螺旋板式换热器的设计

螺旋板式换热器的设计
螺旋板式换热器的设计

长江大学毕业设计(论文)任务书

学院(系)机械工程学院专业过程装备与控制工程班级装备10901学生姓名指导教师/职称

1.毕业设计(论文)题目:

螺旋板式换热器的设计

2.毕业设计(论文)起止时间:

2013 年3月20日~2013年6月13日

3.毕业设计(论文)所需资料及原始数据(指导教师选定部分)毕业设计所需资料:

(1)钱颂文.换热器设计手册[M].北京:化学工业出版社,2002

(2)史美中,王中铮.热交换器原理与设计[M].南京:东南大学出版社,1989 (3)潘国昌,郭庆丰.化工设备设计[M].北京:清华大学出版社,1996

(4)尾花英朗著,徐忠权译.热交换器设计手册[M].北京:石油工业出版社,1982

原始数据:

设计要求:换热器换热面积为20平方米;

介质温度(℃) 工作压

力(MPa)

粗苯

贫油进口180 出口165 1 富油90140

粗苯产量8.25吨/每天

4.毕业设计(论文)应完成的主要内容1)换热器发展概述

2)方案设计

3)换热计算

4)结构设计

5)换热性能预测及分析

6)壳体的有限元分析

5.毕业设计(论文)的目标及具体要求

毕业设计文说明书:字数不少于1.2万字或1.2万字篇幅的内容;翻译:与

研究课题有关的译文不少于3千汉字(或2万印刷字符的外文原文的翻译);阅

读与研究课题相关的有代表性的参考文献资料15篇以上。

绘图要求:

(1)总装图1张,

(2)零件图4张

(3)实体图

6、完成毕业设计(论文)所需的条件及上机时数要求

AutoCAD、Aspen Plus、Ansys上机200小时。

任务书批准日期 2011 年 3 月 20 日教研室(系)主任(签字)

任务书下达日期 2011年 3 月 28 日指导教师(签字) 完成任务日期年月日学生(签名)

长江大学

毕业设计开题报告

题目名称螺旋换热器的设计

院(系)机械工程学院

专业班级过程装备与控制工程10901班学生姓名

指导教师

辅导教师

开题报告日期2011年4月19日

螺旋换热器的设计

1题目来源

题目来源于生产实际。

2研究目的和意义

管壳式换热器是石油、化工、轻工、食品、冶金及动力等工业部门广泛应用的节能设备。相对水- 水管壳式换热器而言,一般壳程流体流速较低,换热热阻较大,因此增强壳程换热效果显得尤为重要。近年来,人们采用各种各样的管束支撑结构来改变壳程流体的流动形态,以求增强壳程换热。其中螺旋折流板支撑结构以其高效传热、低流阻的特点得到了人们的广泛关注。

螺旋流换热器是一种利用流体的涡旋流动来强化壳程传热的换热设备。涡旋流动是流体沿一定螺旋角方向的曲线运动,因而是一种以较少能量克服流动阻力的运动方式,在换热器中采用螺旋折流板结构时,可使壳程流场与温度场实现协同而获得较高的强化传热效果。

换热设备按照其功能可命名,如冷凝器、蒸发器、再热器、过热器等,按换热部件的特点可分为:管壳式换热器、翅片管式换热器、板式换热器(包括板片式换热器和板翅式换热器)。对于各型换热器的强化换热技术的研究,主要集中在对换热器内流体流态变化以及对各部件的参数优化研究两方面,而对换热器部件参数的主要研究对象就是换热管(板)排列方式(顺排或叉排)、换热管(板)排数、换热管(板)间距大小、肋片布置间距、肋片形状等。通常的研究方法包括:数值模拟计算、实验方法研究、理论研究三类

本文通过设计一种合理结构的螺旋换热器,可以大大提高换热效率,节省能耗,因此,具有明显的经济效益。是一种高效的换热元件,广泛应用于各种换热设备中,不仅可以强化传热,而且可以减少流动阻力,热效率比较高。

3阅读的主要参考文献及资料名称

【1】郭丙然.最优化技术在电厂热力工程中的应用[M].北京:水利电力出版社,1986.

【2】马重芳,顾维藻& 强化传热[M]( 北京科学出版社)

【3】张敏.唐晓初螺旋扭曲椭圆扁管的数值模拟[期刊论文]-制冷空调与电力机械 2011(1)

【4】金晓明.高磊.张莹莹.王娜.王旭光无折流板扭曲扁管热交换器传热与流阻特性试验研究[期刊论文]-石油化工设备 2011(1)

【5】鲍伟.马虎根.张希忠流体在螺旋管内对流换热和压降性能的数值模拟[期刊论文]-上海理工大学学报 2011(1)

【6】于洋.朱冬生.曾力丁.邹静扭曲管强化传热性能实验研究[期刊论文]-化学工程 2011(2)

【7】杨胜.张颂.张莉.徐宏螺旋扁管强化传热技术研究进展[期刊论文]-冶金能源 2010(3)

【8】刘庆亮.朱冬生.杨蕾螺旋扭曲扁管换热器的研究进展与工业应用[期刊论文]-流体机械 2010(3)

【9】马程华扭曲片管强化传热技术在SRT-Ⅳ型裂解炉上的应用试验[期刊论文]-中外能源 2010(10)

【10】杨胜.张莉.徐宏.赵力伟螺旋扁管管外蒸汽冷凝双侧强化传热试验研究[期刊论文]-低温与超导 2010(10)

【11】罗朝阳管壳式换热器强化传热技术的研究与进展[期刊论文]-化学工程与装备 2010(10)

【12】金弋螺旋隔板换热器研究进展[期刊论文]-化肥设计 2009(2)

【13】李安军.邢桂菊.周丽雯换热器强化传热技术的研究进展[期刊论文]-冶金能源 2008(1)

【13】刘敏珊.宫本希.董其伍.Dong Qiwu 螺旋扁管的换热性能研究[期刊论文]-石油机械 2008(2)

【14】刘乾.刘阳子管壳式换热器节能技术综述[期刊论文]-化工设备与管道 2008(5)

【13】高学农.邹华春.王端阳.陆应生高扭曲比螺旋扁管的管内传热及流阻性能[期刊论文]-华南理工大学学报(自然科学版) 2008(11)

【14】李安军.邢桂菊.周丽雯换热器各种管束支撑的结构与传热性能[期刊论文]-化工设备与管道 2008(2)

【15】卿德藩.邹家柱螺旋扁管在油冷却器中的污垢特性实验研究[期刊论文]-电站系统工程 2008(2)

【16】卿德藩.段小林.刘尹红扭曲扁管在蒸发器中的运行特性实验研究[期刊论文]-化学工程 2008(7)

【17】高鹏.王晨.桑芝富螺旋扁管换热器温度串级模糊控制试验研究[期刊论文]-石油机械 2008(11)

【18】卿德藩.邹家柱螺旋扁管冷凝器强化传热评价与应用[期刊论文]-流体机械 2007(1)

【19】lncropera and de Witt, Fundamentals of heat and mass transfer, Wiley ed., (1990).

【20】J. F. Durastanti, Mod61isation d'un systhme thermique complexe: la centrale THEK 2, Th~sede doctorat de l'Universit6 de Provence, (1985).

【21】Zienkiewicz and Morgan, Finite elements and approximation, Wiley ed., (1983).

【22】Sedriks, A.J.: Stress corrosion cracking of stainless steels. In:Stress corrosion cracking. ASM, Materials Park (1992)

【23】 1.V. Ya. Gal'tsov and V. M. Korotaev,Author'sCertificateNo.370444,Otkrytiya,Izobreteniya,Promyshiennye Obraztsy,Tovarnye Znaki, No. 11 (2006).

4国内外研究现状和发展趋势

4.1国内换热器研究现状

我国对某些种类的换热器已经建立了标准,形成了系列。换热器的应用广泛,日常生活中取暖用的暖气散热片、汽机装置中的航天火箭上的冷却器等,都是换热器。它还广泛应用于化工、石油、动力和原子能等工业部门。他的主要功能是保证工艺过程对戒指所要求的待定温度,同时也是提高能源利用率的主要设备之一。换热器即可是一种单元设备,如加热器、冷却器等,也可是工艺设备的组成部分,如氨合成塔内的换热器。换热器是化工生产中重要的单元设备,根据统计,热交换热的吨位约占整个工艺设备的20%有的甚至高达30%,其重要性可想而知。

4.2国外研究现状

美国传热研究(Heat Transfer Research Inc.)即HTRI,是1962年发起组建的一个国际性、非赢利的合作研究机构,会员数百家,遍及全球,取得了大量

的研究成果,积累了换热器设计的丰富经验,在传热机理、两相流、振动、污垢、模拟及测试技术方面作出了巨大贡献。近年来,该公司在计算机应用软件开发上发展很快,所开发的网络优化软件、各种换热器工艺设计软件计算精度准确,不仅节省了人力,提高了效率,而且提高了技术经济性能。目前国内有近20家成为HTRI会员。

英国传热及流体服务中心(Heat Transfer andFluid Flow Service)即HTFS,于1967年成立,隶属于英国原子能管理局。该中心有会员数百家,长期从事传热与流体课题的研究,所积累的经验和研究成果不仅广泛用于原子能工业,而且用于一般工业。它最大特点是与各大学和企业合作,进行专门的课题研究,研究成果显着。在传热与流体计算上更精确,开发的HTFS、TASC各类换热器微机计算软件备受欢迎,国内有30多家企业成为会员。

4.3发展趋势

在二十世纪初,对于管壳式换热器的开发设计就被科学家提出,当时对于这种新型的换热设备开发设计的目的是为了满足大型电厂对在较高压力操作环境下运行的需要。经过近一个世纪的发展,对于管壳式换热器设计生产制造已经有了质的飞跃,其已经拥有比较完善的设计和生产加工方法,同时其工作性能可以较好地满足各种工艺需要。其中Bell-Delaware设计和Tinker的流路分析法是工艺设计领域地位最高的两种方法。

但是,随着高科技手段在换热设备之中不断引入,对于换热器在特殊环境下的适应性的要求越来越高,而且对于设备本身的结构设计要求越来越苛刻,但是管壳式换热器所具备的优势越趋明显,因为其本身的设计初衷就是为了满足在这些苛刻的工作条件。换热器是化工、石油、能源等各工业中应用相当广泛的单元设备之一。据统计,在现代化学工业中换热器的投资大约占设备总投资的30%,在炼油厂中占全部工艺设备的40%左右,海水淡化工艺装置则几乎全部是由换热器组成的。对国外换热器市场的调查表明,虽然各种板式换热器的竞争力在上升,但管壳式换热器仍占主导地位约64%。新型换热元件与高效换热器开发研究的结果表明,列管式换热器已进入一个新的研究时期,无论是换热器传热管件,还是壳程的折流结构都比传统的管壳式换热器有了较大的改变,其流体力学性能、换热效率、抗振与防垢效果从理论研究到结构设计等方面也均有了新的进步。

5主要研究内容、需重点研究的关键问题及解决思

5.1 毕业设计(论文)应完成的主要内容

1)换热器发展概述

2)方案设计

3)换热计算

4)结构设计

5)换热性能预测及分析

6)壳体的有限元分析

5.2 毕业设计(论文)应知的研究方向

5.2.1 旋风除尘器的优点

换热器传热与流体流动计算的准确性,取决于物性模拟的准确性。因此,物性模拟一直为传热界重点研究课题之一,特别是两相流物性模拟。两相流的物性基础来源于实验室实际工况的模拟,这恰恰是与实际工况差别的体现。实验室模拟实际工况很复杂,准确性主要体现与实际工况的差别。纯组分介质的物性数据基本上准确,但油气组成物的数据就与实际工况相差较大,特别是带有固体颗粒的流体模拟更复杂。为此,要求物性模拟在实验手段上更加先进,测试的准确率更高。从而使换热器计算更精确,材料更节省。物性模拟将代表换热器的经济技

术水平。

5.2.2 分析设计的研究

分析设计是近代发展的一门新兴学科,美国ANSYS软件技术一直处于国际领先技术,通过分析设计可以得到流体的流动分布场,也可以将温度场模拟出来,这无疑给流路分析法技术带来发展,同时也给常规强度计算带来更准确、更便捷的手段。在超常规强度计算中,可模拟出应力的分布图,使常规方法无法得到的计算结果能更方便、快捷、准确地得到,使换热器更加安全可靠。这一技术随着计算机应用的发展,将带来技术水平的飞跃。将会逐步取代强度试验,摆脱实验

室繁重的劳动强度。

5.2.3 大型化及能耗研究

换热器将随装置的大型化而大型化,直径将超过5m,传热面积将达到单位10000m2,紧凑型换热器将越来越受欢迎。板壳式换热器、折流杆换热器、板翅式换热器、板式空冷器将得到发展,振动损失将逐渐克服,高温、高压、安全、可靠的换热器结构将朝着结构简单、制造方便、重量轻发展。随着全球水资源的

紧张,循环水将被新的冷却介质取代,循环将被新型、高效的空冷器所取代。保

温绝热技术的发展,热量损失将减少到目前的50%以下。

5.2.4 强化技术研究

各种新型、高效换热器逐步取代现有常规产品。电场动力效应强化传热技术、添加物强化沸腾传热技术、通入惰性气体强化传热技术、滴状冷凝技术、微生物传热技术、磁场动力传热技术将会在新的世纪得到研究和发展。同心管换热器、高温喷流式换热器、印刷线路板换热器、穿孔板换热器、微尺度换热器、微通道

换热器、流化床换热器、新能源换热器将在工业领域及其它领域得到研究和应用。

5.2.5 新材料研究

材料将朝着强度高、制造工艺简单、防腐效果好、重量轻的方向发展。随着稀有金属价格的下降,钛、钽、锆等稀有金属使用量将扩大,CrMo钢材料将实

现不预热和后热的方向发展。

5.2.6 控制结垢及腐蚀的研究

国内污垢数据基本上是20世纪60~70年代从国外照搬而来。四十年来,污垢研究技术发展缓慢。随着节能、增效要求的提高,污垢研究将会受到国家的重视和投入。通过对污垢形成的机理、生长速度、影响因素的研究,预测污垢曲线,从而控制结垢,这对传热效率的提高将带来重大的突破。保证装置低能耗、长周期运行,超声防垢技术将得到大力发展。腐蚀技术的研究将会有所突破,低成本的防腐涂层特别是金属防腐镀层技术将得到发展,电化学防腐技术成为主导。6 完成毕业设计所必备的工作条件及解决办法

6.1 完成毕业设计所需的工作条件

复习大学四年所学的有关力学和过程装备及计算机等专业知识,学习有关换热器及其各个零件的加工、制造和装配知识,结合三次生产实习及实践和市场考察,充分了解与换热器有关的设计知识,通过科学的组织调研,计算分析,设计,绘图,从而把方案设想转化为设计思路及方法,可以加工为产业产品。

6.2 工具书与计算机辅助设计软件

化工设计手册和化工汉英词典、AutoCAD2007 Solidworks ANSYS 等等计算机辅助软件。

7工作的主要阶段、进度,与时间安排

第一周 3月15-21日选题,定毕业设计

第二周 3月22-28日查找资料,外文翻译

第三周 4月1-18日写开题报告

第四周 4月19-26日撰写开题报告找老师修改

第五周 4月27-30日螺旋换热器的设计

第六周 5月1-6日螺旋换热器的设计

第七周 5月7-14日螺旋换热器的设计

第八周 5月15-20日学习相关软件

第九周 5月21-25日做出设计方案

第十周 5月26-30日绘制零件图与装备图

第十一周 6月1-5日撰写毕业论文并修改

第十二周写毕业论文及修改审查

8指导老师审查意见

长江大学毕业设计指导教师评审意见

学生姓名专业班级装备10901班

毕业论文

螺旋板式换热器的设计

(设计)题目

指导教师职称评审日期

评审参考内容:毕业论文(设计)的研究内容、研究方法及研究结果,难度及工作量,质量和水平,存在的主要问题与不足。学生的学习态度和组织纪律,学生掌握基础和专业知识的情况,解决实际问题的能力,毕业论文(设计)是否完成规定任务,达到了学士学位论文的水平,是否同意参加答辩。

评审意见:

指导教师签名:评定成绩(百分制):_______分

长江大学毕业设计评阅教师评语

学生姓名专业班级装备10901班

毕业论文

螺旋换热器的设计

(设计)题目

评阅教师职称评阅日期

评阅参考内容:毕业论文(设计)的研究内容、研究方法及研究结果,难度及工作量,质量和水平,存在的主要问题与不足。学生掌握基础和专业知识的情况,解决实际问题的能力,毕业论文(设计)是否完成规定任务,达到了学士学位论文的水平,是否同意参加答辩。

评语:

评阅教师签名:评定成绩(百分制):_______分

长江大学毕业设计答辩记录及成绩评定

学生姓名专业班级装备10901班

毕业论文

螺旋换热器的设计

(设计)题目

答辩时间年月日~时答辩地点

一、答辩小组组成

答辩小组组长:

成员:

二、答辩记录摘要

答辩小组提问(分条摘要列举)学生回答情况评判

三、答辩小组对学生答辩成绩的评定(百分制):_______分

毕业论文(设计)最终成绩评定(依据指导教师评分、评阅教师

等级(五级制):_______ 评分、答辩小组评分和学校关于毕业论文(设计)评分的相关规定)

答辩小组组长(签名) :秘书(签名):年月日院(系)答辩委员会主任(签名):院(系)(盖章)

螺旋板式换热器的设计摘要

[摘要] 螺旋板式换热器是一种低压将换热器,虽然螺旋板式换热器在国内的应用越来越多,但很多工艺计算往往以来外国公司,主要原因是实验数据少,不足以归纳出螺旋绕流流动和传热关联式。本论文针对螺旋板式换热器,采用计算与数值模拟的方法研究其壳程流体的换热性能和流动阻力,提出螺旋流流动传热系数及阻力关联式,丰富流体流动和传热理论,并为螺旋板式换热器的工程设计和应用提供参考。

在计算方面,设计了不同进出口液体的温度,得到了热液体在定性温度下,热贫油与热富油的物理参数,做了传热工艺等计算。为了改善外壳与螺旋板的连接结构,提高外壳的承压能力,设计了由两圈环组合焊接而成的圆筒作为螺旋板式换热器的外壳,又通过合理的焊接,有效避免了角焊接的存在,提高了可拆式螺旋板换热器的结构可靠性。

在数值模拟部分,利用CFD软件,分析了圆形、椭圆形、方形和棱形定距柱螺旋通道的传热及流动特性,并将其综合性能进行了比较。数值模拟结果表明:1)三角形排列沿长轴绕流时的椭圆形定距柱螺旋通道的综合性能高于圆形定距柱螺旋通道的综合性能,当a/b=2.0~2.5时,椭圆形定距柱螺旋通道的综合性能指数最高;2)对于沿长轴绕流时的椭圆形定距柱,三角形排列时的综合性能高于正方形排列时的综合性能;3)沿长轴绕流时的综合性能高于沿短轴绕流时的性能;4)在同样的排列方式,方形和棱行螺旋通道的综合性能均不如圆形定距柱螺旋通道的综合性能。

综合计算结果和数据模拟结果,椭圆形定距柱螺旋板式换热器的综合性能优于圆形距柱的综合性能,在a/b=2.0~2.5时综合性能最优。

[关键词] 螺旋板式换热器强化传热定距柱压力降数值模拟The design summary of the Spiral plate heat

exchange

[Abstract] Spiral plate heat exchanger is a low pressure heat exchangers,although more and more spiral plate heat exchangers are being applicated in the country,but many technology are relying on the computing technology,the main reason is that the experimental datas are so less ,which can not enough to sum up the flount of the spiral arounding flow .In In this thesis, the main purpose is to research spiral plate heat exchangers, wei use computational methods and numerical simulations to study the shell-side fluid flow resistance and heat transfer performance ,of which proposed helical flow resistance of flow and heat transfer coefficient and the relational, rich fluid flow and heat transfer theory, and spiral plate heat exchanger for the engineering design and application of reference.

In computing terms, the design temperature of the liquid of different export obtained qualitative temperature hot liquid, hot lean physical and thermal parameters of the oil-rich, so the heat transfer process and other computing. In order to improve the connection between the shell and the spiral plate structure, improve the ability of the pressure shell, designed by the combination of two laps ring welded cylinders as spiral plate heat exchanger shell, but also through reasonable welding, effectively avoiding the fillet weld presence, improved detachable spiral plate heat exchanger structure reliability.

In the part of computer calculation ,it is carried out by virtue of computatonal Fliud Dynamics (CFD) SOFTWARE.An investigation has been performed to analyze the heat transfer characteristics and flow behavioas in the spiral channel with staggered concleded as major axis with triabgle arrangement is higher than of circular pin fins and the overrall number k of a/b=2.0~2.5 elliptic pin fins of circular pin fin and the triangle arrangement is higher than that of square arrangement ;c)overall capability of the spiral channel with ellipitic pin fins of the spiral channel with cube-shaped and diamond-shaped pin fins is lower than that of circular pin fins with the same arrangement way .

As a result ,overall capability of heat transfer and flow of the speral plate heat exchjanger with elliptic pin fins superior to that of circular pin fins,and the overall capability number k of a/b=2.0~2.5 ellipitic pin fins spiral channel is the highest.

[Key Words] spiral plate heat exchanger , heat transfer enhancement , pin fins ,dropping pressure the simulationcal numercal

'

螺旋板式换热器结构及性能

螺旋板式换热器结构及性能 1、本设备由两张卷制而成,形成了两个均匀的螺旋通道,两种传热介质可进行全逆流流动,大大增强了换热效果,即使两种小温差介质,也能达到理想的换热效果。 2、在壳体上的接管采用切向结构,局部阻力小,由于螺旋通道的曲率是均匀的,液体在设备内流动没有大的转向,总的阻力小,因而可提高设计流速使之具备较高的传热能力。 3、I型不可拆式螺旋板式换热器螺旋通道的端面采用焊接密封,因而具有较高的密封性。 4、II型可拆式螺旋板换热器结构原理与不可拆式换热器基本相同,但其中一个通道可拆开清洗,特别适用有粘性、有沉淀液体的热交换。 5、III型可拆式螺旋板换热器结构原理与不可拆式换热器基本相同,但其两个通道可拆开清洗,适用范围较广。 6、单台设备不能满足使用要求时,可以多台组合使用,但组合时必须符合下列规定:并联组合、串联组合、设备和通道间距相同。混合组合:一个通道并联,一个通道串联。 螺旋板式换热器的基本参数: 1.螺旋板式换热器的公称压力PN规定为0.6,1,1.6、 2.5Mpa(即原6、10、16、25kg/cm)(系指单通道的最大工作压力)试验压力为工作压力的1.25倍。 2.螺旋板式换热器与介质接触部分的材质,碳素钢为Q235A、Q235B、不锈钢酸港为SUS321、SUS304、3161。其它材质可根据用户要求选定。 3.允许工作温度:碳素钢的t=0-+350℃。不锈钢酸钢的t=-40-500℃。升温降压范围按压力容器的有关规定,选用本设备时,应通过恰当的工艺计算,使设备通道内的流体达到湍流状态。(一般液体流速1m/Sec气体流速10m/Sec).设备可卧放或立放,但用于蒸气冷凝时只能立放;用于烧碱行业必须进行整体热处理,以消除应力。 螺旋板式换热器防堵塞原理 螺旋板式换热器与一般列管式换热器相比是不容易堵塞的,尤其是泥沙、小贝壳等悬浮颗粒杂质不易在螺旋通道内沉积,主要体现在: 1.因为它是单通道杂质在通道内的沉积一形成周转的流还就会提高至把它冲掉; 2.因为螺旋通道内没有死角,杂质容易被冲出。 螺旋板换热器的分类 螺旋板换热器分为可拆分螺旋板换热器和不可拆分螺旋板换热器。不可拆式螺旋板换热器的结构比较简单,螺旋通道的两端全部焊死。可拆式螺旋板换热器.除螺旋通道两端的密封结构以外,其他与不可拆式完全相同。为达到机械清洗的目的,可拆式螺旋通道,一端敞开,用平板盖和垫片密封,以防止流体漏到大气中或同一通道内的流体短路。为了提高螺旋板的承压能力,在板与板之间用定距柱支撑。筒体上的流体进出口有法向接管和切向接管两种。中国普遍使用切向接管,它的流体阻力小,杂质容易被冲出。使用回转支座比较方便,可使换热器立放或卧放。换热的A、B流体分别流过螺旋板的两侧,其中的一种流体沿螺旋通道由外向内,至中心出口流出;而另一种流体则沿螺旋通道由中心进口,由内向外流出。两种流体呈纯逆流方式流动。螺旋板换热器最大结构尺寸为:板宽1800毫米,外径1700毫米,传热面积250米,板与板之间的距离20毫米。允许最高操作压力可达 2.5兆帕。工作温度由选用的材料而定,材料大多用碳钢、不锈钢、铝、铜和钛。

螺旋板式换热器

螺旋板式换热器 螺旋板式换热器:主要由两张平行的薄钢板卷制而成,构成一对相互隔开的螺旋形流道。冷热两流体以螺旋板为传热面相间流动,两板之间焊有定距柱以维持流道间距,同时也可以增加螺旋板的刚度。在换热器中心设有中心隔板,使得两个螺旋通道隔开。在顶部和底部分别焊有盖板或封头和两流体的出、入接管。一般有一对进出口是设在圆周边上(接管可以为切向或径向),而另外一对则设在圆鼓的轴心上。 螺旋板式换热器是一种高效换热设备,适用汽-汽、汽-液、液-液,对液传热。它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。由于用途不同,螺旋板换热器的流道布置和封盖形式有以下几种结构型式。不可拆式(I型)螺旋板式及可拆式(II型、III型)螺旋板式换热器。 “I”型结构:两个螺旋流道的两侧完全焊接密封,所以又称为不可拆结构,因而具有较高的密封性。两流体在流道长均作螺旋流动。冷流体从外流向中心,热流体从中心流向外,完全是逆流。由于流体是在单流道中流动,流动分布情况良好,这种形式主要用于液体与液体。 “II”型结构:在这种型式中,一种流体在螺旋流道中进行螺旋流动,另一种则在另一螺旋流道中进行轴向流动。所以轴向流道的两侧是敞开的,螺旋流道两侧则焊接密封。这种型式适用于两种介质流率差别很大的情况,通常用作冷凝器、气体冷却器等。 “III”型结构:在这种型式中,一种流体进行螺旋流动,另一种则进行轴向流动和螺旋流动的组合。适用于蒸汽的冷凝冷却,蒸汽先进入轴流部分,当冷凝后体积减小时,才转入螺旋流道以进一步冷却。 其特点是有一端管板不与外壳相连,可以沿轴向自由伸缩。这种结构不但完全消除了热应力,而且由于固定端的管板用法兰与壳体连接,整个管束可以从壳体中抽出,便于清洗和检修。螺旋板换热器的直径一般在1.6m以内,板宽200~1200mm,板厚2~4mm。两板间的距离由预先焊在板上的定距撑控制,相邻板间的距离为5~25mm。常用材料为碳钢和不锈钢。

不可拆式螺旋板式换热器

不可拆式螺旋板式换热器 螺旋板式换热器是一种高效换热器设备,适用汽-汽、汽-液、液-液,对液传热。它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。按结构形式可分为不可拆式(Ⅰ型)螺旋板式及可拆式(Ⅱ型、Ⅲ型)螺旋板式换热器。 螺旋板式换热器通过多年实践使用证明,确是一种高效换热设备,它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业中应用。换热器吸取当代国际先进技术,经独特的优化设计制造的液-液、汽-水热交换器。产品结构工艺按瑞典“阿尔法拉代”公司标准,螺旋板端面采用折边氩弧焊,“顶距柱”专用工艺为电容蓄电接触器,提高了内在和外表的质量得到“宝钢”认可,能取代进口。 不可拆式螺旋板式换热器是按-机部标准JB/TQ724-89不可拆式螺旋板式换热器形式,基本参数与尺寸的规定而进行设计的,它具备制造简单,成本低,体积小和传热性能好等优点,但也有它的不足之处,例如不能进行机械清洗,坏了不易检修等,选用者应根据工程的实际情况选取具体的设备使之最为有效。结构及性能 1、本设备适用于:液-液,气-气,气-液对流传热可用于蒸汽冷凝和液体蒸发传热,化工,石油,医药,机械,电力,轻工和纺织等工业部门均可选用。 2、本设备由两张钢板卷制而成,形成了两个均匀的螺旋通道,两种传热截止可进行全逆流流动,适用小温差传热,便于回收低温热源并可准确地控制出口温度。 3、在壳体上的接管是切向结构,局部阻力小,螺旋通道的曲率是均匀的,流体在设备内流动没有大的换向,总的阻力小,因而可提高设计流速使之具备较高的传热能力。 4、螺旋通道的端面是焊接密封的,密封性能好,结构可靠。 5、不易检修,尤其是内部板出现问题时极难修理,有些厂把设备两端焊缝全部车掉,重新将板展平补焊后再卷制,这样做消耗的工时太大,因选用螺旋板式换热器防腐是十分重要的。 6、不能进行机械清洗,生产实践证明,螺旋板换热器与一般列管式换热器相比是不容易堵塞的,尤

SS型螺旋板式换热器使用性能表及尺寸表

SS型螺旋板式换热器使用性能表及尺寸表 螺旋板式换热器适用于多行工业生产中,可进行液-液,气-液,气-气对流传热,废热回收,蒸汽冷凝或液体蒸发,其热效率一般为列管式的1-3倍,污洁自清能力强,节能效果好,占地面积小。(一)结构形式 不可拆式(Ⅰ型)螺旋板式换热器(JB/1287-73标准),型号见表: “Ⅱ、Ⅲ”型为可拆式,咱们可设计制造。结构原理与基本不可拆式换热器基本相同,但其中有一通道或二通道可拆开清洗,两端加封头或法兰盖密封。特别适用有粘性、有颗粒沉淀的液--交换,以及气--液,蒸汽冷凝。 SS型螺旋板式换热器使用性能表 型号换热量 Q104[K al/h] 设计压力 P [MPa] 一次水(130→80)二次水(70→95) 流量V1 [m3/h] 通道截面 积F1[m2] 流速 W1[m/ s] 阻力降 △P1 [MPa] 流量V1 [m3/cm] 通道截 面积 f1[m2] 流速 W1[m /s] 阻 力 降 △P 1 [MP a] SS50- 1050 1.010.40.00370.780.1620.60.005 1.020.2 8 SS75- 1075 1.015.60.0060.720.16310.00810.20.2 8

SS100- 10100 1.020.70.0080.720.1641.20.011 1.05 0.3 1 SS150- 10150 1.031.10.010.860.26620.013 1.22 0.4 6 SS200- 10200 1.041.50.0130.890.27830.019 1.15 0.4 8 SS250- 10250 1.051.90.0160.90.321030.023 1.19 0.5 5 SS50- 1650 1.610.40.00370.780.7720.60.005 1.020.2 98 SS75- 1675 1.615.60.0060.720.17310.0078 1.20.2 09 SS100- 16100 1.620.70.0080.720.1741.20.011 1.05 0.3 2 SS15016 - 150 1.631.10.010.860.27620.013 1.22 0.4 9 SS200- 16200 1.641.50.0130.890.29830.019 1.15 0.5 2 SS250- 16250 1.651.90.0160.90.341030.023 1.19 0.5 8 SS型螺旋板式换热器基本尺寸及重量表 型号 计算换 热面积 F(m2) 通道间距 板宽H (mm) 设备直 径 Dg(mm ) 接管公 称 直径 Dg(mm ) 支座及地脚 螺栓孔直径 n-φ(mm) 设备重量 W(kg) B1 (mm) B2 (mm) SS50-1015.510144001000802-φ241180 SS75-1024.3101460010001002-φ241420 SS100-1034101480010501002-φ241870 SS150-1049.21014100011001252-φ242820 SS200-1068.91420100014801502-φ244550 SS250-1088.91420120015001502-φ244700 SS50-1615.510144001000802-φ241235

螺旋板式换热器工作原理、构造及特点

螺旋板式换热器的换热原理、构造原理、特点 螺旋板式换热器是用薄金属板压制成具有一定波纹形状的换热板片,然后叠装,用夹板、螺栓紧固而成的一种换热器。工作流体在两块板片间形成的窄小而曲折的通道中流过。冷热流体依次通过流道,中间有一隔层板片将流体分开,并通过此板片进行换热。 螺旋板式换热器是一种高效换热器设备,适用汽-汽、汽-液、液-液,对液传热。它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。按结构形式可分为不可拆式(Ⅰ型)螺旋板式及可拆式(Ⅱ型、Ⅲ型)螺旋板式换热器。 螺旋板换热器的结构及换热原理决定了其具有结构紧凑、占地面积小、传热效率高、操作灵活性大、应用范围广、热损失小、安装和清洗方便等特点。两种介质的平均温差可以小至1℃,热回收效率可达99%以上。在相同压力损失情况下,螺旋板式换热器的传热是列管式换热器的3~5倍,占地面积为其的1/3,金属耗量只有其的2/3。因螺旋板式换热器是一种高效、节能、节约材料、节约投资的先进热交换设备。所以目前已广泛用于化工、石化、食品饮料、机械、集中供热、冶金、动力、船舶、造纸、纺织、医药、核工业和海水淡化及热电联产等工业领域,可满足各类冷却、加热、冷凝、浓缩、消毒和余热的回收等工艺的要求。 板式换热器的构造原理、特点: 板式换热器由高效传热波纹板片及框架组成。板片由螺栓夹紧在固定压紧板及活动压紧板之间,在换热器内部就构成了许多流道,板与板之间用橡胶密封。压紧板上有本设备与外部连接的接管。板片用优质耐腐蚀金属薄板压制而成,四角冲有供介质进出的角孔,上下有挂孔。人字形波纹能增加对流体的扰动,使流体在低速下能达到湍流状态,获得高的传热效果。并采用特殊结构,保证两种流体介质不会串漏。 小结: 总体来讲,板式换热器的换热系数要比螺旋板的高,但是螺旋板换热器造价低廉,更加适合工艺要求不严的水水换热! 另外板式换热器分为可拆卸和全封闭型,前者可以通过拆卸进行清洗和维修,但是每次拆卸肯定要更换胶条,需要进行二次投资!而后者则应用于介质叫洁净的工况,无法拆卸。螺旋板式换热器它是由两张互相平行的薄金属板,卷制成同心的螺旋形通道。在其中央设置隔板将两通道隔开,两板间焊有定距柱以维持通道间距,螺旋板两侧焊有盖板和接管。两流体分别在两通道内流动,通过螺旋板进行换热。 (1)总传热系数高由于流体在螺旋形通道内受到惯性离心力的作用和定距柱的干扰,低雷诺数(Re=1400~1800)下即可达到湍流,允许流速大(液体为2m/s,气体为20m/s),故传热系数大。如水对水换热过程K=2000~3000W/m2?K。 (2)不易结垢和堵塞由于流速较高且在螺旋形通道中流过,有自行冲刷作用,故流体中的悬浮物不易沉积下来。 (3)能利用低温热源由于流道长而且两流体可达到完全逆流,因而传热温差大,能充分利用温度较低的热源。 (4)结构紧凑由于板薄2~4mm,单位体积的传热面积可达到150~500m2/m3。 `主要缺点是操作压强不能超过2MPa,操作温度在300~400℃以下,另外因整个换热器焊为一体,一旦损坏检修困难。螺旋板换热器直径在1.5m之内,板宽200~1200mm,板厚2~4mm,两板间距5~25mm,可用普通钢板和不锈钢制造,目前广泛用于化工、轻工、食品等行业。 板式和螺旋式的区别,螺旋使用在温度高,压力大,粘度大的场合,而板式用天温度小于160,压力小于1.6MPA,粘度不是很大的场合,螺旋板的传热系数比板换低一半左右,具体得看介质参数来定。

螺旋板式换热器特点

螺旋板式换热器性能简介 螺旋板式换热器是传热元件由螺旋形板组成的换热器,是一种高效换热器设备,适用汽-汽、汽-液、液-液,对液传热。它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。 相比较其他种类的换热器,螺旋板式换热器具有以下特点: 1、传热效率高(性能好)。一般认为螺旋板式换热器的传热效率为列管式换热器的1-3倍。等截面单通道不存在流动死区,定距柱及螺旋通道对流动的扰动降低了流体的临界雷诺数,水水换热时螺旋板式换热器的传热系数最大可达3000W/(㎡.K)。 2、有效回收低温热能。螺旋板式换热器由两张卷制而成,形成了两个均匀的螺旋通道,两种传热介质可进行全逆流流动,大大增强了换热效果,即使两种小温差介质,也能达到理想的换热效果,进行余热回收,充分利用低温热能。 3、运行可靠性强。不可拆式螺旋板式换热器螺旋通道的端面采用焊接密封,因而具有较高的密封性,保证两种工作介质不混合。 4、阻力小。在壳体上的接管采用切向结构,局部阻力小,由于螺旋通道的曲率是均匀的,液体在设备内流动没有大的转向,总的阻力小,因而可提高设计流速使之具备较高的传热能力。比较低的压力损失,处理大容量蒸汽或气体;有自清刷能力,因其介质呈螺旋型流动,污垢不易沉积;清洗容易,可用蒸汽或碱液冲洗,简单易行,适合安装清洗装置;介质走单通道,允许流速比其他换热器高。

5、可多台组合使用。单台设备不能满足使用要求时,可以多台组合使用,但组合时必须符合下列规定:并联组合、串联组合、设备和通道间距相同。混合组合:一个通道并联,一个通道串联。 螺旋板式换热器的主要技术参数: 1.螺旋板式换热器的公称压力规定为0.6,1,1.6, 2.5Mpa(即原6、10、16、25kg/cm)(系指单通道的最大工作压力)试验压力为工作压力的1.25倍。 2.螺旋板式换热器与介质接触部分的材质,碳素钢为Q235A、Q235B,不锈钢为SUS321、SUS304、316L。其它材质可根据用户要求选定。 3.允许工作温度:碳钢为-20-3500C,不锈钢为-20-3500C 4.选用设备时,应通过适当的工艺计算,使设备通道内的液体达到湍流状态(一般液体速度≥0.5m/s;气体≥10m/s) 5.设备可卧放或立放,但用于蒸汽冷凝时只能立放。 6.用于烧碱行业必须进行整体热处理,以消除应力。 7.当通道两侧流量值差较大时,可采用不等间距通道来优化工艺设计。

螺旋板式换热器的基本构造

螺旋板式换热器的基本构造 螺旋板式换热器与其他种类换热器相比的特点是,传热流道长、流道间距大、耐热温、不易泄漏。因此它换热效率较高,换热后冷介质的温度容易接近热介质的温度,适于粘稠性物料和含有颗粒性物料的加温或降温处理,但不适于含有纤维性物料换热。螺旋板式换热器也适用于有机化合物蒸汽的冷凝加工。 二、螺旋板式换热器的基本构造和工作原理 螺旋板式换热器是由两张较长的钢板叠放在一起卷制而成的,如图一,每张板上均布地焊有定距柱,它使两张板之间产生一定的间距,形成换热流道,定距柱起到支撑钢板抵抗流体压力的作用,也起到流体在换热流道中流动时增加湍流从而提高换热效率的作用。相邻两流道流过的两种流体温度不同,它们通过螺旋钢板进行传热,达到换热的目的。两流道的间距可以相同,也可不同。流道间距不能太小,也不能太大,太小容易堵塞,太大不利于传热,在制造工艺结构上也难以实现,一般为8-30mm 较为适宜。 图一对于进行换热的两种介质,如果都是液体,在螺旋板式换热器的六道中是按螺旋方向流动的,如图二,并且按逆流的方式流动,所谓逆流是指相邻流道中两种液体流动的方向相反,这样能使两流体在相互传热的流程中始终保持一定的温差,从而可获得较好的效果。 对于换热的两种介质,一种是液体,另一种是汽(气)体,可按错流方式流动,所谓错流,是指液体按螺旋方向流动,汽(气)体按换热器的轴向直接通过,如图三,这主要是考虑到汽(气)体的特点,适于较

大的流量,减少阻力,适用于有机蒸汽冷凝。根据具体工况,蒸汽也可按螺旋方向流动,但气体由于热容量较小,一般那要按轴向直接通过。 图二图三 三、螺旋板式换热器的类型 1.不可拆式 卷制后的螺旋板式换热器,其两端焊死,它不可拆卸,形成固定结构,流程内部不可触及。它适用于不易堵塞的流体换热。不可拆式又有卧式和立式的结构。 2.可拆式 卷制后的螺旋板式换热器,每端只将一个流道焊死,而另一个流道开放,然后在端面上加端盖加以密封。其端盖可以拆卸,从而清理流道内部。它适用于易堵塞的流体换热。转:https://www.360docs.net/doc/cd928606.html,/news_001_d_32.html

(整理)螺旋板式换热器平板式换热器

螺旋板式换热器 结构性能: 1、本设备适用于:液-液,气-气,气-液对流传热可用于蒸汽冷凝和液体蒸发传热,化工,石油,医药,机械,电力,轻工和纺织等工业部门均可选用。 2、本设备由两张钢板卷制而成,形成了两个均匀的螺旋通道,两种传热截止可进行全逆流流动,适用小温差传热,便于回收低温热源并可准确地控制出口温度。 3、在壳体上的接管是切向结构,局部阻力小,螺旋通道的曲率是均匀的,流体在设备内流动没有大的换向,总的阻力小,因而可提高设计流速使之具备较高的传热能力。 4、螺旋通道的端面是焊接密封的,密封性能好,结构可靠。 5、不易检修,尤其是内部板出现问题时极难修理,有些厂把设备两端焊缝全部车掉,重新将板展平补焊后再卷制,这样做消耗的工时太大,因选用螺旋板式换热器防腐是十分重要的。 6、不能进行机械清洗,生产实践证明,螺旋板换热器与一般列管式换热器相比是不容易堵塞的,尤其是泥沙、小贝壳等悬浮颗粒杂质不易在螺旋通道内沉积,分析其原因;一是因为它是单通道杂质在通道内的沉积一形成周转的流还就会提高至把它冲掉,二事故因为螺旋通道内没有死角,杂质容易被冲出。 7、因为螺旋通道内有定距柱支撑通道间距,甩以不得有纤维状杂质(棉纱,草棍,树叶等)进入换热器内部。 8、严格控制冷却水出口温度在结垢温度以下。 主要特点: 1、传热效率:介质的狭长通道内流动,即旋转离心又受定距柱拢动,因而易于获得低雷诺数的湍流(但压力隆并不大),传热系数高,最高可达2500KCal/2·h·℃其热效率一般为列管式换热器的1-3倍。 2、回收低温热能:采用本设备,在两流体温差较小的情况下,仍可进行热交换,可利用该换热器回收低温热能,进行废热回收利用。 3、热损失少:本设备结构紧凑,体积小,外表面积小,并且由于接近常温的流体从外边缘通道流过,所以可不必保温。 4、操作稳定:本设备具有狭长的两个均匀通道,介质可进行均匀加热或冷却,可准确地控制出口温度。 5、结构可靠:两通道为焊接密封,保证热交换介质不混合,同一介质通道间密封用垫片由法兰盖压紧不短路。 6、自洁污垢:介质走狭长的单通道,流速比基它换热器高,污垢不易沉积其中,即该种换热器有自身清洗作用。 7、价格低质量可保证:本设备主体不用管材,只用板材,采用卷料整板卷制,材料利用率高,且制造较简便,成本低,质量好。 1.

螺旋板式换热器的应用

螺旋板式换热器的应用 螺旋板式换热器,是由两张平行的金属板卷制成两个螺旋形通道,冷热流体之间通过螺旋板壁进行换热的换热器。螺旋板式换热器有可拆的和不可拆的两种型式。 螺旋板式换热器的分类 螺旋板式换热器分为可拆分螺旋板式换热器和不可拆分螺旋板式换热器。不可拆式螺旋板式换热器的结构比较简单,螺旋通道的两端全部焊死。可拆式螺旋板式换热器.除螺旋通道两端的密封结构以外,其他与不可拆式完全相同。为达到机械清洗的目的,可拆式螺旋通道,一端敞开,用平板盖和垫片密封,以防止流体漏到大气中或同一通道内的流体短路。为了提高螺旋板的承压能力,在板与板之间用定距柱支撑。筒体上的流体进出口有法向接管和切向接管两种。中国普遍使用切向接管,它的流体阻力小,杂质容易被冲出。使用回转支座比较方便,可使换热器立放或卧放。换热的A、B流体分别流过螺旋板的两侧,其中的一种流体沿螺旋通道由外向内,至中心出口流出;而另一种流体则沿螺旋通道由中心进口,由内向外流出。两种流体呈纯逆流方式流动。螺旋板式换热器最大结构尺寸为:板宽1800毫米,外径1700毫米,传热面积250平方米,板与板之间的距离20毫米。允许最高操作压力可达 2.5兆帕。工作温度由选用的材料而定,材料大多用碳钢、不锈钢、铝、铜和钛。 螺旋板式换热器结构及性能 1、本设备由两张卷制而成,形成了两个均匀的螺旋通道,两种传热介质可进行全逆流流动,大大增强了换热效果,即使两种小温差介质,也能达到理想的换热效果。 2、在壳体上的接管采用切向结构,局部阻力小,由于螺旋通道的曲率是均匀的,液体在设备内流动没有大的转向,总的阻力小,因而可提高设计流速使之具备较高的传热能力。 3、I型不可拆式螺旋板式换热器螺旋通道的端面采用焊接密封,因而具有较高的密封性。 4、II型可拆式螺旋板式换热器结构原理与不可拆式换热器基本相同,但其中一个通道可拆开清洗,特别适用有粘性、有沉淀液体的热交换。

螺旋板换热器板式换热器

螺旋板换热器 螺旋板换热器是以螺旋通道实现传热的一种有较高传热效率的传热设备,在化工生产中应用十分广泛。其工作原理是:当两种温度不同的流体,从管壁两侧流入换热器的通道时,两流体隔着管壁逆流接触。热量就由热流体传给管壁,然后再由管壁传给冷流体,以实现于结构上的特点,使流体能在较低的速度下就达到湍流状态,从而强化了传热。该设备采用板材制作,故在大规模组织生产时,可降低成本。 材料:碳钢或不锈钢型式:卧式立式规格:F=40m2--F=300m2

板式换热器 结构原理: 板式换热器是由传热板片、密封胶垫、夹紧板和夹紧螺栓等主要零部件组成,是用薄金属制成具有一定形状波纹的换热板片,然后叠装而成的一种换热器,工作流体在两块板片间所形成的窄而曲折的通道中流过,冷热流体依次通过各自流道,中间隔一层板片,通过此板片进行换热:传热板片四个角开有流道孔,镶贴有密封胶垫的传热板片安装在固定夹紧板和活动夹紧板之间的框架上,用夹紧螺栓夹紧。传热板片波纹为人字形,相邻板片具有反向的人字形沟槽,沟槽的交叉点相互支撑形成接触点,介质流动时形成湍流,从而获得很高的传热效率。 应用领域: 板式换热器已广泛应用于冶金、矿山、石油、化工、电力、医药、食品、化纤、造纸、轻纺、船舶、供热等部门,可用于加热、冷却、蒸发、冷凝、杀菌消毒、余热回收等各种情况。 设计特点: 1、高效节能:其换热系数在3000~4500kcal/m2·°C·h,比管壳式换热器的热效率高3~5倍。 2、结构紧凑:板式换热器板片紧密排列,与其他换热器类型相比,板式换热器的占地面积和占用空间较少,面积相同换热量的板式换热器仅为管壳式换热器的1/5。 3、容易清洗拆装方便:板式换热器靠夹紧螺栓将夹固板板片夹紧,因此拆装方便,随时可以打开清洗,同时由于板面光洁,湍流程度高,不易结垢。 4、使用寿命长:板式换热器采用不锈钢或钛合金板片压制,可耐各种腐蚀介质,胶垫可随意更换,并可方便在、拆装检修。 5、适应性强:板式换热器板片为独立元件,可按要求随意增减流程,形式多样;可适用于各种不同的、工艺的要求。 6、不串液,板式换热器密封槽设置泄液液道,各种介质不会串通,即使出现泄露,介质总是向外排出。

螺旋板换热器特点

螺旋板换热器特点 螺旋板换热器的特点是:①传热效能好。弯曲的螺旋通道和定距柱,有利于增强流体的湍流状态通道内流体阻力小,可提高设计流速,有助于提高传热系数。对于水-水换热,传热系数可达1.8~3.5千瓦每平方米每摄氏度〔kW/(m(·℃)〕。②有自清洗作用。单通道内的流体通过通道内杂质沉积处时,流速会相对提高,容易把杂质冲掉。③不可拆式结构的密封性能好,适用于剧毒、易燃、易爆或贵重流体的换热。④相邻通道内的流体呈纯逆流方式流动,可得到最大的对数平均温差,有利于小温差传热,适用于回收低温位热能。⑤结构较紧凑单位设备体积内的传热面积可达150米(/米(。⑥由于螺旋通道本身的弹性自由膨胀,温差应力小。⑦价格低廉。能否选用螺旋板换热器的关键是堵塞问题,尽管它有自清洗作用,但由于设计或操作不当也会发生堵塞,这时即使用可拆式结构也难于用机械方法清洗。采用水、气或蒸汽吹洗,操作方便效果更好。螺旋板换热器最大的缺点是检修困难,如发生内圈螺旋板破裂,便会使整台设备报废。 个人觉得要是选用螺旋板式换热器的话,材质的选择很重要,能直接影响到使用寿命;另外后期的维护,拆装以及清洗方式都应该事先考虑好。 螺旋板换热器的分类 螺旋板换热器分为可拆分螺旋板换热器和不可拆分螺旋板换热器。不可拆式螺旋板换热器的结构比较简单,螺旋通道的两端全部焊死。可拆式螺旋板换热器.除螺旋通道两端的密封结构以外,其他与不可拆式完全相同。为达到机械清洗的目的,可拆式螺旋通道,一端敞开,用平板盖和垫片密封,以防止流体漏到大气中或同一通道内的流体短路。为了提高螺旋板的承压能力,在板与板之间用定距柱支撑。筒体上的流体进出口有法向接管和切向接管两种。中国普遍使用切向接管,它的流体阻力小,杂质容易被冲出。使用回转支座比较方便,可使换热器立放或卧放。换热的A、B流体分别流过螺旋板的两侧,其中的一种流体沿螺旋通道由外向内,至中心出口流出;而另一种流体则沿螺旋通道由中心进口,由内向外流出。两种流体呈纯逆流方

螺旋板式换热器2013年5月

已知数据物性参数传热量M1= 2000 kg/h = 0.556 kg/s t 1’ = 140 C t 1’’ = 40 C t m1 = 40 + 0.3×(140-40) = 70 C 参考[2]:表7-8 表7-10 表7-11 υ 1 = 778.525×10^- 6 kg/(m×s) λ 1 = 0.1085 W /(m×K) C p1 = 2.23kJ/(kg×K) ρ 1 = 788 kg/m3 Q = M1×Cp1×( t 1’- t 1’’) = 123.988kJ 用试算法确定t2’’ t 2‘ =25 C t m2 = (t2‘+t2‘)/2 (1)假定水的出口温度 t 2‘’ = 35 C 则 t m2 = 30 C ρ 1 = 995.7 kg/m3 C p2 =4.18kJ/(kg×K) t 2‘’ = 123.988/( 995.7×4.18×15/3600 ) = 32.14 C 相差太大,重新取值。 (2)假定水的出口温度 t2‘’ = 33 C t m2 = 29 C ρ 1 = 995.98 kg/m3 C p2 =4.18kJ/(kg×K) t 2‘’ = 123.988/( 995.98×4.18×15/3600 ) = 32.15 C 相差太大,重新取值。 Q = 123.99kJ

出口温度物性参数选型当量直径(3)假定水的出口温度 t2‘’ = 32.15 C t m2 = 28.6 C ρ 1 = 996.09 kg/m3 C p2 =4.18kJ/(kg×K) t2‘’= 123.988/( 996.09×4.18×15/3600 ) = 32.147 C 相差0.003 C,合适。 t m2= ( t1’+t2’’)/2 = ( 25+32.15 )/2 = 28.6 C 参考[2]:表2-1 υ 2 = 794.69×10^-6 kg/(m×s) λ 2 = 0.609 W/(m× K) C p2 =4.18kJ/(kg×K) ρ 2 = 996.09 kg/m3 换热器为液—液热交换器,煤油和水相对清洁,选用 Ⅰ型 参考[1]附录F.1 冷却水 w2 = 0.5 m/s 煤油w1 = 0.4 m/s A2 = m2 /( 3600×w2×ρ 2 ) = 15/(3600×0.5 ) =0.0083 m2 A1 = M1/( 3600×w1×ρ 1 ) = 2000/(3600×0.4×788 ) =0.0018 m2 参考[1]表3.1 H = 0.6m H e = H-2×б = 0.6-2×0.01 = 0.58 m b2 = A2/H e = 0.0083/0.58 = 0.014 m t2‘’= 32.15 C

螺旋板式换热器的设计

长江大学毕业设计(论文)任务书 学院(系)机械工程学院专业过程装备与控制工程班级装备10901学生姓名指导教师/职称 1.毕业设计(论文)题目: 螺旋板式换热器的设计 2.毕业设计(论文)起止时间: 2013 年3月20日~2013年6月13日 3.毕业设计(论文)所需资料及原始数据(指导教师选定部分)毕业设计所需资料: (1)钱颂文.换热器设计手册[M].北京:化学工业出版社,2002 (2)史美中,王中铮.热交换器原理与设计[M].南京:东南大学出版社,1989 (3)潘国昌,郭庆丰.化工设备设计[M].北京:清华大学出版社,1996 (4)尾花英朗著,徐忠权译.热交换器设计手册[M].北京:石油工业出版社,1982 原始数据: 设计要求:换热器换热面积为20平方米; 介质温度(℃) 工作压 力(MPa) 粗苯 贫油进口180 出口165 1 富油90140 粗苯产量8.25吨/每天 4.毕业设计(论文)应完成的主要内容1)换热器发展概述 2)方案设计

3)换热计算 4)结构设计 5)换热性能预测及分析 6)壳体的有限元分析 5.毕业设计(论文)的目标及具体要求 毕业设计文说明书:字数不少于1.2万字或1.2万字篇幅的内容;翻译:与 研究课题有关的译文不少于3千汉字(或2万印刷字符的外文原文的翻译);阅 读与研究课题相关的有代表性的参考文献资料15篇以上。 绘图要求: (1)总装图1张, (2)零件图4张 (3)实体图 6、完成毕业设计(论文)所需的条件及上机时数要求 AutoCAD、Aspen Plus、Ansys上机200小时。 任务书批准日期 2011 年 3 月 20 日教研室(系)主任(签字) 任务书下达日期 2011年 3 月 28 日指导教师(签字) 完成任务日期年月日学生(签名)

螺旋板式换热器产品技术参数

产品技术参数: 螺旋板式换热器产品简介 螺旋板式换热器是一种高效换热设备,适用汽—汽、汽—液、液—液,对流传热。它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。按结构形式可分为不可拆式(I型)螺旋板式及可拆式(Ⅱ型、Ⅲ型)螺旋板式换热器。 结构及性能 1、本设备由两张钢板卷制而成,形成了两个均匀的螺旋通道,两种传热介质可进行全逆流流动,大大增强了换热效果,即使两种小温差介质,也能达到理想的换热效果。 2、在壳体上的接管采用叨向结构,局部阻力小,由于螺旋通道的曲率是均匀的,液体在设备内流动没有大的转向,总的阻力小,因而可提高设计流速使之具备较高的传热能力。 3、I型不可拆式螺旋板式换热器螺旋通道的端面采用焊接密封,因而具有较高的密封性。 4、Ⅱ型可拆式螺旋板换热器结构原理与不可拆式换热器基本相同,但其中一个通道可拆开清洗,特别适用有粘性、有沉淀液体的热交换。 5、Ⅲ型可拆式螺旋板换热器结构原理与不可拆式换热器基本相同,但其两个通道可拆开清洗,适用范围较广。 6、螺旋板式换热器按公称压力可分为PN0.6、1.0、1.6、2.5MPa(系指单通道能承受的最大工作压力)。按材质可分为碳素钢和不锈钢。用户可根据实际工艺情况选用。 7、单台设备不能满足使用要求时,可以多台组合使用,但组合时必须符合下列规定:并联组合、串联组合,设备和通道间距相同。混合组合:一个通道并联,一个通道串联。 部分规格换热器列举如下:

不锈耐酸钢制PN0.6、1.6MPa不可拆式(I型)螺旋板换热器

碳素钢制PN0.6、1.6MPa不可拆式(I型)螺旋板换热器

螺旋板式换热器结构与性能

螺旋板式换热器结构及性能 1、本设备由两卷制而成,形成了两个均匀的螺旋通道,两种传热介质可进行全逆流流动,大大增强了换热效果,即使两种小温差介质,也能达到理想的换热效果。 2、在壳体上的接管采用切向结构,局部阻力小,由于螺旋通道的曲率是均匀的,液体在设备流动没有大的转向,总的阻力小,因而可提高设计流速使之具备较高的传热能力。 3、I型不可拆式螺旋板式换热器螺旋通道的端面采用焊接密封,因而具有较高的密封性。 4、II型可拆式螺旋板换热器结构原理与不可拆式换热器基本相同,但其中一个通道可拆开清洗,特别适用有粘性、有沉淀液体的热交换。 5、III型可拆式螺旋板换热器结构原理与不可拆式换热器基本相同,但其两个通道可拆开清洗,适用围较广。 6、单台设备不能满足使用要求时,可以多台组合使用,但组合时必须符合下列规定:并联组合、串联组合、设备和通道间距相同。混合组合:一个通道并联,一个通道串联。 螺旋板式换热器的基本参数: 1.螺旋板式换热器的公称压力PN规定为0.6,1,1.6、 2.5Mpa(即原6、10、16、25kg/cm)(系指单通道的最大工作压力)试验压力为工作压力的1.25倍。 2.螺旋板式换热器与介质接触部分的材质,碳素钢为Q235A、Q235B、不锈钢酸港为SUS321、SUS304、3161。其它材质可根据用户要求选定。 3.允许工作温度:碳素钢的t=0-+350℃。不锈钢酸钢的t=-40-500℃。升温降压围按压力容器的有关规定,选用本设备时,应通过恰当的工艺计算,使设备通道的流体达到湍流状态。(一般液体流速1m/Sec气体流速10m/Sec).设备可卧放或立放,但用于蒸气冷凝时只能立放;用于烧碱行业必须进行整体热处理,以消除应力。 螺旋板式换热器防堵塞原理 螺旋板式换热器与一般列管式换热器相比是不容易堵塞的,尤其是泥沙、小贝壳等悬浮颗粒杂质不易在螺旋通道沉积,主要体现在: 1.因为它是单通道杂质在通道的沉积一形成周转的流还就会提高至把它冲掉; 2.因为螺旋通道没有死角,杂质容易被冲出。 螺旋板换热器的分类 螺旋板换热器分为可拆分螺旋板换热器和不可拆分螺旋板换热器。不可拆式螺旋板换热器的结构比较简单,螺旋通道的两端全部焊死。可拆式螺旋板换热器.除螺旋通道两端的密封结构以外,其他与不可拆式完全相同。为达到机械清洗的目的,可拆式螺旋通道,一端敞开,用平板盖和垫片密封,以防止流体漏到大气中或同一通道的流体短路。为了提高螺旋板的承压能力,在板与板之间用定距柱支撑。筒体上的流体进出口有法向接管和切向接管两种。中国普遍使用切向接管,它的流体阻力小,杂质容易被冲出。使用回转支座比较方便,可使换热器立放或卧放。换热的A、B流体分别流过螺旋板的两侧,其中的一种流体沿螺旋通道由外向,至中心出口流出;而另一种流体则沿螺旋通道由中心进口,由向外流出。两种流体呈纯逆流方式流动。螺旋板换热器最大结构尺寸为:板宽1800毫米,外径1700毫米,传热面积250米,板与板之间的距离20毫米。允许最高操作压力可达 2.5兆帕。工作温度由选用的材料而定,材料大多用碳钢、不锈钢、铝、铜和钛。

相关文档
最新文档