sin(2)1αα==-,∴122k παπ=-+,24k παπ=-+,12min |10|4ππαα--=12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“ ”的点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线Pl ,使得不在Pl 上的“ ”的点分布在Pl 的两侧. 用1()PD l 和2()PD l 分别表示Pl 一侧和另一侧的“ ”的点到Pl 的距离之和. 若过P 的直线Pl 中有且只有一条满足12()()PPD l D l =,则Ω中所有这样的P 为 【解析】1P 、3P二. 选择题(本大题共4题,每题5分,共20分)13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A. 0543B.1024C.1523D.6054【解析】C14. 在数列{}na 中,1()2nna=-,*n ∈N ,则lim nn a →∞( )A. 等于12-B. 等于0C. 等于12D. 不存在 【解析】B15. 已知a 、b 、c 为实常数,数列{}nx 的通项2n x an bn c=++,*n ∈N ,则“存在*k ∈N ,使得100kx +、200kx+、300kx +成等差数列”的一个必要条件是( ) A. 0a ≥ B. 0b ≤ C.c =D.20a b c -+=【解析】A16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q PΩ=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个 【解析】D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积;(2)设M 是BC 中点,求直线1A M与平面ABC 所成角的大小. 【解析】(1)20V S h =⋅= (2)tanθ==18. 已知函数221()cossin 2f x x x =-+,(0,)x π∈.(1)求()f x 的单调递增区间; (2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积. 【解析】(1)1()cos22f x x =+,(0,)x π∈,单调递增区间为[,)2ππ (2)1cos223A A π=-⇒=,∴225191cos 2252c A c c +-==⇒=⋅⋅或3c =,根据锐角三角形,cos 0B >,∴3c =,1sin 2S bc A ==19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和nb (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5nbn =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量; (2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800nSn =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【解析】(1)12341234()()96530935a aa ab b b b +++-+++=-=(2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大12341234(42050)38(647)42()()[965]878222a a a ab b b b +⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=2424(4246)88008736S =--+=,∴此时保有量超过了容纳量.20. 在平面直角坐标系xOy 中,已知椭圆22:14xy Γ+=,A 为Γ的上顶点,P 为Γ上异于 上、下顶点的动点,M 为x 正半轴上的动点. (1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =, 求直线AQ 的方程. 【解析】(1)联立22:14x yΓ+=与222xy +=,可得P(2)设(,0)M m ,283833(,1)(,)055555MA MP m m m m m ⋅=-⋅-=-+=⇒=或1m =8283864629(,)(,)0555********PA MP m m m ⋅=-⋅-=-+=⇒=(3)设0(,)P x y ,线段AP 的中垂线与x 轴的交点即03(,0)8M x ,∵4PQ PM =, ∴03(,3)2Q x y --,∵2AQ AC =,∴0133(,)42y C x --,代入并联立椭圆方程,解得9x =,019y =-,∴1()3Q ,∴直线AQ 的方程为110y x =+21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax=+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数; (3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值.函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.【解析】(1)0a ≥;(2)略;(3)略.。
2019年上海市秋季高考数学试卷word版含参考答案与解析
上海市2019届秋季高考数学考试卷、选择题:(本大题共12题,1-6题每题4分,7-12题每题5分,共54分)1. 已知集合A ,3、B 2, ,则AB _______________________ .12. 已知z C 且满足—5 i ,求z ______________ .z3. 已知向量a (1,0,2) , b (2,1,0),则a 与b 的夹角为 ______________ .54. 已知二项式 2x 1 ,则展开式中含X 2项的系数为 ______________ .x 05. 已知x 、y 满足 y 0 ,求z 2x 3y 的最小值为 ____________________ .x y 236. 已知函数f x 周期为1,且当0 x 1, f x log 2x ,则f(?) ______________________ .7. 若x 、y R ,且-2y 3,则y 的最大值为 ______________________ .xx8. 已知数列a n 前n 项和为S n,且满足S na n 2,则S 5_______ .229. 过y 4x 的焦点F 并垂直于x 轴的直线分别与y 4x 交于A 、B ,A 在B 上方,M 为抛物线上一点, OM OA 2 OB ,贝y ________ .10. 某三位数密码锁,每位数字在0 9数字中选取,其中恰有两位数字相同的概率是2 211. 已知数列a n满足a na n 1 ( n N ), R n,a n 在双曲线 x y1上,则6 2limP n P n 1n12. 已知f x2 ax 1,a 0,若 a a 0 , f x 与 x 轴交点为 A , f x 为曲x 1线L ,在L 上任意一点P ,总存在一点Q ( P 异于A )使得AP AQ 且AP AQ ,则a 。
________________4题,每题5分,共20分)y c 0的一个方向向量d 可以是((2,1) C. ( 1,2) D.1和2,将该三角形分别绕其两个直角边旋转得x ,存在常数a R ,使得f x a 为偶函D. —5①对,②错; D. ①错,②对;14. 一个直角三角形的两条直角边长分别为 到的两个圆锥的体积之比为()A. 1B. 2 C .4 D. 815. 已知 R ,函数 f x2x 6sin数, 则 可能的值为()A.2B.3C.4 16. 已知 tan tantan().①存在 在第一象限, 角在第三象限;②存在 在第二象限, 角 在第四象限;二.选择题(本大题共 13.已知直线方程2x A. (2, 1) B.)(1,2)A.①②均正确;B.①②均错误;C.三•解答题(本大题共 5题,共76分)17.(本题满分 14分)如图,在长方体 ABCD A 1B 1C 1D 1中,M 为BB ,上一点,已知BM 2,AD 4,CD 3,AAA 5.(1) 求直线AQ 与平面ABCD 的夹角; (2) 求点A 到平面AMC 的距离.19.(本题满分14分)如图,A B C 为海岸线,AB 为线段,B C 为四分之一圆弧, BD 39.2km ,BDC 22°, CBD 68°, BDA 58o .(1) 求Be 长度; (2) 若AB 40km ,求D 到海岸线 ABC 的最短距离.(精确到0.001km )椭圆于A 、B 两点. (1 )若AB 垂直于x 轴时,(2 )当 F 1AB 90° 时,(3)若直线AF 1交y 轴于M 直线BF 1交y 轴于N 是否存在直线I 若存在,求出直线I 的方程;若不存在,请说明理由 . 21.(本题满分18分)数列4有100项,a 1 a ,对任意n 2,100 ,存在a n q d,i 1,n 1,若a k 与前n 项中某一项相等,则称 a k 具有性质P . (1 )若a 1 1,求a 4可能的值;(2)若a n 不为等差数列,求证: a n 中存在满足性质 P ;18.(本题满分14分)已知f x(1 )当a 1时,求不等式f x 1 f x 1的解集; (2)若x 1,2时,f x 有零点,求a 的范围.ax—(aR).16分) 2已知椭圆—(本题满分 2—1 , F 1, F 2 为左、4右焦点,直线I 过F 2交AB ;A 在x 轴上方时,求A,B 的坐标;,使S A F 1AB S A F 1MN ,20.(3)右a n 中恰有二项具有性质 P ,这二项和为C ,使用a, d, c 表示a ia ? La ioo.上海市2019届秋季高考数学考试卷参考答案与试题解析一、选择题:(本大题共12题,1-6题每题4分,7-12题每题5分,共54 分) 1.已知集合A ,3、B 2, ,则A B _______________________.【思路分析】然后根据交集定义得结果. 【解析】:根据交集概念,得出:(2,3). 【归纳与总结】本题主要考查集合的基本运算,比较基础.12.已知z C 且满足—5 i ,求z ______________ .z【思路分析】解复数方程即可求解结果.5 i 5 1 .i (5 i)(5 i) 26 26【归纳与总结】本题主要考查复数的基本运算,比较基础.. ° r r3.已知向量a (1,0,2) , b (2,1,0),则a 与b 的夹角为 ______________1【解析】:—【思路分析】根据夹角运算公式cosab 求解【解析】:cos 【归纳与总结】本题主要考查空间向量数量积,比较基础.5 4.已知二项式 2x 1 ,则展开式中含x 2项的系数为 【思路分析】根据二项式展开式通项公式求出取得含【解析】:T r 1 C 5r (2x)5 r 1r C 5r 25 r x 5 r 令 5 r 2,则 r 3, x 2 系数为 C ; 22 40.2 x 项的的项,再求系数. 【归纳与总结】本题主要考查项式展开式通项公式的应用, x 0 5.已知x 、y 满足 y 0 ,求z 2x 3y 的最小值为 x y 2 【思路分析】由约束条件作出可行域,化目标函数为直线方程的斜截 式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解析】:线性规划作图:后求出边界点代入求最值, 当x 0 , yZ min 6.【归纳与总结】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.3 log 2x ,则 £) _ 6.已知函数f x 周期为1,且当0 x 1 , f x 比较基础. J •2时, n3 【思路分析】直接利用函数周期为 1,将转2到已知范围0 x 1内,代入函数解析式即可. 2.,3 2 2 【归纳与总结】本题考查函数图像与性质,是中档题. 7.若x 、y R ,且丄2y 3,则-的最大值为 x x 【解析】:f (-) f (-) log 2- 1 2 【思路分析】利用已知等式转化为一个变量或者转化为函有 y的式子求解x【解析】:法一:1 1 y 3 ;2y 2 x2y 」;3 22 1 法二:由一3x 【归纳与总结】本题考查基本不等式的应用,是中档题.8.已知数列a n 前n 项和为S n ,且满足S n a n 2,则S【思路分析】将和的关系转化为项的递推关系,得到数列为等比数列S n a n 21【解析】:由 n n得:a n一 a n 1 ( n 2)S n 1 a n 12( n 2) n2 n1 V丿2y , - (3 2y) y 2y 2 x 3y ( 0 9 ; 8-),求二次最值2y xmaxa 。
2016年上海高考数学真题(理科)试卷(word解析版)
绝密★启用前 2016年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.设x R ∈,则不等式13<-x 的解集为_____________.2.设32iz i +=,其中i 为虚数单位,则Im z =_____________.3.已知平行直线012:,012:21=++=-+y x l y x l ,则l 1与l 2的距离是_____________. 4.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是_________(米).5.已知点(3,9)在函数x a x f +=1)(的图像上,则________)()(1=-x f x f 的反函数. 6.如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成的角的大小为32arctan,则该正四棱柱的高等于____________.7.方程3sin 1cos 2x x =+在区间[]0,2π上的解为___________ .8.在nx x ⎪⎭⎫ ⎝⎛-23的二项展开式中,所有项的二项式系数之和为256,则常数项等于_________.9.已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.10.设.0,0>>b a 若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩,无解,则b a +的取值范围是____________. 11.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意N n *∈,{}3,2∈n S ,则k 的最大值为________.12.在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线21x y -=上一个动点,则BA BP ⋅的取值范围是_____________.13.设[),,0,2πa b R c ∈∈.若对任意实数x 都有()c bx a x +=⎪⎭⎫ ⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为 .14.如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点ji A A ,,点P 满足=++j i OA OA OP ,则点P 落在第一象限的概率是_____________.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得五分,否则一律得零分.15.设R a ∈,则“1>a ”是“12>a ”的( ).(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 16.下列极坐标方程中,对应的曲线为如图的是( ).(A )θρcos 56+= (B )65sin ρθ=+ (C )θρcos 56-= (D )65sin ρθ=- 17.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()2N n S S n *<∈恒成立的是( ).7.06.0,01<<>q a (B )6.07.0,01-<<-<q a(C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a18.设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均是增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( ).(A )①和②均为真命题 (B )①和②均为假命题(C )①为真命题,②为假命题 (D )①为假命题,②为真命题三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)本题共有2个小题,第一小题满分6分,第二小题满分6分.将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O的同侧.(1)求三棱锥111C O A B 的体积;(2)求异面直线1B C 与1AA 所成的角的大小.20.(本题满分14)本题共有2个小题,第1小题满分6分,第2小题满分8分. 有一块正方形菜地EFGH ,EH 所在直线是一条小河.收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域1S 和2S ,其中1S 中的蔬菜运到河边较近,2S 中的蔬菜运到F 点较近,而菜地内1S 和2S 的分界线C 上的点到河边与到F 点的距离相等,现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图.(1)求菜地内的分界线C 的方程;(2)菜农从蔬菜运量估计出1S 面积是2S 面积的两倍,由此得到1S 面积的“经验值”为38.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于1S 面积的经验值.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b -=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点.(1)若l 的倾斜角为π2,1F AB ∆是等边三角形,求双曲线的渐近线方程;(2)设b =,若l 的斜率存在,且11()0F A F B AB +⋅=,求l 的斜率.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知a R ∈,函数21()log ()f x a x =+.(1)当5a =时,解不等式()0f x >; (2)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰好有一个元素,求a的取值范围;(3)设0a >,若对任意1[,1]2t ∈,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,N )p q a a p q =∈,必有11p q a a ++=,则称{}n a 具有性质P . (1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+,判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin (N )n n n a b a n +=+∈.求证:“对任意1,{}n a a 都具有性质P”的充要条件为“{}nb是常数列”.考生注意:1. 本试卷共4页,23道试题,满分150分.考试时间120分钟.2. 本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3. 答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.设x R ∈,则不等式13<-x 的解集为_____________.【答案】(2,4) 【解析】试题分析:由题意得:1x 31-<-<,解得2x 4<<. 考点:绝对值不等式的基本解法.2.设32iz i +=,其中i 为虚数单位,则Im z =_____________.【答案】-3 【解析】 试题分析:32i23,Im z= 3.i z i +==--考点:1.复数的运算;2.复数的概念.3.已知平行直线012:,012:21=++=-+y x l y x l ,则l 1与l 2的距离是_____________.【解析】试题分析:利用两平行线间的距离公式得d ===.考点:两平行线间距离公式.4.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是_________(米). 【答案】1.76考点:中位数的概念.5.已知点(3,9)在函数x a x f +=1)(的图像上,则________)()(1=-x f x f 的反函数. 【答案】2log (1)x -【解析】试题分析: 将点(3,9)代入函数()xf x 1a =+中得a 2=,所以()xf x 12=+,用y 表示x 得2x log (y 1)=-,所以()12log (f x x 1)-=-.考点:反函数的概念以及指、对数式的转化.6.如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成的角的大小为32arctan,则该正四棱柱的高等于____________.【答案】【解析】试题分析:连结BD,则由题意得11122tan 33DD DBD DD BD ∠==⇒=⇒=.考点:线面角7.方程3sin 1cos 2x x =+在区间[]0,2π上的解为___________ .【答案】566ππ, 【解析】试题分析:化简3sinx 1cos 2x =+得:23sinx 22sin x =-,所以22sin x 3sinx 20+-=,解得1sinx 2=或sinx 2=-(舍去),又[]0,2πx ∈,所以566x ππ=或. 考点:二倍角公式及三角函数求值.8.在nx x ⎪⎭⎫ ⎝⎛-23的二项展开式中,所有项的二项式系数之和为256,则常数项等于_________. 【答案】112 【解析】试题分析:由二项式定理得:所有项的二项式系数之和为n2,即n2256=,所以n 8=,又二项展开式的通项为84r r 8rr r r 33r 1882T C ()(2)C x x --+=-=-,令84r 033-=,所以r 2=,所以3T 112=,即常数项为112.考点:二项式定理.9.已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.【解析】试题分析:利用余弦定理可求得最大边7所对应角的余弦值为22235712352+-=-⨯⨯,所以此角的正弦值2R=,所以R=.考点:正弦、余弦定理.10.设.0,0>>ba若关于,x y的方程组11ax yx by+=⎧⎨+=⎩,无解,则ba+的取值范围是____________.【答案】2+∞(,)【解析】试题分析:将方程组中上面的式子化简得y1ax=-,代入下面的式子整理得(1ab)x1b-=-,方程组无解应该满足1ab0-=且1b0-≠,所以ab1=且b1≠,所以由基本不等式得a b2+>=,即ba+的取值范围是2+∞(,).考点:方程组的思想以及基本不等式的应用.11.无穷数列{}na由k个不同的数组成,nS为{}na的前n项和.若对任意Nn*∈,{}3,2∈nS,则k的最大值为________.【答案】4考点:数列的项与和.12.在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线21xy-=上一个动点,则BABP⋅的取值范围是_____________.【答案】【解析】试题分析:由题意设(cos ,sin )P αα, ,则(cos ,1sin )BP αα=+,又,所以π=cos sin )+1[0,14BP BA ααα⋅+++∈+.考点:1.数量积的运算;2.数形结合的思想.13.设[),,0,2πa b R c ∈∈.若对任意实数x 都有()c bx a x +=⎪⎭⎫ ⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为 . 【答案】4【解析】试题分析:当2a =时,5sin(3)sin(32)sin(3)333πππx x πx -=-+=+,5(,)(3,)3πb c =,又4sin(3)sin[(3)]sin(3)333πππx πx x -=--=-+,4(,)(3,)3πb c =-,注意到[0,2)c π∈,所以只有2组:5(23,)3π,, 4(23,)3π-,满足题意;当2a =-时,同理可得出满足题意的()c b a ,,也有2组,故共有4组.考点:三角函数14.如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点ji A A ,,点P 满足=++j i OA OA OP ,则点P 落在第一象限的概率是_____________.【答案】528【解析】试题分析:[0,π]α∈(1,1)BA =共有2828C =种基本事件,其中使点P 落在第一象限的情况有2325C +=种,故所求概率为528.考点:古典概型三、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得五分,否则一律得零分.15.设R a ∈,则“1>a ”是“12>a ”的( ).(B )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 【答案】A【解析】试题分析:2211,111a a a a a >⇒>>⇒><-或,所以“1>a ”是“12>a ”的充分非必要条件,选A.考点:充要条件17.下列极坐标方程中,对应的曲线为如图的是( ).(B )θρcos 56+= (B )65sin ρθ=+ (C )θρcos 56-= (D )65sin ρθ=- 【答案】D【解析】试题分析:依次取30,,,22ππθπ=,结合图形可知只有65sin ρθ=-满足,选D.考点:极坐标方程18.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()2N n S S n *<∈恒成立的是( ).7.06.0,01<<>q a (B )6.07.0,01-<<-<q a(C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a 【答案】B考点:1.数列的极限;2.等比数列求和.18.设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均是增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( ).(A )①和②均为真命题 (B )①和②均为假命题(C )①为真命题,②为假命题 (D )①为假命题,②为真命题【答案】D 【解析】 试题分析:因为[()g(x)][()(x)][g()(x)]()2f x f x h x h f x +++-+=,所以[(+)g(+)][(+)(+)][g(+)(+)](+)2f x T x T f x T h x T x T h x T f x T +++-+=,又()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,所以[()g()][()()][g()()](+)=()2f x x f x h x x h x f x T f x +++-+=,所以()f x 是周期为T 的函数,同理可得()g x 、()h x 均是以T 为周期的函数,②正确;()f x 、()g x 、()h x 中至少有一个增函数包含一个增函数、两个减函数;两个增函数、一个减函数;三个增函数,其中当三个函数中一个为增函数、另两个为减函数时,由于减函数加减函数一定为减函数,所以①不正确.选D.考点:1.抽象函数;2.函数的单调性;3.函数的周期性.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)本题共有2个小题,第一小题满分6分,第二小题满分6分. 将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B长为3π,其中1B 与C 在平面11AAOO 的同侧. (1)求三棱锥111C O A B -的体积;(2)求异面直线1B C 与1AA 所成的角的大小.【答案】(1;(2)π4.【解析】试题分析:(1)由题意可知,圆柱的高1h =,底面半径1r =,1113π∠A O B =,再由三角形面积公式计算111S ∆O A B 后即得.(2)设过点1B 的母线与下底面交于点B ,根据11//BB AA ,知1C ∠B B或其补角为直线1CB 与1AA 所成的角,再结合题设条件确定πC 3∠OB =,C 1B =.得出1πC 4∠B B =即可.试题解析:(1)由题意可知,圆柱的高1h =,底面半径1r =.由11A B 的长为π3,可知111π3∠A O B =.11111111111sin 2S ∆O A B =O A ⋅O B ⋅∠A O B =111111C 1V 3S h -O A B ∆O A B =⋅=.从而直线1C B 与1AA 所成的角的大小为π4.考点:1.几何体的体积;2.空间角.20.(本题满分14)本题共有2个小题,第1小题满分6分,第2小题满分8分. 有一块正方形菜地EFGH ,EH 所在直线是一条小河.收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域1S 和2S ,其中1S 中的蔬菜运到河边较近,2S 中的蔬菜运到F 点较近,而菜地内1S 和2S 的分界线C 上的点到河边与到F 点的距离相等,现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图.(3)求菜地内的分界线C 的方程;(4)菜农从蔬菜运量估计出1S 面积是2S 面积的两倍,由此得到1S 面积的“经验值”为38.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于1S 面积的经验值.【答案】(1)24y x =(02y <<);(2)矩形面积为52,五边形面积为114,五边形面积更接近于1S 面积的“经验值”.【解析】试题分析:(1)由C 上的点到直线EH 与到点F 的距离相等,知C 是以F 为焦点、以EH 为准线的抛物线在正方形FG E H 内的部分.(2)通过计算矩形面积,五边形面积,以及计算矩形面积与“经验值”之差的绝对值,五边形面积与“经验值”之差的绝对值,比较二者大小即可.试题解析:(1)因为C 上的点到直线EH 与到点F 的距离相等,所以C 是以F 为焦点、以EH 为准线的抛物线在正方形FG E H 内的部分,其方程为24y x =(02y <<).(2)依题意,点M 的坐标为1,14⎛⎫⎪⎝⎭.所求的矩形面积为52,而所求的五边形面积为114.矩形面积与“经验值”之差的绝对值为581236-=,而五边形面积与“经验值”之差 的绝对值为11814312-=,所以五边形面积更接近于1S 面积的“经验值”. 考点:1.抛物线的定义及其标准方程;2.面积计算.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b -=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点.(1)若l 的倾斜角为π2,1F AB ∆是等边三角形,求双曲线的渐近线方程;(2)设b =,若l 的斜率存在,且11()0F A F B AB +⋅=,求l 的斜率.【答案】(1)y =;(2).【解析】 试题分析:(1)设(),x y A A A ,根据题设条件得到()24413b b +=,从而解得2b 的值.(2)设()11,x y A ,()22,x y B ,直线:l ()2y k x =-与双曲线方程联立,得到一元二次方程,根据l 与双曲线交于两点,可得230k -≠,且()23610k ∆=+>.再设AB 的中点为(),x y M M M ,由()11F F 0A +B ⋅AB =即1F 0M ⋅AB =,从而得到1F 1kk M⋅=-,进而构建关于k 的方程求解即可. 试题解析:(1)设(),x y A A A .由()22132y x y k x ⎧-=⎪⎨⎪=-⎩,得()222234430kx k x k --++=.因为l 与双曲线交于两点,所以230k -≠,且()23610k ∆=+>.设AB 的中点为(),x y M M M .由()11F F 0A +B ⋅AB =即1F 0M ⋅AB =,知1F M ⊥AB ,故1F 1k k M⋅=-.而2122223x x k x k M +==-,()2623k y k x k M M =-=-,1F 2323k k k M =-,所以23123k k k ⋅=--,得235k =,故l 的斜率为155±. 考点:1.双曲线的几何性质;2.直线与双曲线的位置关系;3.平面向量的数量积.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知a R ∈,函数21()log ()f x a x =+.(1)当5a =时,解不等式()0f x >; (2)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰好有一个元素,求a的取值范围;(3)设0a >,若对任意1[,1]2t ∈,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.【答案】(1)()1,0,4x ⎛⎫∈-∞-+∞ ⎪⎝⎭;(2)(]{}1,23,4;(3)2,3⎡⎫+∞⎪⎢⎣⎭.【解析】试题分析:(1)由21log 50x ⎛⎫+> ⎪⎝⎭,得151x +>,从而得解.(2)将其转化为()()24510a x a x -+--=,讨论当4a =、3a =时,以及3a ≠且4a ≠时的情况即可.(3)讨论()f x 在()0,+∞上的单调性,再确定函数()f x 在区间[],1t t +上的最大值与最小值之差,从而得到()2110at a t ++-≥,对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立. 试题解析:(1)由21log 50x ⎛⎫+> ⎪⎝⎭,得151x +>, 解得()1,0,4x ⎛⎫∈-∞-+∞ ⎪⎝⎭.(2)()1425a a x a x +=-+-,()()24510a x a x -+--=,当4a =时,1x =-,经检验,满足题意. 当3a =时,121x x ==-,经检验,满足题意.当3a ≠且4a ≠时,114x a =-,21x =-,12x x ≠.1x 是原方程的解当且仅当11a x +>,即2a >; 2x 是原方程的解当且仅当21a x +>,即1a >.于是满足题意的(]1,2a ∈.综上,a 的取值范围为(]{}1,23,4.因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,12t =时,y 有最小值3142a -,由31042a -≥,得23a ≥. 故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭.考点:1.对数函数的性质;2.函数与方程;3.二次函数的性质.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,N )p q a a p q =∈,必有11p q a a ++=,则称{}n a 具有性质P . (1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+,判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin (N )n n n a b a n +=+∈.求证:“对任意1,{}n a a都具有性质P ”的充要条件为“{}n b 是常数列”.【答案】(1)16;(2){}n a 不具有性质P ,理由见解析;(3)见解析.【解析】 试题分析:(1)根据已知条件,得到678332a a a a ++=++,结合67821a a a ++=求解即可.(2)根据{}n b 的公差为20,{}n c 的公比为13,写出通项公式,从而可得520193nn n n a b c n -=+=-+.通过计算1582a a ==,248a =,63043a =,26a a ≠,即知{}n a 不具有性质P .(3)从充分性、必要性两方面加以证明,其中必要性用反证法证明. 试题解析:(1)因为52a a =,所以63a a =,743a a ==,852a a ==. 于是678332a a a a ++=++,又因为67821a a a ++=,解得316a =.(2){}n b 的公差为20,{}n c 的公比为13,所以()12012019n b n n =+-=-,1518133n n n c --⎛⎫=⋅= ⎪⎝⎭.520193nn n n a b c n -=+=-+. 1582a a ==,但248a =,63043a =,26a a ≠, 所以{}n a 不具有性质P .[证](3)充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=.充分性得证.必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N , 使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠.设()sin f x x x b =--,取m *∈N ,使得πm b >,则()0f m m b ππ=->,()0f m m b ππ-=--<,故存在c 使得()0f c =.考点:1.等差数列、等比数列的通项公式;2.充要条件的证明;3.反证法.祝福语祝你考试成功!。
高考数学一轮总复习 专题1.2 命题及其关系、充分条件与必要条件练习(含解析)理-人教版高三全册数学
专题1.2 命题及其关系、充分条件与必要条件真题回放1.【2017年全国一卷理数(3)】设有下面四个命题1p :若复数满足1z ∈R ,则z ∈R ;2p :若复数满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B2.【2017年卷理数第6题】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件【答案】A 【解析】试题分析:若0λ∃<,使m n λ=,即两向量反向,夹角是0180,那么0cos1800m n m n m n ⋅==-<T ,若0m n ⋅<,那么两向量的夹角为(0090,180⎤⎦ ,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A. 3.【2017年某某卷理数第4题】设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件【答案】A4.【2017年某某数学第6题】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 +S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】试题分析:由d d a d a S S S =+-+=-+)105(22110211564,可知当0>d ,则02564>-+S S S ,即5642S S S >+,反之,02564>⇒>+d S S S ,所以为充要条件,选C .【考点】 等差数列、充分必要性 考点分析考点 了解A 掌握B 灵活运用C命题的概念 A 四种命题的相互关系 B 全称命题与特称命题 B 充分条件与必要条件C高考对命题及其关系和充分条件、必要条件的考查主要是以小题的形式来考查,由于知识载体丰富,因此题目有一定综合性,属于中、低档题.命题重点主要有两个:一是考查命题的四种形式以及真假判断,考查等价转化数学思想;二是以函数、方程、不等式、立体几何线面关系为背景的充分条件和必要条件的判定以及由充分条件和必要条件探求参数的取值X 围. 融会贯通题型一 四种命题的关系及真假判断【典例1】【2017届某某某某市高三理一诊】命题“若a b >,则a c b c +>+”的否命题是( ).A .若a b ≤,则a c b c +≤+B .若a c b c +≤+,则a b ≤C .若a c b c +>+,则a b >D .若a b >, 则a c b c +≤+ 【答案】A 【解析】试题分析:“若p 则”的否命题是“若p ⌝则q ⌝”,所以原命题的否命题是“若b a ≤,则c b c a +≤+”,故选A.考点:四种命题【例2】有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题,其中真命题的序号是________.【答案】②③解题方法与技巧:(1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,如果命题不是“若p ,则q ”的形式,应先改写成“若p ,则q ”的形式;如果命题有大前提,写其他三种命题时需保留大前提不变.(2)判断一个命题为真命题,要给出推理证明;判断一个命题为假命题,只需举出反例. (3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(4) 否命题与命题的否定是两个不同的概念:①否命题是将原命题的条件否定作为条件,将原命题的结论否定作为结论构造的一个新的命题;②命题的否定只是否定命题的结论,常用于反证法. 【变式训练】【2017届某某抚州市七校高三理上学期联考】,,A B C 三个学生参加了一次考试,,A B 的得分均为70分,C 的得分为65分.已知命题:p 若及格分低于70分,则,,A B C 都没有及格.在下列四个命题中,为p 的逆否命题的是( ) A .若及格分不低于70分,则,,A B C 都及格 B .若,,A B C 都及格,则及格分不低于70分 C .若,,A B C 至少有一人及格,则及格分不低于70分D .若,,A B C 至少有一人及格,则及格分高于70分 【答案】C考点:原命题与它的逆否命题之间的关系. 知识: 一.命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题. 二.四种命题及其关系 1.四种命题 命题 表述形式 原命题 若p ,则q 逆命题 若q ,则p 否命题 若p ⌝,则q ⌝逆否命题若q ⌝,则p ⌝即:如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互为逆命题;如果一个命题的条件和结论分别是原命题的条件和结论的否定,那么这两个命题叫做互否命题,这个命题叫做原命题的否命题;如果一个命题的条件和结论分别是原命题的结论和条件的否定,那么这两个命题叫做互为逆否命题,这个命题叫做原命题的逆否命题。
2019年上海市高考数学真题试卷(Word版,含解析)
2019年上海市高考数学真题试卷(Word版,含解析)2019年普通高等学校招生全国统一考试(上海卷)数学一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)已知集合,2,3,4,,,5,,则.2.(4分)计算.3.(4分)不等式的解集为.4.(4分)函数的反函数为.5.(4分)设为虚数单位,,则的值为6.(4分)已知,当方程有无穷多解时,的值为.7.(5分)在的展开式中,常数项等于.8.(5分)在中,,,且,则.9.(5分)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有种(结果用数值表示)10.(5分)如图,已知正方形,其中,函数交于点,函数交于点,当最小时,则的值为.11.(5分)在椭圆上任意一点,与关于轴对称,若有,则与的夹角范围为.12.(5分)已知集合,,,,存在正数,使得对任意,都有,则的值是.二、选择题(本大题共4题,每题5分,共20分)13.(5分)下列函数中,值域为,的是A.B.C.D.14.(5分)已知、,则“”是“”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件15.(5分)已知平面、、两两垂直,直线、、满足:,,,则直线、、不可能满足以下哪种关系A.两两垂直B.两两平行C.两两相交D.两两异面16.(5分)以,,,为圆心的两圆均过,与轴正半轴分别交于,,,,且满足,则点的轨迹是A.直线B.圆C.椭圆D.双曲线三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在正三棱锥中,.(1)若的中点为,的中点为,求与的夹角;(2)求的体积.18.(14分)已知数列,,前项和为.(1)若为等差数列,且,求;(2)若为等比数列,且,求公比的取值范围.19.(14分)改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍.卫生总费用包括个人现在支出、社会支出、政府支出,如表为2012年年我国卫生货用中个人现金支出、社会支出和政府支出的费用(单位:亿元)和在卫生总费用中的占比.年份卫生总费用(亿元)个人现金卫生支出社会卫生支出政府卫生支出绝对数(亿元)占卫生总费用比重绝对数(亿元)占卫生总费用比重绝对数(亿元)占卫生总费用比重201228119.009656.3234.3410030.7035.678431.9829.99201331668.9510729.3433.8811393.7935.989545.8130.14201435312.4011295.4131.9913437.7538.0510579.2329.96201540974.6411992.6529.2716506.7140.2912475.2830.45(数据来源于国家统计年鉴)(1)指出2012年到2015年之间我国卫生总费用中个人现金支出占比和社会支出占比的变化趋势:(2)设表示1978年,第年卫生总费用与年份之间拟合函数研究函数的单调性,并预测我国卫生总费用首次超过12万亿的年份.20.(16分)已知抛物线方程,为焦点,为抛物线准线上一点,为线段与抛物线的交点,定义:.(1)当时,求;(2)证明:存在常数,使得;(3),,为抛物线准线上三点,且,判断与的关系.21.(18分)已知等差数列的公差,,数列满足,集合.(1)若,求集合;(2)若,求使得集合恰好有两个元素;(3)若集合恰好有三个元素:,是不超过7的正整数,求的所有可能的值.2019年上海市春季高考数学试卷参考答案与试题解析一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)已知集合,2,3,4,,,5,,则,.【解答】解:集合,2,3,4,,,5,,,.故答案为:,.2.(4分)计算2.【解答】解:.故答案为:2.3.(4分)不等式的解集为.【解答】解:由得,即故答案为:,.4.(4分)函数的反函数为.【解答】解:由解得,故答案为5.(4分)设为虚数单位,,则的值为【解答】解:由,得,即,.故答案为:.6.(4分)已知,当方程有无穷多解时,的值为.【解答】解:由题意,可知:方程有无穷多解,可对①,得:.再与②式比较,可得:.故答案为:.7.(5分)在的展开式中,常数项等于15.【解答】解:展开式的通项为令得,故展开式的常数项为第3项:.故答案为:15.8.(5分)在中,,,且,则.【解答】解:,由正弦定理可得:,由,可得:,,由余弦定理可得:,解得:.故答案为:.9.(5分)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有24种(结果用数值表示)【解答】解:在五天里,连续的2天,一共有4种,剩下的3人排列,故有种,故答案为:24.10.(5分)如图,已知正方形,其中,函数交于点,函数交于点,当最小时,则的值为.【解答】解:由题意得:点坐标为,,点坐标为,,当且仅当时,取最小值,故答案为:.11.(5分)在椭圆上任意一点,与关于轴对称,若有,则与的夹角范围为,.【解答】解:设,则点,椭圆的焦点坐标为,,,,,,结合可得:,故与的夹角满足:,故,故答案为:,12.(5分)已知集合,,,,存在正数,使得对任意,都有,则的值是1或.【解答】解:当时,当,时,则,,当,时,则,,即当时,;当时,,即;当时,,当时,,即,,解得.当时,当,时,则,.当,,则,,即当时,,当时,,即,即当时,,当时,,即,,解得.当时,同理可得无解.综上,的值为1或.故答案为:1或.二、选择题(本大题共4题,每题5分,共20分)13.(5分)下列函数中,值域为,的是A.B.C.D.【解答】解:,的值域为,故错,的定义域为,,值域也是,,故正确.,的值域为,故错,的值域为,,故错.故选:.14.(5分)已知、,则“”是“”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【解答】解:等价,,得“”,“”是“”的充要条件,故选:.15.(5分)已知平面、、两两垂直,直线、、满足:,,,则直线、、不可能满足以下哪种关系A.两两垂直B.两两平行C.两两相交D.两两异面【解答】解:如图1,可得、、可能两两垂直;如图2,可得、、可能两两相交;如图3,可得、、可能两两异面;故选:.16.(5分)以,,,为圆心的两圆均过,与轴正半轴分别交于,,,,且满足,则点的轨迹是A.直线B.圆C.椭圆D.双曲线【解答】解:因为,则,同理可得,又因为,所以,则,即,则,设,则为直线,故选:.三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在正三棱锥中,.(1)若的中点为,的中点为,求与的夹角;(2)求的体积.【解答】解:(1),分别为,的中点,,则为与所成角,在中,由,,可得,与的夹角为;(2)过作底面垂线,垂直为,则为底面三角形的中心,连接并延长,交于,则,...18.(14分)已知数列,,前项和为.(1)若为等差数列,且,求;(2)若为等比数列,且,求公比的取值范围.【解答】解:(1),,;(2),存在,,存在,且,,,,或,公比的取值范围为,,.19.(14分)改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍.卫生总费用包括个人现在支出、社会支出、政府支出,如表为2012年年我国卫生货用中个人现金支出、社会支出和政府支出的费用(单位:亿元)和在卫生总费用中的占比.年份卫生总费用(亿元)个人现金卫生支出社会卫生支出政府卫生支出绝对数(亿元)占卫生总费用比重绝对数(亿元)占卫生总费用比重绝对数(亿元)占卫生总费用比重201228119.009656.3234.3410030.7035.678431.9829.99201331668.9510729.3433.8811393.7935.989545.8130.14201435312.4011295.4131.9913437.7538.0510579.2329.96201540974.6411992.6529.2716506.7140.2912475.2830.45(数据来源于国家统计年鉴)(1)指出2012年到2015年之间我国卫生总费用中个人现金支出占比和社会支出占比的变化趋势:(2)设表示1978年,第年卫生总费用与年份之间拟合函数研究函数的单调性,并预测我国卫生总费用首次超过12万亿的年份.【解答】解:(1)由表格数据可知个人现金支出占比逐渐减少,社会支出占比逐渐增多.(2)是减函数,且,在上单调递增,令,解得,当时,我国卫生总费用超过12万亿,预测我国到2028年我国卫生总费用首次超过12万亿.20.(16分)已知抛物线方程,为焦点,为抛物线准线上一点,为线段与抛物线的交点,定义:.(1)当时,求;(2)证明:存在常数,使得;(3),,为抛物线准线上三点,且,判断与的关系.【解答】解:(1)抛物线方程的焦点,,,的方程为,代入抛物线的方程,解得,抛物线的准线方程为,可得,,;(2)证明:当时,,设,,,则,联立和,可得,,,则存在常数,使得;(3)设,,,则,由,,则.21.(18分)已知等差数列的公差,,数列满足,集合.(1)若,求集合;(2)若,求使得集合恰好有两个元素;(3)若集合恰好有三个元素:,是不超过7的正整数,求的所有可能的值.【解答】解:(1)等差数列的公差,,数列满足,集合.当,集合,0,.(2),数列满足,集合恰好有两个元素,如图:根据三角函数线,①等差数列的终边落在轴的正负半轴上时,集合恰好有两个元素,此时,②终边落在上,要使得集合恰好有两个元素,可以使,的终边关于轴对称,如图,,此时,综上,或者.(3)①当时,,集合,,,符合题意.②当时,,,,或者,等差数列的公差,,故,,又,2当时满足条件,此时,1,.③当时,,,,或者,因为,,故,2.当时,,1,满足题意.④当时,,,所以或者,,,故,2,3.当时,,满足题意.⑤当时,,,所以,或者,,,故,2,3当时,因为对应着3个正弦值,故必有一个正弦值对应着3个点,必然有,,,,不符合条件.当时,因为对应着3个正弦值,故必有一个正弦值对应着3个点,必然有,,不是整数,不符合条件.当时,因为对应着3个正弦值,故必有一个正弦值对应着3个点,必然有或者,,或者,此时,均不是整数,不符合题意.综上,,4,5,6.。
2017年高考数学上海试题及解析
2021年上海市高考数学试卷一、填空题〔本大题共12题,总分值54分,第1~6题每题4分,第7~12题每题5分〕1.集合{1,2,3,4},集合{3,4,5},那么A∩.{3,4} 【解析】∵集合{1,2,3,4},集合{3,4,5},∴A∩{3,4}.2.〔2021年上海〕假设排列数=6×5×4,那么.2.3 【解析】∵排列数=6×5×…×(61),∴61=4,即3. 3.〔2021年上海〕不等式>1的解集为.3.(-∞,0) 【解析】由>1,得1>1,那么<0,解得x<0,即原不等式的解集为(-∞,0).4.〔2021年上海〕球的体积为36π,那么该球主视图的面积等于.4.9π 【解析】设球的半径为R,那么由球的体积为36π,可得πR3=36π,解得3.该球的主视图是半径为3的圆,其面积为πR2=9π.5.〔2021年上海〕复数z满足=0,那么.5 【解析】由=0,可得z2+3=0,即z23,那么±i,.6.〔2021年上海〕设双曲线=1〔b>0〕的焦点为F1,F2,P为该双曲线上的一点,假设15,那么2.6.11 【解析】双曲线=1中,=3,由双曲线的定义,可得126,又15,解得211或﹣1〔舍去〕,故211.7.〔2021年上海〕如图,以长方体1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,假设向量的坐标为〔4,3,2〕,那么向量的坐标是.7.(-4,3,2) 【解析】由的坐标为〔4,3,2〕,可得A〔4,0,0〕,C(0,3,2),D1(0,0,2),那么C1〔0,3,2〕,∴=〔﹣4,3,2〕.8.〔2021年上海〕定义在〔0,+∞〕上的函数〔x〕的反函数为﹣1〔x〕,假设g〔x〕为奇函数,那么1〔x〕=2的解为.8 【解析】g〔x〕1〔x〕=2,可得(2)=1-3-2,即1〔x〕=2的解为.9.〔2021年上海〕四个函数:①,②,③3,④,从中任选2个,那么事件“所选2个函数的图象有且仅有一个公共点〞的概率为.9 【解析】从四个函数中任选2个,根本领件总数=6,“所选2个函数的图象有且只有一个公共点〞包含的根本领件有①③,①④,共2个,∴事件“所选2个函数的图象有且只有一个公共点〞的概率为.10.〔2021年上海〕数列{}和{},其中2,n∈N*,{}的项是互不相等的正整数,假设对于任意n∈N*,{}的第项等于{}的第项,那么=10.2 【解析】∵2,n∈N*,假设对于一切n∈N*,{}中的第项恒等于{}中的第项,∴.∴b112,b422,b932,b1642.∴b1b4b9b16=(b1b2b3b4)2,=2.11.〔2021年上海〕设α1,α2∈R且α1)2α2)=2,那么|10π-α1-α2|的最小值等于.11 【解析】由-1≤α1≤1,可得1≤2 α1≤3,那么≤α1)≤≤2α2)≤α1)2α2)=2,那么α1)2α2)=1,即α12α2α1=2k1π,2α2=2k2π,k12∈Z.所以|10π-α1-α210π-(2k1π)-(k2π)10π-(2k12)π|,当2k12=11时,|10π-α1-α2|取得最小值. 12.〔2021年上海〕如图,用35个单位正方形拼成一个矩形,点P1,P2,P3,P4以及四个标记为“▲〞的点在正方形的顶点处,设集合Ω={P1,P2,P3,P4},点P∈Ω,过P作直线,使得不在上的“▲〞的点分布在的两侧.用D1〔〕和D2〔〕分别表示一侧和另一侧的“▲〞的点到的距离之和.假设过P的直线中有且只有一条满足D1〔〕2〔〕,那么Ω中所有这样的P为.12134【解析】设记为“▲〞的四个点为A,B,C,D,线段,,,的中点分别为E,F,G,H,易知为平行四边形,如下图,四边形两组对边中点的连线交于点P2,那么经过点P2的所有直线都是符合条件的直线.因此经过点P2的符合条件的直线有无数条;经过点P134的符合条件的直线各有1条,即直线P2P12P32P4.故Ω中所有这样的P为P134.二、选择题〔本大题共4题,每题5分,共20分〕13.〔2021年上海〕关于x,y的二元一次方程组的系数行列式D 为( )5,4 3)) 0,2 4)) 5,2 3)) 0,5 4))13 【解析】关于x,y的二元一次方程组的系数行列式.应选C.14.〔2021年上海〕在数列{}中,〔〕n,n∈N*,那么〔〕A.等于 B.等于0 C.等于 D.不存在14 【解析】数列{}中,〔〕n,n∈N*,那么()0.应选B.15.〔2021年上海〕为实常数,数列{}的通项2,n∈N*,那么“存在k∈N*,使得x100,x200,x300成等差数列〞的一个必要条件是〔〕≥0≤00 2015 【解析】存在k∈N*,使得x100,x200,x300成等差数列,可得2[a〔200〕2〔200〕]〔100〕2〔100〕〔300〕2〔300〕,化简得0,∴使得x100,x200,x300成等差数列的必要条件是a≥0.应选A.16.〔2021年上海〕在平面直角坐标系中,椭圆C1:=1和C2:x2 =1.P为C1上的动点,Q为C2上的动点,w是·的最大值.记Ω={〔P,Q〕在C1上,Q在C2上且·},那么Ω中的元素有〔〕A.2个B.4个C.8个D.无穷个16 【解析】P为椭圆C1:=1上的动点,Q为C2:x2=1上的动点,可设P〔6α,2α〕,Q〔β,3β〕,α,β∈[0,2π],那么·=6αβ+6αβ=6〔α-β〕,当α-β=2kπ,k∈Z时,·取得最大值6,即使得·的点对()有无穷多对,Ω中的元素有无穷个.三、解答题〔本大题共5题,共14+14+14+16+18=76分〕17.〔2021年上海〕如图,直三棱柱1B1C1的底面为直角三角形,两直角边和的长分别为4和2,侧棱1的长为5.〔1〕求三棱柱1B1C1的体积;〔2〕设M是中点,求直线A1M及平面所成角的大小.17.【解析】〔1〕∵直三棱柱1B1C1的底面为直角三角形,两直角边和的长分别为4和2,侧棱1的长为5.∴三棱柱﹣A1B1C1的体积△·1··1×4×2×5=20.〔2〕连接.∵直三棱柱1B1C1,∴1⊥底面.∴∠1是直线A1M及平面所成角.∵△是直角三角形,两直角边和的长分别为4和2,点M是的中点,∴×.由1⊥底面,可得1⊥,∴∠A1).∴直线A1M及平面所成角的大小为.18.〔2021年上海〕函数f〔x〕2x﹣2,x∈〔0,π〕.〔1〕求f〔x〕的单调递增区间;〔2〕设△为锐角三角形,角A所对边,角B所对边5,假设f〔A〕=0,求△的面积.18.【解析】〔1〕函数f〔x〕22 2,x∈〔0,π〕.由2kπ-π≤2x≤2kπ,解得kπ﹣≤x≤kπ,k∈Z.1时,≤x≤π,可得f〔x〕的增区间为[,π〕.〔2〕f〔A〕=0,即有2=0,解得22kπ±.又A为锐角,故.又5,由正弦定理得,38),那么,38).所以(),2)×,38)×,38),38).所以S△××5×,38),4).19.〔2021年上海〕根据预测,某地第n〔n∈N*〕个月共享单车的投放量和损失量分别为和〔单位:辆〕,其中5,第n个月底的共享单车的保有量是前n个月的累计投放量及累计损失量的差.〔1〕求该地区第4个月底的共享单车的保有量;〔2〕该地共享单车停放点第n个月底的单车容纳量4〔n﹣46〕2+8800〔单位:辆〕,设在某月底,共享单车保有量到达最大,问该保有量是否超出了此时停放点的单车容纳量?19.【解析】〔1〕前4个月共享单车的累计投放量为a1234=20+95+420+430=965,前4个月共享单车的累计损失量为b1234=6+7+8+9=30,∴该地区第4个月底的共享单车的保有量为965﹣30=935.〔2〕令≥,显然n≤3时恒成立,当n≥4时,有﹣10470≥5,解得n≤,∴第42个月底,保有量到达最大.当n≥4,{}为公差为﹣10等差数列,而{}为公差为1的等差数列,∴到第42个月底,共享单车保有量为×39+535×42×39+535×42=8782.又S42=﹣4×(42-46)2+8800=8736,8782>8736,∴第42个月底共享单车保有量超过了停放点的单车容纳量.20.〔2021年上海〕在平面直角坐标系中,椭圆Γ:2=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.〔1〕假设P在第一象限且,求P的坐标;〔2〕设P〔〕,假设以为顶点的三角形是直角三角形,求M的横坐标;〔3〕假设,直线及Γ交于另一点C且=2,=4,求直线的方程.20.【解析】〔1〕设P〔x,y〕〔x>0,y>0〕,由点P在椭圆Γ:2=1上且,可得2=1,22=2,))解得x22,那么P〔,3),,3)〕.〔2〕设M〔x0,0〕,A〔0,1〕,P〔,〕.假设∠90°,那么•=0,即〔,〕•〔x0﹣,﹣〕=0,∴〔﹣〕x0=0,解得x0.假设∠90°,那么•=0,即〔﹣x0,1〕•〔﹣x0,〕=0,∴x02x0=0,解得x0=1或x0.假设∠90°,那么M点在x轴负半轴,不合题意.∴点M的横坐标为或1或.〔3〕设C〔2α,α〕,∵=2,A〔0,1〕,∴Q〔4α,2α﹣1〕.又设P〔2β,β〕,M〔x0,0〕,∵,∴x02+1=〔2β﹣x0〕2+〔β〕2,整理得x0β.∵=〔4α﹣2β,2α﹣β﹣1〕,=〔β,﹣β〕,=4,∴4α﹣2β=﹣5β,2α﹣β﹣1=﹣4β.∴β=﹣α,β〔1﹣2α〕.以上两式平方相加,整理得3〔α〕2α﹣2=0,∴α或α=﹣1〔舍去〕.此时,直线的斜率,10)〔负值已舍去〕,如图.∴直线的方程为为,10)1.21.〔2021年上海〕设定义在R上的函数f〔x〕满足:对于任意的x1,x2∈R,当x1<x2时,都有f〔x1〕≤f〔x2〕.〔1〕假设f〔x〕3+1,求a的取值范围;〔2〕假设f〔x〕是周期函数,证明:f〔x〕是常值函数;〔3〕设f〔x〕恒大于零,g〔x〕是定义在R上的恒大于零的周期函数,M是g〔x〕的最大值.函数h〔x〕〔x〕g〔x〕.证明:“h〔x〕是周期函数〞的充要条件是“f〔x〕是常值函数〞.21.【解析】〔1〕由f〔x1〕≤f〔x2〕,得f〔x1〕﹣f〔x2〕〔x13﹣x23〕≤0,∵x1<x2,∴x13﹣x23<0,得a≥0.故a的取值范围是[0,+∞〕.〔2〕证明:假设f〔x〕是周期函数,记其周期为,任取x0∈R,那么有f〔x0〕〔x0〕.由题意,对任意x∈[x0,x0],f〔x0〕≤f〔x〕≤f〔x0〕,∴f〔x0〕〔x〕〔x0〕.又∵f〔x0〕〔x0〕,n∈Z,并且…∪[x0﹣3,x0﹣2]∪[x0﹣2,x0﹣]∪[x0﹣,x0]∪[x0,x0]∪[x0,x0+2]∪…,∴对任意x∈R,f〔x〕〔x0〕,为常数.〔3〕证明:(充分性)假设f〔x〕是常值函数,记f〔x〕1,设g 〔x〕的一个周期为,那么h〔x〕1•g〔x〕,对任意x0∈R,h〔x0〕1•g〔x0〕1•g〔x0〕〔x0〕,故h〔x〕是周期函数.(必要性)假设h〔x〕是周期函数,记其一个周期为.假设存在x1,x2,使得f〔x1〕>0,且f〔x2〕<0,那么由题意可知,x1>x2,那么必然存在正整数N1,使得x21>x1,∴f〔x21〕>f〔x1〕>0,且h〔x21〕〔x2〕.又h〔x2〕〔x2〕f〔x2〕<0,而h〔x21〕〔x21〕f〔x21〕>0≠h〔x2〕,矛盾.综上,f〔x〕>0恒成立.由f〔x〕>0恒成立,任取x0∈A,那么必存在N2∈N,使得x0﹣N2≤x0﹣,即[x0﹣,x0]⊆[x0﹣N2,x0],∵…∪[x0﹣3,x0﹣2]∪[x0﹣2,x0﹣]∪[x0﹣,x0]∪[x0,x0]∪[x0,x0+2]∪…,∴…∪[x0﹣2N2,x0﹣N2]∪[x0﹣N2,x0]∪[x0,x02]∪[x02,x0+2N2]∪….h〔x0〕〔x0〕•f〔x0〕〔x0﹣N2〕〔x0﹣N2〕•f〔x0﹣N2〕,∵g〔x0〕≥g〔x0﹣N2〕>0,f〔x0〕≥f〔x0﹣N2〕>0.因此假设h〔x0〕〔x0﹣N2〕,必有g〔x0〕〔x0﹣N2〕,且f〔x0〕〔x0﹣N2〕.而由〔2〕证明可知,对任意x∈R,f〔x〕〔x0〕,为常数.必要性得证.综上所述,“h〔x〕是周期函数〞的充要条件是“f〔x〕是常值函数〞.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017上海高考数学试题(完整Word版含解析)2017年上海市高考数学试卷1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B =2. 若排列数6654mP =⨯⨯,则m =3. 不等式11x x ->的解集为4. 已知球的体积为36π,则该球主视图的面积等于 5. 已知复数z 满足30z z +=,则||z = 6. 设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =,则2||PF =7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0xx g x f x x ⎧-≤⎪=⎨>⎪⎩为 奇函数,则1()2f x -=的解为9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为 10. 已知数列{}na 和{}nb ,其中2nan =,*n ∈N ,{}nb 的项A. 等于12-B. 等于0C. 等于12D. 不存在 15. 已知a 、b 、c 为实常数,数列{}nx 的通项2n x an bn c=++,*n ∈N ,则“存在*k ∈N ,使得100kx +、200kx+、300kx +成等差数列”的一个必要条件是( ) A. 0a ≥ B. 0b ≤ C.c =D.20a b c -+=16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q PΩ=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积;(2)设M 是BC 中点,求直线1A M与平面ABC 所成角的大小.18. 已知函数221()cossin 2f x x x =-+,(0,)x π∈.(1)求()f x 的单调递增区间; (2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和nb (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5nbn =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量; (2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800nSn =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20. 在平面直角坐标系xOy 中,已知椭圆22:14xy Γ+=,A 为Γ的上顶点,P 为Γ上异于 上、下顶点的动点,M 为x 正半轴上的动点. (1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =,求直线AQ 的方程.21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax=+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数; (3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值.函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.2017年上海市高考数学试卷2017.6一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B =【解析】{3,4}AB =2. 若排列数6654mP =⨯⨯,则m =【解析】3m =3. 不等式11x x ->的解集为 【解析】111100x x x->⇒<⇒<,解集为(,0)-∞ 4. 已知球的体积为36π,则该球主视图的面积等于【解析】3436393rr S πππ=⇒=⇒= 5. 已知复数z 满足30z z +=,则||z = 【解析】23||zz z =-⇒=⇒=6. 设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =, 则2||PF =【解析】226||11a PF =⇒=7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为【解析】(4,0,0)A ,1(0,3,2)C ,1(4,3,2)AC =-8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y fx -=,若31,0()(),0xx g x f x x ⎧-≤⎪=⎨>⎪⎩为 奇函数,则1()2fx -=的解为【解析】()31(2)918xf x f =-+⇒=-+=-,∴1()2f x -=的解为8x =-9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为 【解析】①③、①④的图像有一个公共点,∴概率为24213C = 10. 已知数列{}na 和{}nb ,其中2nan =,*n ∈N ,{}nb 的项是互不相等的正整数,若对于任意*n ∈N ,{}nb 的第n a 项等于{}n a 的第nb 项,则149161234lg()lg()b b b b b b b b = 【解析】222149161491612341234lg()()2lg()nn a b n n b b b b ba b b b b b b b b b b b b b b =⇒=⇒=⇒=11. 设1a 、2a ∈R ,且121122sin2sin(2)αα+=++,则12|10|παα--的最小值等于 【解析】111[,1]2sin 3α∈+,211[,1]2sin(2)3α∈+,∴121112sin 2sin(2)αα==++, 即12sin sin(2)1αα==-,∴122k παπ=-+,24k παπ=-+,12min |10|4ππαα--=12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“ ”的点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线Pl ,使得不在Pl 上的“ ”的点分布在Pl 的两侧. 用1()PD l 和2()PD l 分别表示Pl 一侧 和另一侧的“ ”的点到Pl 的距离之和. 若过P 的直线Pl 中有且只有一条满足12()()PPD l D l =,则Ω中所有这样的P 为 【解析】1P 、3P二. 选择题(本大题共4题,每题5分,共20分)13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A. 0543B.1024C.1523D.6054【解析】C14. 在数列{}na 中,1()2nna=-,*n ∈N ,则lim nn a →∞( )A. 等于12-B. 等于0C. 等于12D. 不存在 【解析】B15. 已知a 、b 、c 为实常数,数列{}nx 的通项2n x an bn c=++,*n ∈N ,则“存在*k ∈N ,使得100kx +、200kx+、300kx +成等差数列”的一个必要条件是( ) A. 0a ≥ B. 0b ≤ C.c =D.20a b c -+=【解析】A16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q PΩ=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个 【解析】D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积;(2)设M 是BC 中点,求直线1A M与平面ABC 所成角的大小. 【解析】(1)20V S h =⋅= (2)tanθ==18. 已知函数221()cossin 2f x x x =-+,(0,)x π∈.(1)求()f x 的单调递增区间; (2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积. 【解析】(1)1()cos22f x x =+,(0,)x π∈,单调递增区间为[,)2ππ (2)1cos223A A π=-⇒=,∴225191cos 2252c A c c +-==⇒=⋅⋅或3c =,根据锐角三角形,cos 0B >,∴3c =,1sin 2S bc A ==19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和nb (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5nbn =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量; (2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800nSn =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【解析】(1)12341234()()96530935a aa ab b b b +++-+++=-=(2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大12341234(42050)38(647)42()()[965]878222a a a ab b b b +⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=2424(4246)88008736S =--+=,∴此时保有量超过了容纳量.20. 在平面直角坐标系xOy 中,已知椭圆22:14xy Γ+=,A 为Γ的上顶点,P 为Γ上异于 上、下顶点的动点,M 为x 正半轴上的动点. (1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =, 求直线AQ 的方程. 【解析】(1)联立22:14x yΓ+=与222xy +=,可得P(2)设(,0)M m ,283833(,1)(,)055555MA MP m m m m m ⋅=-⋅-=-+=⇒=或1m =8283864629(,)(,)0555********PA MP m m m ⋅=-⋅-=-+=⇒=(3)设0(,)P x y ,线段AP 的中垂线与x 轴的交点即03(,0)8M x ,∵4PQ PM =, ∴03(,3)2Q x y --,∵2AQ AC =,∴0133(,)42y C x --,代入并联立椭圆方程,解得9x =,019y =-,∴1()3Q ,∴直线AQ 的方程为110y x =+21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax=+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数; (3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值.函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.【解析】(1)0a ≥;(2)略;(3)略.。