华师大版数学八年级上册第十三章全等三角形经典题目解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第13章全等三角形

一、选择题

1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()

A.同位角相等,两直线平行B.内错角相等,两直线平行

C.两直线平行,同位角相等D.两直线平行,内错角相等

2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()

A.SAS B.ASA C.AAS D.SSS

3.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()

A.B.C.D.

4.如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是()

A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC

5.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(6a,2b﹣1),则a和b的数量关系为()

A.6a﹣2b=1 B.6a+2b=1 C.6a﹣b=1 D.6a+b=1

6.如图,用尺规作图:“过点C作CN∥OA”,其作图依据是()

A.同位角相等,两直线平行B.内错角相等,两直线平行

C.同旁内角相等,两直线平行 D.同旁内角互补,两直线平行

7.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()

A.①②③B.①②④C.①③④D.②③④

8.如图,分别以线段AC的两个端点A,C为圆心,大于AC的长为半径画弧,两弧相交于B,D两点,连接BD,AB,BC,CD,DA,以下结论:

①BD垂直平分AC;

②AC平分∠BAD;

③AC=BD;

④四边形ABCD是中心对称图形.

其中正确的有()

A.①②③B.①③④C.①②④D.②③④

9.观察图中尺规作图痕迹,下列结论错误的是()

A.PQ为∠APB的平分线B.PA=PB

C.点A、B到PQ的距离不相等 D.∠APQ=∠BPQ

10.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()

作法:

①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;

②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C;

③画射线OC,射线OC就是∠AOB的角平分线.

A.ASA B.SAS C.SSS D.AAS

二、填空题(共4小题)

11.阅读下面材料:

在数学课上,老师提出如下问题:

小芸的作法如下:

老师说:“小芸的作法正确.”

请回答:小芸的作图依据是.

12.如图,在△ABC中,按以下步骤作图:

①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;

②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为.

13.如图,在△ABC中,AC=BC,∠B=70°,分别以点A、C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,作直线MN,分别交AC、BC于点D、E,连结AE,则∠AED的度数是°.

14.如图,△ABC和△FPQ均是等边三角形,点D、E、F分别是△ABC三边的中点,点P在AB边上,连接EF、QE.若AB=6,PB=1,则QE= .

三、解答题(共16小题)

15.课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.

(1)求证:△ADC≌△CEB;

(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).

16.根据图中尺规作图的痕迹,先判断得出结论:,然后证明你的结论(不要求写已知、求证)

17.如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.

(1)求证:AB=AE;

(2)若∠A=100°,求∠EBC的度数.

18.如图,△ABC是等边三角形,D是BC的中点.

(1)作图:

①过B作AC的平行线BH;

②过D作BH的垂线,分别交AC,BH,AB的延长线于E,F,G.

(2)在图中找出一对全等的三角形,并证明你的结论.

19.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:

①在河流的一条岸边B点,选对岸正对的一棵树A;

②沿河岸直走20步有一树C,继续前行20步到达D处;

③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;

④测得DE的长就是河宽AB.

相关文档
最新文档